首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to systematically quantify differences in soil carbon and key related soil properties along a replicated land‐use intensity gradient on three soil landscapes in northwest New South Wales, Australia. Our results demonstrate consistent land‐use effects across all soil types where C, N and C:N ratio were in the order woodland > unimproved pasture = improved pasture > cultivation while bulk density broadly showed the reverse pattern. These land‐use effects were largely restricted to the near surface soil layers. Improved pasture was associated with a significant soil acidification, indicating that strategies to increase soil carbon through pasture improvement in these environments might also have associated soil degradation issues. Total soil carbon stocks were significantly larger in woodland soils, across all soil types, compared with the other land‐uses studied. Non‐wooded systems, however, had statistically similar carbon stocks and this pattern persisted whether or not carbon quantity was corrected for equivalent mass. Our results suggest that conversion from cultivation to pasture in this environment would yield between 0.06 and 0.15 t C/ha/yr which is at the lower end of predicted ranges in Australia and well below values measured in other cooler, wetter environments. We estimate that a 10% conversion rate (cultivation to pasture) across NSW would yield around 0.36 Mt CO2‐e/yr which would contribute little to emission reductions in NSW. We conclude that carbon accumulation in agricultural soils in this environment might be more modest than current predictions suggest and that systematically collected, regionally specific data are required for the vegetation communities and full range of land‐uses before accurate and reliable predictions of soil carbon change can be made across these extensive landscapes.  相似文献   

2.
Abstract. The Representative Soil Sampling Scheme of England and Wales was started in 1969. During the 25 year period 1969–1993 mean soil pH values under arable and ley-arable cropping changed little, but under grassland they fell by 0.3 units. Under arable cropping, mean available phosphorus declined whilst available potassium increased fairly steeply for the first eight years then declined again to near the start value by 1993. No significant changes in soil phosphorus and potassium levels were found under ley-arable cropping, but the percentage of fields under ley-arable rotations declined from 33% to 14%. Under grassland, phosphorus and potassium levels both declined, although potassium levels rose initially before falling.
For this report England and Wales were also divided into five regions. Wales and the West Country had the lowest pH values; these regions together with the Northern region were also found to have declining pH values. Phosphorus and potassium concentrations have been falling in the Northern region which stands out as having the lowest current potassium status with 20% of all fields deficient at index 0.
Changes in pH and nutrients are discussed for soils sampled following the main arable crops. The largest changes found were the reductions in phosphorus and potassium in soils after potatoes. In 1993 almost one in ten sugarbeet crop soils had an excessive phosphorus level (index 5+) giving an increased risk of water pollution by this element.
Under arable cropping the proportion of soils with low (< 1.8%) organic matter declined. Average soil organic matter levels for all crops and grass have remained static during the period. It is concluded that agricultural soils in England and Wales have not contributed to an increase in the greenhouse gas carbon dioxide.  相似文献   

3.

Purpose

Agricultural practises impact soil properties and N transformation rate, and have a greater effect on N2O production pathways in agricultural soils compared with natural woodland soils. However, whether agricultural land use affects N2O production pathways in acidic soils in subtropical regions remains unknown.

Materials and methods

In this study, we collected natural woodland soil (WD) and three types of agricultural soils, namely upland agricultural (UA), tea plantation (TP) and bamboo plantation (BP) soils. We performed paired 15N-tracing experiment to investigate the effects of land use types on N2O production pathways in acidic soils in subtropical regions in China.

Results and discussion

The results revealed that heterotrophic nitrification is the dominant pathway of N2O production in WD, accounting for 44.6 % of N2O emissions, whereas heterotrophic nitrification contributed less than 2.7 % in all three agricultural soils, due to a lower organic C content and soil C/N ratio. In contrast, denitrification dominated N2O production in agricultural soils, accounting for 54.5, 72.8 and 77.1 % in UA, TP and BP, respectively. Nitrate (NO3 ?) predominantly affected the contribution from denitrification in soils under different land use types. Autotrophic nitrification increased after the conversion of woodland to agricultural lands, peaking at 42.8 % in UA compared with only 21.5 % in WD, and was positively correlated with soil pH. Our data suggest that pH plays a great role in controlling N2O emissions through autotrophic nitrification following conversion of woodland to agricultural lands.

Conclusions

Our results demonstrate the variability in N2O production pathways in soils of different land use types. Soil pH, the quantity and quality of organic C and NO3 ? content primarily determined N2O emissions. These results will likely assist modelling and mitigation of N2O emissions from different land use types in subtropical acidic soils in China and elsewhere.
  相似文献   

4.
Abstract. England and Wales have 155 314 1 × 1 km squares, of which 140049 have more than 50% soil cover. The total soil organic carbon content, based on the dominant soil series and dominant land cover type, is estimated to be 2773 × 106 t C. Scotland has 84929 1 × 1 km squares, of which 82 420 have a nominated dominant soil series. The total soil organic carbon content is estimated to be 19011 × 106 t C, 6.85 times the total organic carbon content of the soil of England and Wales. The total organic carbon content of the soil of Great Britain is estimated to be 21 784 × 106 t C, of which 87% is in Scottish soils and 75% is in Scottish peats. A map of the mean soil organic carbon content of 10 × 10 km squares of the National Grid using classes of equal range illustrates the narrow range of organic carbon contents of the soils of England and Wales and the dominance of organic carbon in Scottish soils. A map using the same data, but with classes of unequal ranges increasing in size with increasing carbon content, is better for showing detailed differences within England and Wales.  相似文献   

5.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

6.
Abstract In Galicia (northwest Spain) the application of organic wastes to agricultural land is a common practice, which may increase total and bioavailable metal contents in the soil. In this study, total metal concentrations were determined in acid soils under different use (pasture, cropland, woodland) in an agricultural area where agro-industrial sludges are frequently recycled as manure. The aim was to establish baseline metal levels which could be used to determine the capacity of soils to absorb organic wastes. The estimation of baseline metal concentrations was carried out by two methods, one based on the analysis of means and geometric deviations, and another based on a modal analysis. Results suggested that the modal analysis procedure might be preferable when analysing data sets with a heterogeneous frequency distribution. In general, there was no significant difference in total metal concentrations when comparing soils from different land uses. Baseline levels for each metal indicated that all soils were suitable for organic waste application under current European Union (EU) legislation. From 2015, more restrictive metal limit values have been proposed by the EU, potentially preventing the addition of metal-containing wastes to pasture, cropland and woodland soils. The dissolved metal values in each soil were also estimated by empirical equations relating total metal concentrations, pH and organic matter content. Results showed that only the pasture soils would be suitable for organic waste disposal under the proposed EU metal limits for 2015, due to liming and substantial organic matter content. Total metal concentrations were insufficient to discriminate environmental risk in acid soils of different land use. The determination of baseline levels in reference areas and the estimation of soil metal bioavailability are suggested to define permissible values in the developing legislation.  相似文献   

7.
Continued conversion of woodlands into grazing and farmland is seriously undermining the natural ecosystem of the dry and fragile Rift Valley areas of Ethiopia. This study investigated the effects of land‐use change on soil organic carbon (SOC), total nitrogen (N), pH, exchangeable bases, cation exchange capacity (CEC) and base saturation (per cent) in three adjacent land‐use types: controlled grazing, open‐grazing and farmland. A total of 81 soil samples were collected and analysed. Contents of SOC and total N decreased drastically in open‐grazing and farmland (p < 0·001), and were significantly higher in the top 0·2 m than in the subsurface soil layer. Compared with the controlled grazing, reductions in the contents of SOC and total N in the top 1 m soil layer were 22–30 and 19 per cent, respectively, due possibly to the decrease in plant biomass input into the soil and the fast decomposition of organic materials. Long‐term cultivation had significantly increased the concentration of exchangeable K. Exchangeable Na was high in the lower layers, while Mg was higher in the top surface soil. CEC also varied with soil depth (p = 0·016); it was higher in the topsoil than in the subsurface soil, which may be, among others, due to the differences in soil organic matter distribution with depth. Although these semi‐arid soils are known to have low organic carbon and CEC levels, the values from the current study area are critically low, and may indicate the further impoverishment of the soils under high agricultural and grazing pressures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract. Survey information on the use of lime in England and Wales between 1974 and 1983 shows year-to-year fluctutions but no marked trend. Areas limed per year are compared for different types of region and cropping, and estimates given of the percentages of agricultural soils by pH according to rotation type. There was no general change in soil acidity between 1969–73 and 1974–78 but recent data show some reductions in grassland pH.  相似文献   

9.
Copper sorption was measured in 14 agricultural soils from England and Wales with a wide range of properties. Sorption from 0.01 M CaCl2 was described by the Freundlich adsorption isotherm when Cu in solution was initially at 200 HM and greater, but at lower initial concentrations (i. e. 100 fiM and less) there was a steep rise in the gradients of the isotherms. At initial concentrations of 100 JIM and less, sorption was linearly correlated to the concentration of Cu remaining in solution; the gradients of these relationships varied considerably amongst the soils and were highly correlated to soil pH. There was no correlation between either the gradients or the extrapolated values of final solution concentration at which there was no sorption of added Cu by the soils (an ‘equilibrium’ concentration), and other determined soil properties. The effect of pH adjustment on sorption varied between the 5 soils examined although, in general, there was increasing sorption with increasing pH. Extrapolated values for ‘equilibrium’ concentrations for an individual soil were higher at pH 6.0 or greater, than at pH 5.5. A large proportion of the Cu in the final solutions was apparently complexed but this varied between soils and was dependent on both pH and total concentration. There was little effect of varying pH of the final solution on these proportions in most soils. Neither extractable Cu in the soils, nor the sorption characteristics were related to availability as measured by uptake by perennial ryegrass.  相似文献   

10.
Changes to soil physical properties after grazing exclusion   总被引:3,自引:0,他引:3  
Abstract. The potential for degraded physical properties of soil to regenerate naturally after exclusion of grazing animals was examined at a long-term stocking rate trial near Armidale, New South Wales, Australia. Unsaturated hydraulic conductivity was measured before grazing was excluded, and after 7 months and 2.5 years' grazing exclusion. These data were compared with controls grazed at 10,15 and 20 sheep/ha. After 2.5 years, there were significant increases in unsaturated hydraulic conductivity at 5 and 15 mm tension in the ungrazed treatments compared with the grazed controls. The unsaturated hydraulic conductivities and bulk density of surface soils under pasture which had been ungrazed for 2.5 years were comparable to those where the pasture had been ungrazed for 27 years. We speculate that the natural amelioration of soil physical properties in these soils was due to biological activity and wetting and drying cycles, in the absence of the compactive effect of animal treading.  相似文献   

11.
Grazing by large ungulates, such as reindeer (Rangifer tarandus L.), in subarctic tundra exerts a considerable effect on the soil microclimate. Because of higher insulation by the aboveground vegetation in light versus heavily grazed areas, soil temperatures during the growing season are considerably higher under heavy grazing. Here, we hypothesized that these grazer-induced changes in soil microclimate affect the temperature sensitivity of soil microbial activity. To test this hypothesis, we conducted soil incubations at different temperatures (4 °C, 9 °C and 14 °C) for six weeks using soils from sites with contrasting long-term grazing intensities. Microbial respiration at low temperature (4 °C) was significantly higher in soils under light grazing than in soils under heavy grazing; however, grazing intensity did not affect respiration rates at 9 °C and 14 °C. In soils under light grazing, post-incubation β-glucosidase (BG) activity at 4 °C was higher in soils that had been incubated at 4 °C than in soils incubated at 14 °C, suggesting functional adaptation of the soil microbial community to low temperature. Similar adaptation was not detected in soils under heavy grazing. Ion Torrent sequencing of bacterial 16S rRNA genes showed major differences in the bacterial community composition in soils incubated at different temperatures. Overall, our results indicate that tundra soil microorganisms may be more cold-adapted under low than high grazing intensity. Due to this difference in temperature adaptation, the consequences of climate warming on soil microbial processes may be dependent on the grazing intensity.  相似文献   

12.
中国土壤酸化呈现出全国普遍发生的趋势,对作物产量、农产品品质和生物多样性造成不利影响。自20世纪50年代以来,我国在酸性土壤方面开展了大量工作,取得显著成效,但因我国酸性土壤分布详情不明、土壤酸化机制存在争议、耐逆作物品种缺乏、作物酸害阈值不清、改良产品及技术落地性差等问题,酸性土壤利用仍受到极大限制。针对上述问题,绘制了新的中国土壤酸碱度图,明确了我国酸性土壤的分布详情,讨论了土壤酸化机制特别是氮肥与土壤酸化之间的关系,论述了土壤酸化的危害,解析了植物和微生物对酸性土壤的响应和适应机制,提出了分区分级分类改良、酸度改良和肥力提高并重、有机无机肥配施、发展特色农业等酸性土壤改良和利用策略,建议进一步加强酸性土壤新型改良剂、作物酸害阈值、氮肥高效利用、中微量元素、耐逆作物育种和土壤酸化模型等方面研究,以期为酸性土壤可持续利用提供支撑。  相似文献   

13.
It is suggested that stopping liming on agricultural land could lead to a potential chemical time bomb (CTB). the sequence of interrelated events leading to the CTB include the end of liming, perhaps caused by a change in land use, a progressive decrease in soil pH and increased solubility of potentially toxic contaminants that accumulate in soils as a result of agricultural practices. Data are presented on rates of long-term soil acidification and modelled changes in the solubility of some trace metals in soil as a result of acidification. Soil acidification rates depend primarily on acid input rates and the soil's acid neutralizing capacity, possibly limited by neutralization kinetics. Experimental data illustrating this point show that the pH decreased rapidly in a field soil receiving ammonium rather than nitrate fertilizer treatment. on a limed agricultural field that was later abandoned and converted to deciduous woodland, The pH of the 0-23 cm soil layers decreased over 100 years from pH 7 to 4.2. Deeper layers acidified at a slower rate. Thermodynamic model calculations simulating the solubilities of metals in a sandy topsoil showed zinc, cadmium and aluminium solubilities increasing exponentially with decreasing pH, resulting in several-fold solubility increases between pH 5 and 4. These results suggest how metal solubility increases after liming stops. the model pH-solubility relationships depended on the type of metal, The solid phase controlling the solubility, and the amount of metal in the soil if adsorption controlled the solubility. Decreasing pH and the resultant increase in metal solubility expected on abandoned farmland might be managed through techniques such as liming or planting forests of selected tree species.  相似文献   

14.
The soil cover patterns in the Kabansk district (the Baikal region of the Buryat Republic), including the Selenga River delta, are analyzed. A soil map of this area has been developed on a scale of 1 : 500000. Stony organic soils are widespread in the tundra zone. Mountain-meadow soddy soils and tundra podburs (under dwarf pine) are formed at lower heights around lakes and in glacial valleys. Kabansk district includes taiga landscapes on the northern slopes of the Khamar-Daban Ridge with the predominance of podburs, podzols, soddy-taiga soils, and burozems. Agrolandscapes occur in the Nizhneselenginsk meadow-bog and forest-steppe natural region with a predominance of soddy forest, soddy gray forest, meadow, alluvial, meadow-bog, and bog soils. Data on the land evaluation in the agricultural part of the studied region are given.  相似文献   

15.
Valuable soils in Northrhine-Westphalia — soil scientific criteria for generating a complete map for soil protection At the Geological Survey of Northrhine-Westphalia a map was developed: Soils to be protected in Northrhine-Westphalia at a scale of 1:50.000. It is based on the Soil map of Northrhine-Westphalia at a scale of 1:50.000. This map indicates areas where such land uses should get high priority which need, save and develop the identified main soil functions. There are three groups of land use with main soil functions:
  • natural habitat with high potential of biotope evolution
  • agricultural production on soils with (regionally) high fertility
  • regional specifica, including soils as archives of natural and cultural history.
Land uses disregarding or lowering these soil functions have to be placed otherwhere or have to be compensated by areas with comparable functions. The criteria generating this map are given and discussed. The evaluation of information coming from the digital soil map runs soil protection under the aim of securing the kind and state of soil substrate and characteristics, giving the functionality of soils in favor of other media of the environment.  相似文献   

16.
Abstract. Knowledge of the stocks and the potential range of soil organic carbon (SOC) in various land–soil combinations is an important precursor to policies aimed at linking, for example, management of SOC to greenhouse gas emission controls. To investigate the factors controlling the percentage of SOC (%SOC) of soils in England and Wales, we made a multiple regression analysis of data for the 2448 arable and ley-arable sites in the 1980 England and Wales National Soil Inventory (NSI). Clay content, average annual precipitation and depth of topsoil explained 25.5% of the variation in %SOC, when calcareous and peaty soils and those susceptible to flooding were excluded. Using 'robust' statistics, 'indicative SOC management ranges' were estimated for different physiotopes, that is, landscape units for which the environmental factors governing %SOC are similar, namely soil clay content and precipitation. These ranges describe the expected %SOC range for an arable soil in a given physiotope. They have potential to support approximate targets for the %SOC of arable soils and for estimating upper and lower limits for sequestered soil carbon in arable systems.  相似文献   

17.
土壤理化性质对铝电极电位的影响   总被引:1,自引:1,他引:1  
王开军  吴汮 《土壤学报》1994,31(3):269-266
本文系统研究了土壤的某些主要理化性质对铝电极电位的影响。结果表明,土壤水分,土壤松紧度,土壤盐分及土壤pH对铝电极电位都有明显影响。在土壤饱和水后和饱和水前的一定含水量范围内,则出现一个很大的电位突降。在同一含水量情况下,电位与土壤容重呈明显的线性反相关。土壤盐分浓度的增高能导致电位的负偏。同时在不同土壤中,盐分的作用也各相同。可变电荷土壤盐分的加入对电位的影响比较明显,从土壤pH的影响可以区分出  相似文献   

18.
Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances linked to the toxicity and the influence of soil properties on their bioavailability remains unknown.In this study, the toxicity of a sewage sludge to the soil collembolan Folsomia candida was assessed in nine natural soils from agricultural, grassland and woodland sites, together with the OECD soil. Correlations between the relative toxicity of sludge for collembolans in the different soils and their physical and chemical soil properties were assessed in order to identify the main compounds responsible for the effects observed. Furthermore, the relationships between the toxic effects to collembolans and water-soluble ions released by sludge, pH and electric conductivity were also assessed, together with the modulating effects of soil properties.Sludge toxicity was directly linked to the water extractable ammonium, which explained most of the mortality of the collembolans, and part of the inhibition of reproduction. For the last endpoint, nitrite also contributed significantly to the inhibition observed. The varied levels in water extractable ammonium in the different soils at equal dosages seem to be, in turn, modulated by some soil properties. Higher organic carbon contents were associated with lower toxicity of sludge, both for survival and reproduction, probably related to its higher ammonium sorption capacity. In addition, for reproduction, increasing the C/N ratio and pH appeared to increase the toxicity, probably due to both the greater difficultly in nitrification and the known unsuitability of alkaline soils for this species.  相似文献   

19.
Crop contamination by selected trace elements   总被引:2,自引:0,他引:2  
Goal and Background  The regulatory limit for the allowable concentration of heavy metals (HM) in agricultural soils should be based both on HM status and on soil parameters that influence HM mobility. In this paper, a soil categorization scheme is proposed which is based on the main factors that influence HM mobility in soils. The scheme also makes use of the existing regulatory limits for total concentrations of trace elements in Slovak soils but additionally takes into account the potential ability of the soils to mobilize trace elements. A map of the Slovak Republic showing the soil categorization using this scheme is presented. Methods  Besides total soil content of Cd, Pb, Cr, Hg, As, Cu, Zn, Ni, soil parameters with dominant influence on HM mobility are included in the scheme pH, organic matter content, quality of humus represented by spectral parameter Q4 6 and content of fraction f < 0.01 mm. Point rating approach was used for categorization. Database of localized soil data from 3556 locations was used for creation of map in GIS environment. Results  Based on the point scoring method described herein, soils are ranked from a (the least risk of crop contamination) to d (medium risk). Categories e and f are reserved for soils where the risk exceeds the allowable regulatory limits. For each of the six categories, the most suitable usage of agricultural land is recommended. The Slovak map presented shows that the main factor that affect the spatial distribution of each soil category is soil parent material which governs the existing total HM content and the predisposition for certain soil types to have high HM mobility. Agricultural usage of land in Slovakia is in most cases limited by exceedences of Cr and Ni, originating from widespread flysch rock parent material. Conclusions  Application to regional geochemical data shows that, for more than half of Slovak agricultural land, risk of crop contamination is low. For the rest of the area, planting should consider sensitivity of crops to HM uptake. Recommendation and Outlook  Evaluation of suitable agricultural usage based on HM contamination risk, should include not only the total HM content but also the potential for HM mobility, which can increase the risk of plant contamination. Where HM mobility data are not available, soil parameter data that influence HM mobility can be used to predict the potential HM soil contamination hazard.  相似文献   

20.
Amino acids represent one of the largest inputs of dissolved organic nitrogen to soil and consequently they constitute a major component of the organic N cycle. The effect of agricultural management on the rate of amino acid turnover in soil, however, remains largely unknown. The aim of this study was to evaluate in long-term field experiments the effect of fertilizer addition (N, P and K), grazing, pH manipulation (lime addition), vegetation cover and shifts (grassland versus arable) and drainage on the mineralization of 14C-labelled amino acids in agricultural topsoils. Our results showed that the intrinsic rate of amino acid mineralization was rapid for all management regimes, irrespective of the tested soil type. The average (±SEM) half-life of the amino acids in all soils (n=155) was calculated to be 2.3±0.5 h. The relative amount of amino acid-C partitioned into respiration (25% of total C) versus biomass production (75% of total C) was also unaffected by management strategy. The rate of amino acid mineralization was shown to be slightly sensitive to soil pH, peaking at around pH(2CaCl) 5.0 with an approximate twofold reduction at the pH extremes (pH 3.8 and 6.4). We conclude that management regime has little effect on the intrinsic rate of amino acid mineralization in agricultural soils. We propose therefore that total microbial activity rather than microbial diversity or community structure is likely to be the key determinant governing amino acid turnover in agricultural soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号