首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geoderma》1986,37(2):157-174
Profile distributions of Ag and other metals (Cd, Cu and Pb) in contaminated and uncontaminated soils from west Wales, U.K. are presented. Background Ag levels were <0.1 μg Ag g−1, whilst profiles contaminated by past mining activities contained up to 9 μg Ag g−1. Silver showed a marked surface enrichment in all cases.Adsorption of AgNO3 by various soil samples was satisfactorily modelled by the Freundlich isotherm equation. Values for k (a constant related to the binding capacity) ranged between 50 and 1450. The Langmuir isotherm equation gave a less satisfactory summary of the adsorption behaviour.Radioactive 110mAg added to intact cores of an alluvial and a peat soil and subjected to leaching over one year (at the annual precipitation rate) remained in the surface layers; after this time 110mAg was not leached appreciably below 40 mm.A chemical fractionation procedure for soil Ag was applied to the contaminated soils. In soils contaminated between 80 and 150 years ago there were negligible amounts of readily exchangeable Ag; nearly half the total Ag was “residual” (i.e., solubilised only in concentrated nitric acid). The two intact soil columns still contained a considerable proportion of the 110mAg in the readily exchangeable form after one year, but most was bound in ‘acid-reducible’ or ‘oxidisable-organic’ forms.The evidence for a strong association between soil organic matter and Ag indicates that humus may control the availability of Ag in the short term and that mineral prospecting for Ag by the chemical analysis of soil humus may be a useful reconnaissance technique. Fixation in a residual fraction may be a mechanism which reduces the bioavailability of the element in the long term.  相似文献   

2.
The distribution and symbiotic efficiency of nodule bacteria Rhizobium leguminosarum_bv. trifolii F., Sinorhizobium meliloti D., Rhizobium galegae L., and Rhizobium leguminosarum bv. viciae F. in Lithuanian soils as dependent on the soil acidity were studied in the long-term field, pot, and laboratory experiments. The critical and optimal pH values controlling the distribution of rhizobia and the symbiotic nitrogen fixation were determined for every bacterial species. The relationship was found between the soil pH and the nitrogen-fixing capacity of rhizobia. A positive effect of liming of acid soils in combination with inoculation of legumes on the efficiency of symbiotic nitrogen fixation was demonstrated.  相似文献   

3.
The present study was conducted to investigate the effects of different forms of soil acidities on microbial biomass C, ergosterol content, microbial metabolic quotient, microbial respiration quotient, and fluorescein diacetate-hydrolyzing activity of some tea-growing soils of India. Total potential and exchangeable acidity and extractable and exchangeable aluminum were higher in Tripura followed by Jalpaiguri and Kharagpur soil. Different forms of acidity were significantly and positively correlated with each other. All the microbiological properties investigated were significantly and positively correlated with soil organic C content. The ratio of organic C with microbial parameters was significantly and negatively correlated with different forms of acidity. Principal component analysis indicated that the microbial activities were not directly affected by the extractable aluminum and total potential acidity. Although the tea soils had higher microbial biomass and activities because of higher organic matter content than other soils, the ratios of microbial parameters/organic carbon indicated that inhibition of microbial growth and activities had occurred because of acidity stress.  相似文献   

4.
Abstract. Fifteen soil profiles in the Alltcailleach Forest in NE Scotland have been resampled after almost 40 years. The pH, in 0.01 M CaCl2, of the soil has decreased by 0.07 to 1.28 units in 80% of the surface organic horizons and by 0.16 to 0.54 units in 73% of the mineral horizons below 40 cm. The key factors governing increases and decreases in soil pH are changes in ground vegetation and tree canopy, although some effects of acid deposition cannot be ruled out.  相似文献   

5.
过碳酰胺是一种新型精细化工品,也是一种新型氮肥,在国外已得到广泛的应用和开发,而我国对其开发和应用刚刚起步。试验研究了3种酸性土壤和3种碱性土壤施入过碳酰胺(和尿素对照)后的氨挥发特性。结果表明,过碳酰胺和尿素在供试6种土壤上的氨挥发强度具有相同的规律,都是先从小到大出现峰值,然后又降低;3种酸性土壤氨挥发高峰期约在第7d左右,3种碱性土壤的氨挥发高峰期约在第3d左右。土壤氨挥发含量的变化与pH变化同步。在最初挥发高峰期阶段,过碳酰胺的氨挥发强度在6种土壤上都大于尿素,但在供试的3种酸性土壤上,过碳酰胺的氨挥发总量均略小于尿素,而在供试的3种碱性土壤上,却正好相反。  相似文献   

6.
Eleven horizons of acidic soils in mid-Wales developed from Lower Palaeozoic sedimentary rocks were examined. Selective extraction of Al and Si provided evidence against the occurrence of significant quantities of poorly ordered Al-silicates. Fe0 was weakly correlated with Al0, but very closely correlated with Al0 minus Al extracted by cold 5% Na2CO3, implying that poorly ordered Al occurs in part as a substituent in Fe oxide and in part in a form unassociated with Fe oxide. Support for this was obtained by analysis of oxide fractions concentrated from aqueous suspensions by sequential ultracentrifugation and through the examination of synthetic Al-substituted Fe oxides. Fe oxide containing Al substituted at an almost constant level was the dominant constituent of the poorly ordered fraction in four of the five Bs horizons examined. The occurrence of Al in this form is an important mechanism by which Al is retained in aerobic but highly acidic Bs horizons.  相似文献   

7.
To quantify the effects of reduced sulfate input on the chemistry of soil solution and soil S storage in acid forest soils, an experiment with undisturbed soil columns from two different sites was implemented. The acid cambisol of the Solling is subjected to a high sulfate input and especially the B-horizon has a high sulfate content. On the contrary, the podzol of the Fuhrberg site is subjected to low input and has low sulfate content. Undisturbed soil columns were taken from both sites and were irrigated at 6 °C with a precipitation rate of 3 mm d?1 over 10 mo. In treatment No. 1, an artificial throughfall with pH 5.2 and reduced sulfate load (45 μmol L?1) was applied. In treatment No. 2, an artificial througfall representing a high sulfate deposition (427 μmol L?1, pH 3.2) was used. In case of the Solling soil, the pH of soil solution was unaffected by treatments during the entire experiment. Alkalinity of the soil solution was slightly increased in treatment No. 1 at a depth of 20 cm. While treatment No. 1 resulted in a reduction of the sulfate concentrations of the soil solution in the top soil, sulfate concentrations were unaffected at a depth of 40 cm. The B-horizon of the Solling soil prevented deacidification of the soil solution by desorption of previously stored sulfate. In case of the Fuhrberg soil, treatment No. 1 resulted in reduced sulfate concentrations of the soil solution even in deeper soil layers with concentrations approaching input levels. The pH of the solution was slightly elevated and the alkalinity of the solution increased. Organic S compounds in the soil seemed to have no influence on sulfate release in either soils.  相似文献   

8.
A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy loam (pH 4.5). Barley (Hondeum vulgare L. cv. Forrester) was used as a test crop and was grownin the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that thealka1ine biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandyloam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity instrongly acid soils by increasing soil pH and lowering Al bioavailability.  相似文献   

9.
Strongly acidic soils (pH < 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden soils. A 120-d glasshouse column leaching experiment was conducted using commonly available soil ameliorants. Alkaline slag (AS) and organic residues, pig manure (PM) and rapeseed cake (RC) differing in ash alkalinity and C/N ratio were incorporated alone and in combination into the surface (0--15 cm) of soil columns (10 cm internal diameter × 50 cm long) packed with soil from the acidic soil layer (15--30 cm) of an Ultisol (initial pH = 4.4). During the 120-d experiment, the soil columns were watered (about 127 mm over 9 applications) according to the long-term mean annual rainfall (1 143 mm) and the leachates were collected and analyzed. At the end of the experiment, soil columns were partitioned into various depths and the chemical properties of soil were measured. The PM with a higher C/N ratio increased subsoil pH, whereas the RC with a lower C/N ratio decreased subsoil pH. However, combined amendments had a greater ability to reduce subsoil acidity than either of the amendments alone. The increases in pH of the subsoil were mainly ascribed to decreased base cation concentrations and the decomposition of organic anions present in dissolved organic carbon (DOC) and immobilization of nitrate that had been leached down from the amended layer. A significant (P < 0.05) correlation between alkalinity production (reduced exchangeable acidity -- N-cycle alkalinity) and alkalinity balance (net alkalinity production -- N-cycle alkalinity) was observed at the end of the experiment. Additionally, combined amendments significantly increased (P < 0.05) subsoil cation concentrations and decreased subsoil Al saturation (P < 0.05). Combined applications of AS with organic amendments to surface soils are effective in reducing subsoil acidity in high-rainfall areas. Further investigations under field conditions and over longer timeframes are needed to fully understand their practical effectiveness in ameliorating acidity of deeper soil layers under naturally occurring leaching regimes.  相似文献   

10.
Abstract

Alkaline‐soluble, acid‐precipitable organic matter from the Ah and Bm horizons of Chernozemic soils developed on four parent materials in each of three soil zones was analyzed for total and carboxyl acidity, and methoxyl groups. The values are expressed as meq/g dry ash‐free organic matter.

Total acidity generally was higher in the Black Chernozems than in the Brown Chernozems and higher in the Bm horizon than in the Ah horizon. The distribution of carboxyl acidity between the Ah and companion Bm horizons of individual soils appeared to be related to texture and rainfall.

The. methoxyl group content of the Brown Chernozems was larger than that of the .Dark Brown Chernozems, which in turn had a larger methoxyl group content than that of the Black Chernozems. It was concluded that the organic matter in the Ah horizons of the Brown Chernozems was not as humified as that of the Black Chernozems. The pH value and a minimum clay content are possible determining factors as to the amounts of methoxyl carbon present.  相似文献   

11.
We estimated the contribution of dissolved organic matter (DOM) to cation leaching and the translocation of acidity in three acid forest soils. The analysis was based on monitored (2 years) concentrations of dissolved organic carbon (DOC) in the field, measured total acidities of DOM, and measured as well as predicted weighted mean dissociation constants of the organic acids. Although the forest floor solutions were strongly acidic (pH 3.47–4.10), a considerable proportion of the organic acids was dissociated and organic anions represented 22–40% of the total anions in the mineral soil input. The flux of DOM-associated exchangeable protons from the forest floor to the mineral soil ranged from 0.35 (Wülfersreuth) to 3.72 (Hohe Matzen) kmol ha?1 yr?1. In the subsoil, this organic acidity may be neutralized by microbial decomposition of the organic acids, but a part of the hydrogen ions may dissociate and contribute to acidification of the soil solution and to weathering processes. Due to the pronounced retention of DOM in the mineral subsoil horizons, the contribution of DOM to the output of cations and acidity from the soil is much lower than in the surface horizons but still significant.?  相似文献   

12.
A variant of the European modelSimple Mass Balance (SMB) and the regionalizedPROFILE model have been used to calculate critical loads of acidity for Swiss forest soils. The single layer SMB has been applied to 11,800 receptor points and the multi-layer PROFILE to 720 forest sites. Weathering rates used in SMB calculations were assessed by means of a modified de Vries soil classification, and calculated from physical properties of the soil system with PROFILE.Cumulative frequency distributions of the results at the national resolution show that PROFILE predicts lower critical loads. Up to the 65-percentile critical load PROFILE percentile values are average 65% of the SMB percentile values. The upper percentiles of the PROFILE critical loads are merely 25% of the respective SMB predictions.  相似文献   

13.
Abstract

A new buffer pH method (BpH) for the rapid estimation of unbuffered salt‐exchangeable acidity (ACe) and lime requirement (LR) has been developed. The buffer reagent, consisting of sodium glycerophosphate, acetic acid, trletlianolamine, ammonium chloride and barium chloride, was useful within the pH range 3.8 to 6.6. Delta values from BpH were converted into buffer pH acidity values (AC) and calibrated against ACe of 91 mineral soils and 100 acid Histosols. The correlation coefficients between AC and ACe were 0.966 and 0.956 for the mineral soils and Histosols, respectively. The corresponding regression equations in terms of meq/100 cm were ACe ‐ ‐0.54 + 0.96 AC and ACe = ‐7.4 + 1.6 AC for mineral soils and Histosols, respectively.

To predict lime requirement of mineral soils a curvilinear equation was required. The equation, LR in meq CaCO3/100 cm3 = 0.1 (AC)2 + AC, was tested successfully against rates of lime carried out under laboratory conditions and against crop response in the greenhouse. Field studies on acid Histosols with maize and soybeans showed optimum yield when the rate of lime added was approximately equivalent to ACe.  相似文献   

14.
工业副产品改良土壤酸度和铝毒的潜力   总被引:12,自引:0,他引:12  
It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial byproducts, i. e., coal fly ash (CFA), alkaline slag (AS), red mud (RM) and phosphogypsum (PG) in correcting acidity and aluminum (Al) toxicity of soils under tea plantation using an indoor incubation experiment. Results indicated that CFA, AS and RM increased soil pH, while PG decreased the pHs of an Ultisol and an Alfisol. The increment of soil pH followed the order of RM > AS > CFA. All the industrial byproducts invariably decreased exchangeable Al and hence increased exchangeable Ca, Mg, K and Na and effective cation exchange capacity. RM, AS and lime decreased total soluble Al, exchangeable Al and organically bound Al. Formation and retention of hydroxyl-Al polymers were the principal mechanism through which Al phytotoxicity was alleviated by application of these amendments. In addition, the heavy metal contents in the four industrial byproducts constituted a limited environmental hazard in a short time at the rates normally used in agriculture. Therefore, the short-term use of the byproducts, especially AS and RM, as amendments for soil acidity and Al toxicity in acid soils may be a potential alternative to the traditional use of mined gypsum and lime.  相似文献   

15.
The aim of this research was to investigate the effect of biochar amendment on soil acidity and other physico‐chemical properties of soil in Southern Ethiopia using a field experiment of three treatments: (1) biochar made of corn cobs, (2) biochar made of chopped Lantana camara stem, and (3) biochar made of Eucalyptus globulus feedstock and a control, in which neither of the biochar was used. Each treatment had three levels of 6, 12 and 18 t ha−1. The experiment was setup with RCBD in a factorial arrangement with three replications. In this regard, a total of 36 plots (each 2 × 2 m size) were applied with three replications to the depth of 0–15cm. From these 36 plots, composite soil samples were collected to the depth of 0–30 cm and analyzed for bulk density, total porosity, pH, soil organic carbon, total nitrogen, available phosphorus, potassium, and exchangeable acidity using standard procedures before and after biochar application. Two‐way ANOVA was also used to analyze the impact of the biochars on soil acidity and other properties. For the treatments that had significant effects, a mean separation was made using Least Significance Difference (LSD) test. The results showed the application of biochar significantly reduced, soil bulk density and exchangeable acidity when compared with a control (p < 0.05). Moreover, the total soil porosity, soil pH, total nitrogen, soil organic carbon, available phosphorus, and potassium were significantly increased in the soil. From among applied biochar treatments, Lantana camara applied at the level of 18 t ha−1 had a higher impact in changing soil physico‐chemical properties. In general, the study suggests that the soil acidity can be reduced by applying biochar as it can amend other soil physico‐chemical properties.  相似文献   

16.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   

17.
Pair correlation coefficients (r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity (H exch) and the activity of the [H]+ ions in the KCl extract (a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total (H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.  相似文献   

18.
Forest floor and mineral soil samples were collected from subalpine spruce-fir forests at 1000 m above mean sea level on 19 mountains in the northeastern United States to assess patterns in trace metal concentrations, acidity, and organic matter content. The regional average concentrations of Pb, Cu, and Zn in the forest floor were 72.3 (2.9 s.e.) μg g?1, 8.5 (0.7) μg g?1, and 46.9 (2.0) μg g?1, respectively. The regional average concentrations of Pb, Cu, and Zn in the mineral soil were 13.4 (0.8) μg g?1, and 18.2 (1.2) μg g?1, respectively. The regional average pH values of the forest floor and mineral soil were 3.99 (0.03), and 4.35 (0.03), respectively. The Green Mountains had the highest concentrations of Pb (105.7 μg g?1), and Cu (22.7 μg g?1), in the forest floor. They also had the highest concentrations of Cu (18.0 μg g?1), in the mineral soil. Site aspect did not significantly influence any of the values. Concentrations of Pb were lower than concentrations reported earlier in this decade at similar sites while concentrations of Cu and Zn remained the same. We believe that these lower Pb concentrations reflect real changes in forest Pb levels that have occurred in recent years.  相似文献   

19.
Abstract. Correlation analysis was used to determine the main factors related to soil pH and to yield of white clover in a range of hill soils. Results for 109 Northern Ireland pasture soils showed that pH (H2O) was significantly correlated with exchangeable Ca, total exchangeable bases, base saturation, P, exchangeable Al and Al saturation, but not with exchangeable Mn. Clover yield (dry weight of shoots) in 12 acid soils from Northern Ireland, Scotland and the Falkland Islands was significantly correlated with exchangeable Ca, total exchangeable bases and Al saturation. The results support the use of Al saturation rather than exchangeable Al, soil solution Al or pH when calculating lime requirements to overcome these limiting factors in hill soils.  相似文献   

20.
Soil chemical parameters related to soil acidity were determined for 1450 soil samples taken from individual mineral soil horizons in 257 forest soils in Switzerland, 196 developed from carbonate‐containing and 61 from carbonate‐free parent material. The distribution of pH values and exchangeable base cations in corresponding pH ranges were related to the capacity and rate of buffer reactions in the soil. Based on this, five acidity classes for individual soil samples were defined. To describe and classify the status of soil acidity and base saturation (BS) of an entire soil body, the pH and the BS of the total fine earth in the soil were calculated from the pH and BS, respectively, of the individual soil horizons and the estimated volumetric content of fine earth. The status of soil acidification of soil profiles was assessed primarily using the total amount of exchangeable acidic cations in percent of the CEC of the fine earth in the entire soil profile. As a second factor, the gradient between the acidity class of the most acidic soil horizon and the estimated acidity class at the beginning of soil formation was used. The application of these classification schemes to our collection of soil profiles revealed the great influence played by the type of parent material. The acidification status of most soils on carbonate‐containing parent material was classified as very weak to weak, whereas soils on carbonate‐free parent material were found to be strongly to very strongly acidified. In terms of parent rock material, microclimate, and natural vegetation, the results of this study and the proposed classification schemes can be considered appropriate for large parts of Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号