首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Six healthy two-day-old foals (3 pony foals and 3 horse foals) were given a single intravenous (iv) injection of trimethoprim (TMP)--sulphamethoxazole (SMZ) at a dosage of 2.5 mg of TMP/kg bodyweight (bwt) and 12.5 mg of SMZ/kg bwt. Serum TMP and SMZ concentrations were measured serially during a 24 hour period. The overall elimination rate constant (K) for TMP in the pony and horse foals was 0.45/h, whereas the K values for SMZ for the pony and horse foals were 0.12/h and 0.07/h, respectively (no significant difference; P greater than 0.05). Based on published minimum inhibitory concentration values for equine pathogens (Adamson et al 1985), the primary indication for the use of TMP/SMZ in foals may be in the treatment of infections caused by gram-positive bacteria. A dosage of 2.5 mg of TMP/kg bwt and 12.5 mg of SMZ/kg bwt, given iv at 12 h intervals would be appropriate.  相似文献   

4.
Pharmacokinetic values of sodium amoxicillin (22 mg/kg of body weight) in foals were determined after a single IM injection in 6 Quarter Horse foals at 3, 10, and 30 days of age. Serum amoxicillin concentrations were measured serially over a 24-hour period. The absorption of amoxicillin was rapid and followed a 1st-order elimination. Mean peak serum concentrations occurred 30 minutes after the injection in foals at all ages and were 17.31 +/- 9.59 micrograms/ml when the foals were 3 days old, 23.28 +/- 9.86 micrograms/ml when the foals were 10 days old, and 21.35 +/- 6.39 micrograms/ml when the foals were 30 days old. Serum samples collected beyond 8 hours after administration contained amoxicillin concentrations less than 0.05 micrograms/ml. The elimination rate constant increased with increasing age (0.5265 +/- 0.0891 hour-1 when the foals were 3 days old, 0.6494 +/- 0.1114 hour-1 when the foals were 10 days old, and 0.7112 +/- 0.1016 hour-1 when the foals were 30 days old). Serum clearance increased with increasing age (498.4 +/- 82.6 ml/hr/kg at 3 days, 631.6 +/- 170.5 ml/hr/kg at 10 days, and 691.2 +/- 127.3 ml/hr/kg at 30 days). Serum half-life decreased with increasing age (1.34 +/-0.243 hour at 3 days, 1.10 +/- 0.239 hour at 10 days, and 0.991 +/- 0.139 hour at 30 days), whereas the extrapolated concentration at time zero and apparent volume of distribution did not change during the first 30 days of age.  相似文献   

5.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

6.
The pharmacokinetics of amikacin were studied in healthy mature female chickens (n = 6). Single doses of amikacin were injected as an i.v. bolus (10 mg/kg) and i.m. (20 mg/kg) into the same birds with a 30-day rest period between treatments. Amikacin was determined by the fluorescence polarization immunoassay method. The i.v. pharmacokinetics could be described by a two-compartment model with a t1/2 alpha of 0.150 +/- 0.064 h and a t1/2 beta of 1.44 +/- 0.34 h. The total body clearance was 0.109 +/- 0.017 1/h/kg and the volume of distribution at steady-state was 0.193 +/- 0.060 l/kg. Following a single i.m. injection, the peak plasma concentration (Cmax) was 50.79 +/- 4.05 micrograms/ml and occurred at 0.50 +/- 0.26 h. The i.m. extent of absorption was 91.2 +/- 17.6%. Simultaneous modeling of i.v. and i.m. results provided estimates of an absorption half-life of 0.480 +/- 0.158 h. The i.m. pharmacokinetics after repeated administration were studied following the tenth dose (20 mg/kg, every 8 h). The Cssmax was 38.58 +/- 6.96 micrograms/ml and occurred at 0.79 +/- 0.37 h, and the biological half-life of amikacin was 1.86 +/- 0.47 h. The multiple dosing yielded peak concentrations of 39 micrograms/ml and trough concentrations of 3.26 micrograms/ml. Based on these data, the recommended amikacin dosage in chickens is 20 mg/kg body weight every 8 h.  相似文献   

7.
A two-way cross-over study of the pharmacokinetics of butorphanol after intravenous and intramuscular administration at 0.08 mg/kg in six adult horses was performed. Heparinized venous blood samples were obtained prior to drug administration and at 10, 20, 30, 45, 60, 120, 180, 240, and 360 min after IV injection. Samples were obtained at the same time points and at 6 h and 12 h after IM injection. Physical examination parameters were recorded at each time point. Plasma butorphanol concentrations were determined by high performance liquid chromatography. No significant differences in any physical parameters were observed after butorphanol administration except for an increase in respiratory rate at 60 and 180 min after IV administration. Absorption of butorphanol after IM administration was very rapid (half life of absorption of 6 min) but systemic availability after IM injection was low (37%). Terminal half-life after IV administration was much longer than half-life after IM administration (0.57 h and 7.7 h, respectively). This difference was attributed to detection of a deep compartment after IV administration that was not detectable after IM administration. To maintain targeted plasma butorphanol concentrations above 10 ng/mL, administration of 0.08 mg/kg IM every 3 h may be necessary.  相似文献   

8.
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (Cmax) reached at first time point in hemolymph. The volume of distribution Vd(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration–time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half‐life (T1/2β) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The Cmax was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006–0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp.  相似文献   

9.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

10.
11.
12.
The pharmacokinetics and bioavailability of ticarcillin and clavulanate were determined after intravenous (i.v.) or intramuscular (i.m.) administration of ticarcillin disodium (50 mg/kg) combined with clavulanate potassium (1.67 mg/kg) to groups of healthy foals at 3 days and 28 days of age. After i.v. administration of the combination to five foals, the disposition kinetics of ticarcillin and clavulanate were best described using a two-compartment open model. Mean plasma elimination-rate constant (beta) and clearance (ClB) for ticarcillin were significantly less (P less than 0.01), and volume of distribution at steady state (Vd(ss)) was significantly larger (P less than 0.05), in the foals at 3 days compared with 28 days of age. This indicated that renal excretion mechanisms were immature and ticarcillin was more widely distributed in 3-day-old foals. The mean elimination rate constant for clavulanate was significantly less (P less than 0.01) at 3 days than at 28 days of age. Values of the major kinetic terms describing the disposition of ticarcillin after i.m. administration to five 3-day-old foals were not significantly different from values of these parameters in the same foals at 28 days of age. After i.m. administration of the drug combination, plasma clavulanate concentrations peaked significantly later (P less than 0.01), and the elimination-rate constant (kd) for clavulanate was significantly less (P less than 0.01), in 3-day-old foals than in 28-day-old foals. The bioavailabilities of ticarcillin and clavulanate after i.m. administration in 3-day-old foals were 100% and 88.3%, respectively, and in 28-day-old foals were 100% and 27.4%, respectively. Mean plasma ticarcillin concentrations exceeded 16 micrograms/ml for a longer period after i.m. administration of the drug combination than after i.v. administration to foals of both age groups. By virtue of the frequency of administration required and the painful response elicited by i.m. injection, it is recommended that when the combination of ticarcillin disodium (50 mg/kg) and clavulanate potassium (1.67 mg/kg) is used in foals to treat infections caused by susceptible organisms (MIC less than or equal to 16 micrograms/ml), it should be administered i.v. four times daily.  相似文献   

13.
Pharmacokinetics and pharmacodynamics of alfaxalone was performed in mallard ducks (Anas platyrhynchos) after single bolus injections of 10 mg/kg administered intramuscularly (IM; n = 10) or intravenously (IV; n = 10), in a randomized cross‐over design with a washout period between doses. Mean (±SD) Cmax following IM injection was 1.6 (±0.8) µg/ml with Tmax at 15.0 (±10.5) min. Area under the curve (AUC) was 84.66 and 104.58 min*mg/ml following IV and IM administration, respectively. Volume of distribution (VD) after IV dose was 3.0 L/kg. The mean plasma clearance after 10 mg/kg IV was 139.5 (±67.9) ml min?1 kg?1. Elimination half‐lives (mean [±SD]) were 15.0 and 16.1 (±3.0) min following IV and IM administration, respectively. Mean bioavailability at 10 mg/kg IM was 108.6%. None of the ducks achieved a sufficient anesthetic depth for invasive procedures, such as surgery, to be performed. Heart and respiratory rates measured after administration remained stable, but many ducks were hyperexcitable during recovery. Based on sedation levels and duration, alfaxalone administered at dosages of 10 mg/kg IV or IM in mallard ducks does not induce clinically acceptable anesthesia.  相似文献   

14.
The pharmacokinetics and bioavailability of enrofloxacin were determined after IV and IM administration of 5 mg/kg of body weight to 6 healthy adult rabbits. Using nonlinear least-squares regression methods, data obtained were best described by a 2-compartment open model. After IV administration, a rapid distribution phase was followed by a slower elimination phase, with a half-life of 131.5 +/- 17.6 minutes. The mean body clearance rate was 22.8 +/- 6.8 ml/min/kg, and the mean volume of distribution was 3.4 +/- 0.9 L/kg. This large volume of distribution and the K12/K21 ratio close to 1, indicated that enrofloxacin was widely distributed in the body, but not retained in tissues. After a brief lag period (6.2 +/- 2.86 min), IM absorption was rapid (4.1 +/- 1.3 min) and almost complete. The mean extent of IM absorption was 92 +/- 11%, and maximal plasma concentration of 3.04 +/- 0.34 micrograms/ml was detected approximately 10 minutes after administration.  相似文献   

15.
Summary

The disposition and urinary excretion of ciprofloxacin (CIP) following intravenous (IV) or intramuscular (IM) administration of 7.5 mg/kg body weight in sheep (n = 5) was studied. The intravenous plasma concentration curve was best described pharmacokinetically by a two‐compartment open model, while the intramuscular administration data fitted better to a one‐compartment open model. Mean elimination half‐lives after IV and IM administration were 72 and 184 minutes, respectively. The absorption of intramuscularly administered CIP in sheep was fast: maximal plasma concentration (Cmax) was reached quickly (tmax 31.93 min) and attained values of 0.69 ± 0.27 mg/l. The bioavailability was 49%. The urinary data showed a significant decrease in the elimination rate constant of CIP when CIP was administered intramuscularly. The other parameters calculated did not display differences between the two routes of administration. The results obtained suggest that when CIP was administered by the IM route in the assayed dose, it was able to maintain serum concentrations above the MIC of most common pathogens over an 8‐hour period.  相似文献   

16.
The pharmacokinetics of amikacin sulfate (AK) were studied in the horse after intravenous (i.v.) and intramuscular (i.m.) administration. Serum (Cs), synovial (Csf) and peritoneal (Cpf) fluid concentrations of the drug were measured. Doses of 4.4, 6.6 and 11.0 mg/kg were given. The concentrations at 15 min following i.v. injection were 30.3 +/- 0.3, 61.2 +/- 6.9 and 122.8 +/- 7.4 micrograms/ml, respectively, for the 4.4, 6.6 and 11.0 mg/kg doses. Mean peak Cs values after the intramuscular injections occurred at 1.0 h post-injection and were 13.3 +/- 1.6, 23.0 +/- 0.6 and 29.8 +/- 3.2 micrograms/ml, respectively. The t 1/2 of amikacin was 1.44, 1.57 and 1.14 h for the 4.4, 6.6 and 11.0 mg/kg doses, respectively. In this study, minimum inhibitory concentrations (MIC) of amikacin sulfate were determined for six pathogens. Based on the MIC and the pharmacokinetic parameters, it would appear that the usual therapeutic dose of amikacin would be between 4.4 and 6.6 mg/kg twice daily and, for the more serious life-threatening infections, dosing three times a day.  相似文献   

17.
Ceftazidime, a third‐generation cephalosporin, is important for treating opportunistic bacterial infections in turtles. Antibacterial dosage regimens are not well established for wild turtles and are often extrapolated from other reptiles or mammals. This investigation used a population pharmacokinetic approach to study ceftazidime in wild turtles presented for rehabilitation. Ceftazidime was administered to 24 wild turtles presented to the Turtle Rescue Team at North Carolina State University. A sparse blood sampling protocol was used to collect samples from 0 to 120 hr with three samples per individual after injection. Plasma samples were analyzed by high‐pressure liquid chromatography (HPLC). A nonlinear mixed‐effects model (NLME) was fitted to the data to determine typical values for population parameters. We identified a long half‐life (T½) of approximately 35 hr and volume of distribution (VSS) of 0.26 L/kg. We concluded that this long T½ will allow for a dose of 20 mg/kg injected IM to maintain concentrations above the MIC of most wild‐type bacteria for 5 days. Because of long intervals between injections, stability of stored formulations was measured and showed that 90% strength was maintained for 120 hr when stored in the refrigerator and for 25 days when stored in the freezer.  相似文献   

18.
OBJECTIVE: To determine disposition kinetics of amikacin in neonatal foals administered high doses at extended intervals. ANIMALS: 7 neonatal foals. PROCEDURE: Amikacin was administered (21 mg/kg, i.v., q 24 h) for 10 days. On days 1, 5, and 10, serial plasma samples were obtained for measurement of amikacin concentrations and determination of pharmacokinetics. RESULTS: Mean +/- SD peak plasma concentrations of amikacin extrapolated to time 0 were 103.1 +/- 23.4, 102.9 +/- 9.8, and 120.7 +/- 17.9 microg/mL on days 1, 5, and 10, respectively. Plasma concentrations at 1 hour were 37.5 +/- 6.7, 32.9 +/- 2.6, and 30.6 +/- 3.5 microg/mL; area under the curve (AUC) was 293.0 +/- 61.0, 202.3 +/- 40.4, and 180.9 +/- 31.2 (microg x h)/mL; elimination half-life (t(1/2)beta) was 5.33, 4.08, and 3.85 hours; and clearance was 1.3 +/- 0.3, 1.8 +/- 0.4, and 2.0 +/- 0.3 mL/(min x kg), respectively. There were significant increases in clearance and decreases in t(1/2)beta, AUC, mean residence time, and plasma concentrations of amikacin at 1, 4, 8, 12, and 24 hours as foals matured. CONCLUSIONS AND CLINICAL RELEVANCE: Once-daily administration of high doses of amikacin to foals resulted in high peak plasma amikacin concentrations, high 1-hour peak concentrations, and large values for AUC, consistent with potentially enhanced bactericidal activity. Age-related findings suggested maturation of renal function during the first 10 days after birth, reflected in enhanced clearance of amikacin. High-dose, extended-interval dosing regimens of amikacin in neonatal foals appear rational, although clinical use remains to be confirmed.  相似文献   

19.
20.
Six foals from 6 to 8 weeks of age were given a single oral dose of rifampin at a dosage of 10 mg/kg of body weight. Serum rifampin concentrations were measured serially during a 24-hour period. The mean peak serum rifampin concentration was 6.7 micrograms/ml at 4 hours after treatment. The concentration decreased slowly, and at 24 hours the mean value was 2.7 micrograms/ml. The elimination half-life was 17.5 hours, and the elimination rate constant was 0.04/hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号