首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We are interested in correlating the performance of fipronil in populations of cat fleas (Ctenocephalides felis) with potential cross-resistance conferred by point mutations in the Resistance to dieldrin gene, Rdl. Here we report the sequencing of exon 7 of the cat flea Rdl gene and the documentation of a putative resistance-associated mutation predicting the replacement of alanine302 with a serine. We describe two polymerase chain reaction (PCR) based diagnostics for the detection of this mutation. First, PCR mediated detection of a restriction endonuclease polymorphism (PCR REN) using a BsmAI site created by the resistance-associated mutation. Second, a TaqMan assay using allele specific fluorogenic probes and the TaqMan 5 specific nuclease. We describe how such diagnostics can be used in the diagnosis of resistance in the field and laboratory.  相似文献   

2.
Fipronil is a relatively new insecticide with great potential for insect control, however widespread use of cyclodiene insecticides has selected for an A302S mutation in the Rdl (GABA gated chloride channel) allele. This mutation gives resistance to cyclodienes and limited cross-resistance to fipronil. Given the concern over the possible reduction in efficacy and/or lifetime that fipronil might be used for pest control (given the extensive use of cyclodienes in the past), it is important to know the frequency of the A302S Rdl mutation in field populations. To ascertain the relative frequency of the A302S Rdl mutation in house fly populations we used three experimental approaches. First, we attempted to select for fipronil resistance by initially treating 33,100 field collected flies and selecting 14 additional generations. We were unable to produce a highly resistant strain. Second, we directly sequenced field collected flies. Third, we tested field collected house flies with a diagnostic dose of dieldrin and then genotyped the survivors. Out of the 4750 flies tested, there were no Rdl resistance alleles detected. We conclude that the resistant Rdl allele is rare in house flies in the US due to decades without cyclodiene use and a fitness disadvantage (in the absence of cyclodienes) of the 302S Rdl allele. The limited cross-resistance provided by the cyclodiene resistant Rdl allele, combined with the very low frequency of this allele in field populations, suggests that fipronil could be a promising insecticide for house fly control.  相似文献   

3.
Cyclodiene insecticide resistance is associated with replacements of a single amino acid within the putative lining of a δ-aminobutyric acid (GABA)-gated chloride ion channel gene Resistance to dieldrin (Rdl). Only two resistance-associated amino acid replacements have been identified; alanine to serine in Drosophila melanogaster, D. simulans, Aedes aegypti, and Tribolium castaneum and alanine to glycine as a second allele in D. simulans. Here we report that single stranded conformational polymorphism (SSCP) analysis of genomic DNA, amplified by the polymerase chain reaction (PCR) for exon 7 of the Rdl gene, can be used to genotype strains or individuals of all of these insects. This technique also appears simultaneously to distinguish between D. melanogaster and D. simulans, sibling species only reliably identifiable by examination of male genitalia. The relative advantages of this genotyping technique against other PCR-mediated techniques in monitoring for insecticide resistance are discussed.  相似文献   

4.
The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is an insect pest in which offspring are produced by the mating of adult males with adult females. This species is a classic case in which pest resurgence is induced by insecticides. In the past, studies of resurgence mechanisms have focused on insecticide-induced stimulation of reproduction in adult females. To date, however, the role that males play in the resurgence mechanisms of N. lugens has not been investigated. The aim of the present study is to examine changes in protein levels in male accessory glands (MAGs) induced by the insecticides triazophos and deltamethrin and to determine their relationship with vitellin content in the fat bodies and ovaries of adult females in the context of mating pairs. Our results show that protein content in MAGs is significantly affected by male mating status, insecticide type, and insecticide concentration. Insecticide application induced increased protein levels in MAGs. A greater quantity of MAG products was transferred to females via mating. Thus, protein levels in MAGs significantly decreased after mating. Experimental matings indicate that vitellin content in both fat bodies and ovaries of adult females in mating pairs consisting of a treated male and an untreated female (♂t × ♀ck) is significantly greater than that of females in pairs consisting of an untreated male and an untreated female (♂ck × ♀ck). Under various concentrations of the two insecticides, vitellin levels are highest in mating pairs consisting of a treated male and a treated female (♂t × ♀t), followed by mating pairs consisting of an untreated male with a treated female (♂ck × ♀t). These findings demonstrate that (1) insecticides have an effect on males; (2) insecticide effect can be transferred to females; and (3) the reproductive effect of insecticides is strongest in mating pairs in which both the males and females are treated compared to pairs in which only one individual is treated. These findings provide valuable information about the role of males in pesticide-induced resurgence of N. lugens.  相似文献   

5.
Organophosphothionate insecticide fenitrothion is known as potential toxic pollutant contaminating aquatic ecosystems. The effects of fenitrothion were studied to determine the 96 h LC50 value on Nile tilapia (Oreochromis niloticus) and investigate histopathological responses of fish exposed to sublethal fenitrothion concentrations. Data obtained from the fenitrothion acute toxicity tests were evaluated using the Probit Analysis Statistical Method. The 96 h LC50 value and 95% confidence limit for Nile tilapia (58.70 ± 6.97 g) was estimated as 0.84 (0.68-1.15) mg/L. Behavioral changes were observed closely during the acute toxicity test. The bioassay experiments were repeated three times and static test method was used. Some fish exposed to 96 h 0.1, 0.5 mg/L fenitrothion concentrations showed histopathological alterations in the gills, liver, kidney, brain and testes. Severely deformations were observed at 0.5 mg/L fenitrothion on the gills lamella such as hyperemia, epithelial hyperplasia, fusion and telangiectasis, in the liver tissue such as cloudy swelling, hydropic degenerations and lipid infiltration. In addition hyperemia and hemorrhage observed in kidney tissue and hyperemia was determined in brain tissue.  相似文献   

6.
The molluscicidal activity of cold water, boiled water, methanol, ethanol, acetone and chloroform extracts of Solanum siniacum and Artemisia judaica L. plants against Biomphalaria alexandrina snails was carried out. The tests revealed plant’s ethanol extract was more toxic to the snails than the other tested extracts. Therefore, it was tested against snails’ fecundity (Mx), reproduction rate (R0) and their infection with Schistosoma mansoni miracidia. In addition, biochemical parameters and the activities of some enzymes in tissues of snails treated with the two tested plants were determined. As well, glucose concentration in snails’ hemolymph was evaluated. Exposure of B. alexandrina snails to plant’s ethanol extract led to a significant reduction in their survival and snails’ fecundity, reproduction rate. In addition, it caused a considerable reduction in the infectivity of S. mansoni miracidia to the snails. Also, it caused a reduction in number of cercariae per snail during the patent period and in the period of cercarial shedding. The results revealed that the glucose concentration in hemolymph and Lactate level in soft tissues of treated snails were increased (P < 0.001) while glycogen, total protein, the lipid content and the pyruvate level in snail’s tissues decreased (P < 0.001). The activities of lactic dehydrogenase (LDH), pyruvatekinase (PK) and cytochrome oxidase (CY) enzymes in homogenate of snail’s tissues were reduced (P < 0.001) in response to treatment with the two tested plants while protease (PR) activity increased (P < 0.001). It is concluded that the application of LC25 of ethanol extract of S. siniacum and A. judaica L. may be helpful in snail control as it interferes with the snails’ biology and physiology.  相似文献   

7.
The biological effects of two important medicinal plants, Artemisia annua L. and Achillea millefolium (L.) (viz, mortality, growth, and feeding indices as well as enzyme and non-enzymatic activities) were studied on small white Pieris rapae L a deleterious pest of cruciferous plants under controlled conditions (16:8 h L:D at 25 ± 1 °C and 65 ± 5% RH). The LC50 and LC25 values were 9.387% and 3.645% for A. annua L. and 4.19% and 1.69% for A. millefolium (L.), respectively. At the lowest concentration (0.625%), the deterrency was 29.826% and 44.185% for A. annua L. and A. millefolium (L.), respectively. Feeding indices were variously affected with changes in a number of parameters and an increase in larval and pupal duration. The activity level of alkaline phosphatase increased sharply while alanin and aspartate aminotransferases showed a sharp decrease. For non-enzymatic compounds, the amount of glucose and uric acid increased, but total protein and cholesterol decreased. These results indicate that these two medicinal plants might possess potential secondary metabolites that may be useful for controlling potential insect pests.  相似文献   

8.
The freshwater protozoan ciliate, Paramecium caudatum was used in order to assess the potential cytotoxic effects of fenthion, an organophosphorus insecticide (OPI). It was found that fenthion at concentrations of 76 mg L−1 (LC50 for 2 h) effected cellular morphology of P. caudatum and inhibited its locomotion, as well as degradation of cytoskeleton leading to cell destruction. Cytoskeleton morphology, cytoplasmic components and locomotor behaviour tests were performed by combined conventional light microscopy and a computerized video-tracking system. After short reparation periods from 10 min to 2 h, there was an increase in the number of apoptotic cells with typical features like plasma membrane blebbing, blackening of cytoplasm (due to mixing of the vacuolar contents) and outflow of cytoplasmic contents into blebs leading to cell lysis. The present findings on blackening of cytoplasm, multiple blebs and macronuclear changes indicate a possible apoptotic effect of fenthion on P. caudatum. Development of such simple apoptotic model systems like paramecium with simplicity in handling, low cost, ease in maintenance, rapid performance and high reproducibility provides an ‘early warning system’ for risk assessment in forecasting long-term hazards of pesticides on non-target organisms including humans.  相似文献   

9.
Properties of acetolactate synthase (EC 4.1.3.18; ALS) from sulfonylurea-resistant (SUR) Scirpus juncoides Roxb. var. ohwianus T. Koyama were studied biochemically and physiologically in comparison with those from sulfonylurea-susceptible weed (SUS). GR50 values for growth inhibition and I50 values for ALS inhibition by imazosulfuron were determined for both SUR and SUS. Imazosulfuron controlled the SUS above 80% at the dosage more than 10 g a.i./ha but did not control the SUR at the even great dosage of 1000 g a.i./ha. The rates required for 50% growth inhibition of the SUR relative to the SUS (R/S ratio) were 271-fold. The I50 value for inhibition of ALS from the SUS was 15 nM, compared to I50 of >3000 nM for inhibition of ALS from the SUR. These results suggest that a resistance may due to an altered ALS that is insensitive to imazosulfuron. The Km (pyruvate) value of ALS from the SUR was similar to the Km for ALS from the SUS, suggesting that a mutation resulting in resistance does not change the affinity of the enzyme for pyruvate. The specific activity of the SUR ALS was similar to that of the SUS ALS, which indicates that resistance is not an over-expression of the enzyme. ALS activity from both biotypes was inhibited by isoleucine, valine, and leucine in this order. However, the SUR ALS was less sensitive to inhibition by valine than the SUS ALS.  相似文献   

10.
Increased hydrolytic metabolism of organophosphate insecticides has been associated with resistance among Nebraska western corn rootworm populations. In this study, resistance-associated esterases were partially purified by differential centrifugation, ion exchange, and hydroxyapatite column chromatography, with a final purification factor of 100-fold and recovery of approximately 10%. Kinetic analysis of the partially purified enzyme indicated that the Km of the group II esterases was identical for the two populations, although Vmax was consistently threefold higher in the resistant population. A putative esterase, DvvII, was further purified to homogeneity by preparative polyacrylamide gel electrophoresis. DvvII is a monomer with a molecular weight of approximately 66 kDa, although three distinct isoforms with similar pIs were evident based on isoelectric focusing gel electrophoresis. Immunoassays with the Myzus persicae E4 antiserum indicated that group II esterases from D. v. virgifera were cross-reactive and expressed at much higher titers in the resistant population relative to the susceptible counterpart. These results suggest that the resistance is likely associated with overproduction of an esterase isozyme in resistant D. v. virgifera populations.  相似文献   

11.
The insecticidal activity of four forms of Hong Jing (HJ) allylisothiocyanate (AITC), AITC + cypermethrin (HJA, HJB, and HJC) with ratio of (1:1, 4:1, and 2:1), pure AITC (HJD), and two forms of Hong Du (HD) AITC, AITC + chlorpyrifos (HDA and HDB) with ratio of (2:1 and 2:1), respectively, were studied on the major cruciferous insect larvae Plutella xylostella (L.) and Pieris rapae (L.) by combining both spraying and dipping methods. The P. rapae was more susceptible than P. xylostella larvae. The LC50 values 72 h after treatment of AITC forms (HJB, HJA, HJC, HJD, HDB, and HDA) on the P. rapae were; 0.07, 0.08, 0.16, 0.83, 0.26, 1.08 gL−1, and 0.69, 0.26, 5.45, 0.93, 3.01, 5.98 gL−1 on the P. xylostella, respectively. The toxicity of some of the AITC forms was very close to or better than that of the commercial contact insecticides such as chlorpyrifos (LC50 = 0.03 and 0.04 gL−1 on P. rapae and P. xylostella, respectively), and cypermethrin (0.65 and 0.78 gL−1, respectively, against P. rapae and P. xylostella). The ultrastructural studies on the integument of the third larval instar of P. xylostella treated by sub-lethal concentration (LC20) of HJB, HJD, and HDB were carried out by using transmission electron microscope. The more pronounced alterations in the hypodermis and mitochondria cells. They exhibited changes in all treated samples. The hypodermis was almost completely destroyed, and the mitochondria exhibited morphological alterations, represented by enlargement, matrix rarefaction and vacuolization of the mitochondria matrix, quantity of cristae reduced, and density electron matrix lessened. These AITC forms have potential as contact insecticides, and the ultra structural observations confirm the insecticidal efficiency of different AITC forms on P. rapae and P. xylostella.  相似文献   

12.
Insecticide resistance in the bedbug Cimex hemipterus was investigated using 4211 bedbugs collected from three districts of Sri Lanka. Insecticide bioassays were carried out with discriminating dosages of deltamethrin, permethrin, DDT, malathion, and propoxur. Activity levels of insecticide metabolizing enzymes and the insecticide target site acetylcholinesterase were monitored using biochemical assays. Percentage survivals after DDT, malathion, and propoxur exposure were 41-88%, 18-64%, and 11-41%, respectively. For deltamethrin and permethrin, KT50/KT90 (time to knock-down 50%/90% of the population) values were 0.5-24/1.0-58 and 1.3-10/2.5-47 h, respectively. Both elevated esterase and malathion carboxylesterase mechanisms were present in bedbug populations. Monooxygenase levels were heterogeneous. Organophosphate and carbamate target site acetylcholinesterase, was insensitive in 29-44% of the populations. High DDT resistance was probably due to glutathione S-transferases. Malathion carboxylesterases are mainly responsible for high malathion resistance. High tolerance to both DDT and pyrethroids suggests the presence of ‘kdr’ type resistance mechanism in one population.  相似文献   

13.
A hydrophilic form of acetylcholinesterase (AChE) was purified from N-methyl carbamate susceptible (SA) and highly N-methyl carbamate-resistant (N3D) strains of the green rice leafhopper (GRLH), Nephotettix cincticeps Uhler. Both of purified AChE from SA and N3D strains displayed the highest activities toward acetylthiocholine (ATCh) at pH 8.5. In the SA strain, the optimum concentrations for ATCh, propionylthiocholine (PTCh), and butyrylthiocholine (BTCh) were about 1 × 10−3, 2.5 × 10−3, and 1 × 10−3 M, respectively. However, in the N3D strain, substrate inhibition was not identified for ATCh, PTCh, and BTCh to 1 × 10−2 M. The Km value in the SA strain was 51.1, 39.1, and 41.6 μM and that in the N3D strain was 91.8, 88.1, and 85.2 μM for ATCh, PTCh, and BTCh, respectively. The Km value in the N3D strain indicated about 1.80-, 2.25-, and 2.05-fold lower affinity than that of the SA strain for ATCh, PTCh, and BTCh, respectively. The Vmax value in the SA strain was 70.2, 30.5, and 4.6 U/mg protein and that in the N3D strain was 123.0, 27.0, and 14.5 U/mg protein for ATCh, PTCh, and BTCh, respectively. The Vmax value in the N3D strain was 1.75- and 3.15-fold higher for ATCh and BTCh than that in the N3D strain. However, it was 1.13-fold lower for PTCh. The increased activity of AChE in the N3D strain is due to the qualitatively modified enzyme with a higher catalytic efficiency. The bimolecular rate constant (ki) for propoxur was 27.1 × 104 and 0.51 × 104 M−1 min−1 in the SA and N3D strain and that for monocrotophos was 0.031 × 104 and 2.0 × 104 M−1 min−1 in the SA and N3D strain. AChE from the N3D strain was 53-fold less sensitive than SA strain to inhibition by propoxur. In contrast, AChE from the N3D strain was 65-fold more sensitive to inhibition by monocrotophos than AChE from the SA strain. This indicated negatively correlated cross-insensitivity of AChE to propoxur and monocrotophos.  相似文献   

14.
The present study was conducted to determine the 96 h-LC50 of benomyl to the Nile tilapia, Oreochromis niloticus and to investigate the biochemical or hematological indices of blood and the alterations in the antioxidant enzymes of this fish in response to sublethal concentrations of benomyl. Fish weighing 71.61 ± 12.05 g were used in this study; they were subjected to fasting for 4 weeks before treatment. An aqueous solution of benomyl (0, 0.5, 1, 2, 4, 8, and 16 mg L−1) was administered for 96 h to determine the LC50. The 96 h-LC50 value of benomyl was 4.39 (3.23-5.60) mg L−1 in the present study. For 5 weeks, the aqueous solution of benomyl (0, 100, 200, and 400 μg L−1) was administered to investigate its effect on the hematological parameters and antioxidant enzymes. The predominant hematological findings in fish exposed to benomyl were as follows: no significant change in the Hb (g dL−1) level, MCV (μm3), MCH (pg) and MCHC (%) as compared to the control. Benomyl exposure led to greater increases in the GPT, GOT (Karmen-unit), LDH (Wroblewski unit), total cholesterol, Fe, and Ca (mg dL−1) values, whereas the levels of ALP (KA unit), total protein, triglyceride, albumin, and Mg (mg dL−1) did not increase. Benomyl increased the in vivo HSI (%), GST (nmol min−1 mg protein−1), and SOD (U mg protein−1) values in the fish livers in the test group, unlike those in the control group for 5 weeks. At concentrations higher than 100 μg L−1, benomyl affected the GST and SOD levels of Nile tilapia in a dose- and time-dependent manner. The present findings suggest that the in vivo hepatotoxicity associated with benomyl may, in part, result from the hematological index, and antioxidants may provide limited protection against benomyl toxicity.  相似文献   

15.
The continuous increase in the number of new chemicals as well as the discharges of solid and liquid wastes triggered the need for simple and inexpensive bioassays for routine testing. In recent years, there has been increasing development of methods (particularly rapid tests) for testing environmental samples. This paper describes the quick toxic evaluation of an organophosphorus insecticide, acephate (O,S-dimethyl acetylphosphoramidothioate) on Paramecium caudatum for acute and sub-acute toxicity studies with reference to morphology, behaviour, and its generation time. The lethal concentrations for 10 min and 2 h were determined by probit method, as 500 mg L−1 and 300 mg L−1, respectively. Higher concentrations of 10 min exposure caused cell lysis with disintegration of cell membrane and precipitation of protoplasm. Combination of conventional light microscopy and computerized video tracking systems were used to study the locomotor behaviour of paramecia. The test organism was under stress and exhibited an initial increase and subsequent decrease in the swimming speed when exposed to 1/4, 1/2, 3/4, and LC50 concentrations for 10 min (125, 250, 375, and 500 mg L−1, respectively). Similar changes were also noticed when paramecia were exposed to LC50 for 2 h. In a separate set of experiments, the number of generations and generation time in 24 h was evaluated with respect to the different sub-lethal concentrations (30, 60, 120, and 240 mg L−1). The number of generations decreased and generation time extended significantly in a concentration dependent manner. The results indicate that the Paramecium toxicity assay could be used as a complimentary system to rapidly elucidate the cytotoxic potential of insecticides. The major advantages associated with these tests are: they are inexpensive, simple, user-friendly, space saving, and seem to be attractive alternatives to conventional bioassays.  相似文献   

16.
Here we investigated the in vitro and in vivo effects of the pesticides, deltamethrin, diazinon, propoxur and cypermethrin, on the activity of rainbow trout (rt) gill carbonic anhydrase (CA). The enzyme was purified from rainbow trout gills using Sepharose 4B-aniline-sulfanilamide affinity chromatography method. The overall purification was approx. 214-fold. SDS-polyacrylamide gel electrophoresis showed a single band corresponding to a molecular weight of approx. 29 kDa. The four pesticides dose-dependently inhibited in vitro CA activity. IC50 values for deltamethrin, diazinon, propoxur and cypermethrin were 0.137, 0.267, 0.420 and 0.460 μM, respectively. In vitro results showed that pesticides inhibit rtCA activity with rank order of deltamethrin > diazinon > propoxur > cypermethrin. Besides, in vivo studies of deltamethrin were performed on CA activity of rainbow trout gill. rtCA was significantly inhibited at three concentrations (0.25, 1.0 and 2.5 μg/L) at 24 and 48 h.  相似文献   

17.
Resistance in Spodoptera litura (Fabricius) has been attributed to enhanced detoxification of insecticides by increased levels of esterases, oxidases and/or glutathione S-transferases. Enzyme inhibiting insecticide synergists can be employed to counter increased levels of such enzymes in S. litura. Dihydrodillapiole induced synergism of pyrethroid toxicity was examined in the laboratory-reared third instar larval population of S. litura collected in Delhi (susceptible), and Guntur (resistant) region of Andhra Pradesh, India. The Guntur population was found to be 7.04 and 10.19 times resistant to cypermethrin and lambdacyhalothrin, respectively. The activity of cypermethrin, lambdacyhalothrin and profenophos against susceptible and resistance populations of S. litura, was gradually increased when used along with a plant-derived insecticide synergist dihydrodillapiole. The α-naphthyl acetate hydrolysable esterase activity in Delhi population was less as compared to the Guntur population. Resistance associated esterases in Delhi population were inhibited by pre-treatment with dihydrodillapiole. The esterase level in insect was instantly reduced initially, sustained for about 3 h and equilibrated at 4 h post treatment. The esterase activity of Guntur population was increased to 1.28 μmoles/mg/min at 2 h post treatment and subsequently reduced to lower than 0.70 μmoles at 4-12 h post treatment. The variation in esterase activity is suggestive of its homeostatic regulation in test populations. Dihydrodillapiole thus caused significant reduction of resistance in S. litura to cypermethrin, lambda cyhalothrin and profenophos.  相似文献   

18.
In the present study cytogenetic effects of atrazine herbicide, were examined on the root meristem cells of Allium cepa and Vicia faba. Test concentrations were chosen by calculating EC50 values of formulated atrazine against both the test systems which determined to be 30 mg l−1 for A. cepa and 35 mg l−1 for V. faba, respectively. For cytogenetic effects root meristem cells of A. cepa were exposed to 15, 30 or 60 mg l−1 whereas V. faba to 17.5, 35 or 70 mg l−1 for 4 or 24 h. Roots exposed for 4 or 24 h, after sampling, were left in water for 24 h recovery and sampled at 24 h post-exposure. A set of onion bulbs or seedlings of V. faba exposed to DMSO (0.3%) was run parallel for negative control. Treatment of atrazine significantly and dose-dependently inhibited the mitotic index (MI) and induced micronucleus formation (MN) chromosome aberrations (CA) and mitotic aberrations (MA) in both the test systems at 4 or 24 h. Root meristem cells examined at 24 h post-exposure also revealed significant (p < 0.001) frequencies of MN, CA or MA despite considerable decline. Chromosome breaks and fragments were found to be major CA whereas C-metaphase, chromosome bridges and laggards were prevalent MA. Results of our study, indicate that atrazine may produce genotoxic effects in plants. Further, both the plant bioassays found to be sensitive indicators for the genotoxicity assessment as the outcome of majority of in vivo/in vitro mammalian tests are comparable.  相似文献   

19.
Four plant species, as a dry powder of their leaves, were tested against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni. The bioassay tests revealed the plants Datura stramonium and Sesbania sesban to be more toxic to the snails than the other two ones. Therefore, they were tested against snails’ fecundity (Mx), reproduction rate (Ro) and their infection with S. mansoni miracidia. In addition, total protein concentration and the activities of the transaminases (AsT and AlT) and phosphatases (AcP and AkP) enzymes in hemolymph and tissues of snails treated with these plants were determined. As well, glucose concentration in snails’ hemolymph was evaluated.Exposure of snails for 4 weeks to LC10 and LC25 of the plants D. stramonium and S. sesban dry powder markly suppressed their Mx and Ro. The reduction rates of Ro for snails exposed to LC25 of these plants were 62.1% and 76.4%, respectively. As well, a considerable reduction in the infection rates of snails exposed to these plants either during, pre- or post-miracidial exposure was recorded. Thus, infection rates of snails treated during miracidial exposure with LC10 of D. stramonium and S. sesban were 41.7% and 52.2%, respectively, compared to 92.6% for control group (P < 0.01). These plants, also, reduced the duration of cercarial shedding and cercarial production/snail. So, snails exposed to LC25 of these plants shed 372.8 and 223.2 cercariae/snail, respectively, compared to 766.3 cercariae/infected control snail (P < 0.01).The results, also, revealed that glucose and total protein concentrations in hemolymph of snails treated with LC10 and LC25 of these plants were decreased, meanwhile, the activities of the enzymes AsT, AlT, AcP and AkP were elevated (P < 0.01). However, the activity of AcP in tissues of treated snails was decreased compared to that of control ones. It is concluded that LC25 of the plants D. stramonium and S. sesban negatively interferes with biological and physiological activities of B. alexandrina snails, consequently it could be effective in interrupting and minimizing the transmission of S. mansoni.  相似文献   

20.
Proteinase inhibitors (AsPIs) with high activity against serine proteinases were purified from seeds of the tree legume, Acacia senegal by ammonium sulfate precipitation followed by DEAE-Sephadex A-25 column and evaluated against Helicoverpa armigera larvae by in vitro and in vivo methods. The molecular weight of AsPIs was found to be approximately 19.58 ± 1.00 and 21.23 ± 1.00 kDa for PI and 18.16 ± 1.00 kDa for PII on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The AsPIs (5 μg/ml) inhibited approximately 70% of midgut trypsin and 61% of elastase-like chymotrypsin. In vitro studies showed that AsPIs have remarkable inhibitory activity towards total gut proteolytic enzymes followed by trypsin and chymotrypsin. The IC50 of AsPIs for midgut trypsin was 0.1 μg/ml and for chymotrypsin was 2.0 μg/ml. The inhibition of gut proteinase enzymes was of the non-competitive type. In larval feeding studies, AsPIs were found to retard growth and development of H. armigera and also affects the fecundity of the pest. The results advocate the use of AsPIs in transgenic technology to develop plant resistance to H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号