首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study of the transformation of arsenic species by the microflora of the freshwater crayfish Procambarus clarkii was carried out. The study of the degradation of AB (arsenobetaine) was performed in aerobic conditions in two culture media (tryptic soy broth and saline medium) at two temperatures (30 and 8 degrees C). The microflora transformed AB into TMAO (trimethylarsine oxide), DMA (dimethylarsinate), MA (methylarsonate), and an unidentified compound (U1). The quickest transformations were carried out by microflora from hepatopancreas incubated in saline medium at 30 degrees C. The individualized study of other arsenic species [AC (arsenocholine), TETRA (tetramethylarsonium ion), TMAO, DMA, and MA] was also performed in saline medium. The only transformation observed was of AC into AB. The bacteria possibly responsible for AB degradation were isolated, identified by phenotypic and genotypic methods, and individually assayed for AB transformation. Only isolates allocated to the species Pseudomonas putida were able to metabolize AB.  相似文献   

2.
The organoarsenical species arsenobetaine (AB), arsenocholine (AC), tetramethylarsonium ion (TMA+), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were determined in 64 cooked seafood products (fish, bivalves, squid, crustaceans) included in a Total Diet Study carried out in the Basque Country (Spain). For cooking, various treatments were employed (grilling, roasting, baking, stewing, boiling, steaming, microwaving). The results obtained show that in cooked seafood AB is the major species, followed by DMA and TMA+. AC and MMA are minor species. The results in cooked seafood were compared with the arsenic species contents obtained for the same product raw. After cooking there was an increase in DMA for sardines and bivalves and an increase or appearance of TMA+ for meagrim, anchovy, Atlantic horse mackerel, and sardine. The data provided add to the very scant information available about organoarsenical species contents in cooked seafood.  相似文献   

3.
This paper reports arsenic speciation in edible seaweed (from the Galician coast, northwestern Spain) produced for human consumption. Chondrus crispus , Porphyra purpurea , Ulva rigida , Laminaria ochroleuca , Laminaria saccharina , and Undaria pinnatifida were analyzed. The study focused on arsenosugars, the most frequently occurring arsenic species in algae. As(III) and As(V) were also determined in aqueous extracts. Total arsenic in the samples was determined by microwave digestion and inductively coupled plasma mass spectrometry (ICPMS). For arsenic speciation, a water extraction especially suitable for arsenosugars was used, and the arsenic species were analyzed by liquid chromatography with both anionic and cationic exchange and ICPMS detection (LC-ICPMS). The total arsenic content of the alga samples ranged from 5.8 to 56.8 mg As kg(-1). The mass budgets obtained in the extracts (column recovery × extraction efficiency) ranged from 38 to 92% except for U. pinnatifida (4%). The following compounds were detected in the extracts: arsenite (As(III)), arsenate (As(V)), methylarsonate (MA), dimethylarsinate (DMA), sulfonate sugar (SO(3)-sug), phosphate sugar (PO(4)-sug), arsenobetaine (AB), and glycerol sugar (Gly-sug). The highest concentrations corresponded to the arsenosugars.  相似文献   

4.
The concentrations of arsenobetaine (AB), tetramethylarsonium ion (TMA(+)), and trimethylarsine oxide (TMAO) were determined in samples of sole, dory, hake, and sardine, raw and after being subjected to cooking processes--baking, frying, and grilling--at various temperatures. In all cases, the temperature attained inside the product during the cooking process was measured. The arsenic species extracted from the samples with methanol/water were separated by means of a column switching technique between a PRP-X100 column and a PRP-X200 column. AB was detected by hydride generation atomic absorption spectrometry, whereas TMA(+) and TMAO were detected by hydride generation atomic fluorescence spectrometry. The results obtained showed that, in all of the types of seafood studied, TMA(+) appeared after cooking, possibly because heating facilitates decarboxylation of AB to TMA(+).  相似文献   

5.
The combination of temperatures and pH levels applied in domestic or industrial cooking and in the sterilization of seafood might cause the transformation of certain species of arsenic into other more toxic species, which could pose a risk to the consumer. To clarify the effect of the temperatures traditionally used in cooking or sterilization on the stability of the various species of arsenic, a kinetic study was carried out, using standards of arsenobetaine (AB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA(+)), and arsenocholine (AC) heated at different temperatures (85--190 degrees C) and for different treatment times. Various pH levels (4.5, 5.5, 6.5, and 8.0) were applied during the heating process. The results obtained indicated that there were no transformations of arsenic species after temperature treatments up to 120 degrees C. However, when temperatures between 150 and 190 degrees C were used, a partial decomposition of AB was achieved, producing TMAO at 150 degrees C and TMAO and TMA(+) at temperatures of 160 degrees C or above, in proportions that varied according to the temperature and duration of the heat treatment.  相似文献   

6.
Arsenic species: effects on and accumulation by tomato plants.   总被引:7,自引:0,他引:7  
The uptake of arsenic (As) species by Lycopersicum esculentum, growing under soilless culture conditions, was studied. A 4 x 3 x 2 factorial experiment was conducted with four As species (arsenite, arsenate, methylarsonate, and dimethylarsinate), three As concentrations (1, 2, and 5 mg L(-)(1)) and two tomato cultivars (Marmande and Muchamiel). The phytoavailability and phytotoxicity were primarily determined by the As species. The concentrations of As in plant increased significantly with increasing As concentration in solution. Both MA and DMA showed a higher upward translocation than arsenite and arsenate, and treatments with MA and DMA clearly reduced plant growth and fruit yield. The As concentration in tomatoes treated with arsenite or arsenate were within the range considered normal in food crops; however, the As concentration in tomatoes treated with MA and DMA were close to or even above the maximum limit. When tomato plants are exposed to high concentrations of As in nutrient solutions, they may uptake As to concentrations unacceptable for human food.  相似文献   

7.
The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The objective of this work was to understand the behavior of arsenic species in percolate water from monosodium methanearsonate (MSMA) applied golf course greens, as well as to determine the influences of root-zone media for United State Golf Association (USGA) putting green construction on arsenic retention and species conversion. The field test was established at the Fort Lauderdale Research and Education Center (FLREC), University of Florida. Percolate water was collected after MSMA application for speciation and total arsenic analyses. The results showed that the substrate composition significantly influenced arsenic mobility and arsenic species transformation in the percolate water. In comparison to uncoated sands (S) and uncoated sands and peat (S + P), naturally coated sands and peat (NS + P) showed a higher capacity of preventing arsenic from leaching into percolate water, implying that the coatings of sands with clay reduce arsenic leaching. Arsenic species transformation occurred in soil, resulting in co-occurrence of four arsenic species, arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in percolate water. The results indicated that substrate composition can significantly affect both arsenic retention in soil and arsenic speciation in percolate water. The clay coatings on the soil particles and the addition of peat in the soil changed the arsenic bioavailability, which in turn controlled the microorganism-mediated arsenic transformation. To better explain and understand arsenic transformation and transport after applying MSMA in golf green, a conceptual model was proposed.  相似文献   

8.
Arsenic speciation in farmed Hungarian freshwater fish   总被引:2,自引:0,他引:2  
Arsenic speciation analysis was carried out on freshwater farmed fish collected from an area with elevated groundwater arsenic concentrations in Hungary as well as from outside of the area (control samples). The arsenic species were determined by high-performance liquid chromatography-inductively coupled plasma mass spectrometry on methanol extracts of the muscle tissue from the fish. Catfish (Claries gariepinus) were raised in geothermal water where the average total arsenic concentrations were 167 (contaminated sites) and 15.1 ng As mL(-1) (control); they were all fed an artificial diet containing 2880 microg As kg(-1) total arsenic, mostly present as arsenobetaine. In the catfish, the accumulated total arsenic (2510-4720 microg As kg(-1)) was found mostly in the form of arsenobetaine suggesting that uptake of arsenic was dominated by their diet. Carp (Cyprinus carpio) were cultured in surface lakes with no significant arsenic pollution and had total arsenic concentrations ranging from 62 to 363 microg As kg(-1). The arsenic species found in the carp extracts differed markedly from those in the catfish in that no arsenobetaine was detected. Most samples of carp from the investigated sites contained low concentrations of As(III) (arsenite), As(V) (arsenate), MA (methylarsonate), and DMA (dimethylarsinate), and no other compounds were detected. The four individuals from the control site, however, all contained appreciable levels of oxo-arsenosugar-glycerol and oxo-arsenosugar-phosphate. Indeed, the oxo-arsenosugar-phosphate dominated the speciation pattern for these carp contributing about 75% of the sum of species. The contrast between these two freshwater aquaculture species regarding total arsenic and arsenic species has relevant toxicological aspects in terms of food safety.  相似文献   

9.
10.
A study was carried out to determine arsenic species in Porphyra seaweed originating from the China Sea. Information about arsenic species in Porphyra was provided by HPLC-ICP-MS and ES-MS-MS. The total arsenic concentrations of Porphyra samples from five different producing areas ranged from 2.1 to 21.6 mg/kg. The analysis report also showed that arsenosugars were the only arsenic species that could be detected in all of the extracts of samples. Arsenosugar PO(4) was the major compound in most samples (0.3-13.9 mg/kg of dry weight), followed by arsenosugar OH (0.7-6.2 mg/kg of dry weight). A further experiment was done to investigate the stability of arsenosugars in the process of being heated. It was observed that the arsenosugars were stable during a short-term heating at 100 degrees C. Their stability in human ingestion was also studied. A substantial increase of dimethylarsinic acid (DMA) was detected in urine samples collected from six volunteers after the consumption of this seaweed. The results obtained indicated that arsenosugars had been metabolized to DMA, which is more toxic than arsenosugars. From this point of view, consumers should consider the possible adverse effects of edible Porphyra on human health and choose those Porphyra having lower arsenic concentrations.  相似文献   

11.
Spanish legislation sets a maximum level for total arsenic (As) in confectionery products at 0.1 microg g(-)(1). The U.S. Food and Drug Administration limitations for glycyrrhizic acid in hard and soft candies are 160 and 31 mg g(-)(1), respectively. Arsenic and glycyrrhizic acid were determined in 22 different confectionery products: 9 throat pearls, 4 hard candies, and 9 soft candies. Arsenic and glycyrrhizic acid were quantified by atomic absorption spectrometry with hydride generation and high-performance liquid chromatography, respectively. Levels of glycyrrhizic acid were always below the maximum limits established by the U.S. FDA; however, the As concentration in seven of nine throat pearls (0.55 +/- 0.15 microg g(-)(1)) were above the Spanish maximum limit. A clear empirical relationship between the arsenic and glycyrrhizic acid concentrations was observed (R (2) = 0.9357), implying that to avoid high levels of potentially toxic arsenic in licorice confections high-quality licorice extract should be used.  相似文献   

12.
A study was carried out to determine organic species of arsenic in the main varieties of seafood consumed in the Basque country (Spain). The concentrations of arsenobetaine (AB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenocholine (AC), and tetramethylarsonium ion (TMA(+)) in 64 samples corresponding to different food items are presented. The study provides information about a possible distribution pattern of organoarsenical species in seafood products. AB was detected in all of the samples [0.3-104.1 microg g(-1) dry weight (dw)]. DMA was detected in all of the samples except squid and salted cod (0.027-1.757 microg g(-1) dw). MMA was detected only in certain fatty fish (0.004-0.028 microg g(-1) dw) and bivalves (0.031-0.047 microg g(-1) dw). AC was only present in some samples of lean fish (0.014-0.089 microg g(-1) dw), and TMA(+) was detected only in anchovy (0.039-0.169 microg g(-1) dw) and crustaceans (0.044-0.966 microg g(-1) dw).  相似文献   

13.
Organoarsenical standards and raw and cooked seafood (DORM-2, sole, and Greenland halibut) were subjected to in vitro gastrointestinal digestion to estimate arsenic bioaccessibility (maximum soluble concentration in gastrointestinal medium). The in vitro digestion did not modify the chemical form of the organoarsenic species standards. In seafood, bioaccessibility was 67.5-100% for arsenobetaine (AB), 30% for dimethylarsinic acid (DMA), 45% for tetramethylarsonium ion (TETRA), and >50% for trimethylarsine oxide (TMAO). Cooking induced no changes in bioaccessible contents. In addition, transport by Caco-2 cells, an intestinal epithelia model, was evaluated from organoarsenical standards and DORM-2. For standards, transport ranged from 1.7% for AB to 15.5% for TETRA. In DORM-2, transport was observed for only AB (12%), with far higher efficiency than in the case of the standard solution, thus illustrating the interest of using whole foods for studying bioavailability.  相似文献   

14.
The cancer risk posed by inorganic arsenic (iAs) ingestion via the consumption of hijiki seaweed, a common Japanese food item known to accumulate pentavalent arsenic, was estimated. Fourteen households were asked to supply three portions of cooked hijiki (boiled and fried with vegetables and fried bean curd, etc.), as usually cooked and served per person in each household. The monthly consumption frequency of cooked hijiki was assessed by questionnaire: it was typically two to three times a month in most households. The mean daily consumption of cooked hijiki was estimated to be 6.5 g/day (range = 1.1-14 g/day, median = 5.5 g/day) by multiplying one serving quantity (grams) by the monthly frequency of consumption. The concentration of iAs [As(III) + As(V)] in the cooked hijiki was determined after homogenization, freeze-drying, 0.07 mol/L HCl extraction, and high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). The concentration of iAs ranged from 0.4 to 2.8 mg/kg (wet weight basis) in the cooked hijiki, and iAs intake from cooked hijiki was calculated to be 0.0005-0.023 mg/day. On the basis of these data and the oral slope factor [1.5E0 (mg/kg/day) (-1)] reported by the U.S. EPA for iAs, the mean skin cancer risk through cooked hijiki consumption was calculated to be 2.4 x 10(-4) (range = 1.6 x 10(-6) -7.0 x 10(-4)), which exceeded the acceptable level of 10(-5). Taking the risk of other cancers (bladder, lung, etc.) into consideration, the contribution to cancer occurrence through the consumption of hijiki seaweed may not be negligible.  相似文献   

15.
Methylation and demethylation of arsenic may change substantially the toxicity and mobility of arsenic in soils. Little is known about demethylation of organic arsenic species in organic soils. We incubated dimethylarsinic acid (DMA) and arsenobetaine (AsB) in soils and aqueous soil extracts from a forest floor and fen, in order to investigate demethylation processes. Incubations were conducted at 5°C in the dark under oxic or anoxic conditions. Arsenobetaine demethylated rapidly in all soil extracts with half-lives of 3.6–12 days, estimated from first order kinetic. Demethylation of DMA was relatively slow with half-lives of 187 and 46 days in the forest floor extracts and oxic fen extracts, respectively. In comparison, DMA was stable for 100 days in anoxic fen extracts. The apparent half-lives were much shorter in soils for DMA (1.3–12.6 days) and AsB (0.5–1.9 days) than in soil extracts, suggesting also irreversible AsB and DMA adsorption to soils beside demethylation. An unknown arsenic species and DMA were detected as metabolites of AsB demethylation. The results indicate rapid demethylation of AsB probably via the pathway AsB → Dimethylarsenoylacetate → DMA, followed up by slow demethylation of DMA → monomethylarsonic acid → inorganic As species.  相似文献   

16.
建立了应用高效液相色谱(HPLC)和电感耦合等离子质谱(ICP-MS)联用技术测定农业水环境样品中三价砷(AsⅢ)、一甲基砷(MMA)、二甲基砷(DMA)、五价砷(AsⅤ)4种砷形态的分析方法。试验表明,4种砷形态的线性范围宽(1~300μg·L-1),相关系数(r)均大于0.999 0,方法检出限低(0.7~0.9μg·L-1),精密度好,重复测定7次结果的RSD均小于5%。通过计算加标回收率验证方法的准确性,加标回收率为94%~112%。实际样品的测定结果显示,农田废水中砷的主要存在形态为As(Ⅴ),其次为As(Ⅲ)。  相似文献   

17.
Inorganic arsenic (iAs) is considered to be a human carcinogen. In this paper, total (As) and iAs contents of 215 food products and drinks (i.e., seafood, fruits and vegetables, meat products, oils and fats, rice and rice products, seasonings, and alcoholic drinks) marketed in Catalonia (Spain) were quantified by inductively coupled plasma-mass spectrometry. The analytical method described was used for different food products, obtaining feasible results without the need to couple LC-ICP-MS for iAs. Daily As and iAs intakes for the average adult Catalan consumer were estimated at 354 and 6.1 μg/day/person, respectively, using consumption data from the Catalan Nutrition Survey (ENCAT). The highest As content was found in seafood, contributing 96% of dietary As intake, whereas rice presented the highest iAs values, corresponding to 67% of dietary iAs intake. As cooking process may affect iAs content, boiled rice was evaluated, showing an iAs reduction (up to 86%) when using higher water volumes (30:1 water/rice ratio) than those used in previous studies. This iAs exposure was slightly below the exposure risk range stated by the European Food Safety Authority (0.3-8 μg/kg of body weight/day), although the possibility of a risk to the population with high rice consumption cannot be excluded.  相似文献   

18.
各形态和浓度砷对生菜生长的影响试验   总被引:3,自引:0,他引:3  
用营养液模拟土壤溶液栽培本地生菜,分别加入不同化学形态及不同浓度的砷,观察其对生菜生长量的影响,结果发现DMA、As( Ⅲ) 毒性强于MMA、As( Ⅴ) ;随有效砷浓度增加,生菜产量下降;砷对生菜鲜重和干重、地上和地下部分的影响存在差异;当培养液砷浓度超过受试植株的承受阈值时,生菜即表现为急性中毒死亡。  相似文献   

19.
Experiments were conducted to evaluate the arsenic toxicity, its accumulation and phytoremediation potential of bean plants (Phaseolus vulgaris) grown in soils contaminated with different species of arsenic such as arsenite (As(III)), arsenate (As(V)) and dimethylarsinic acid (DMA). Bean plants were grown in soils amended by aqueous solutions of 20 and 50 mg kg?1 of As (III), As(V) or DMA. Arsenic species negatively affected the yield and growth of the plant. The study demonstrated arsenic accumulation in the plant parts. The concentration of arsenic compounds in the shoots decreased in the order arsenate > arsenite > dimethylarsinic acid while in the roots as arsenite > arsenate > dimethylarsinic acid. Most arsenic is accumulated in the roots with limited transfer to shoots. Thus, bean plants can be considered as an arsenic excluder and has the potential for phytostabilization of arsenic contaminated sites. The study also reveals that removal of arsenic by boiling the vegetables with excess of water is not possible.  相似文献   

20.
The aim of this study was to examine the bioaccessibility (maximum soluble concentration in gastrointestinal medium) of total (AsT) and inorganic (AsI) arsenic contents and the effect on them of cooking edible seaweed, a food of great interest because of its high As content. An in vitro gastrointestinal digestion (pepsin, pH 2, and pancreatin-bile extract, pH 7) was applied to obtain the mineral soluble fraction of three seaweeds (Hizikia fusiforme, Porphyra sp., and Enteromorpha sp.). AsT was determined by dry-ashing flow injection hydride generation atomic absorption spectrometry. AsI was determined by acid digestion, solvent extraction, and flow injection hydride generation atomic absorption spectrometry. The bioaccessibility of AsI increased significantly after cooking, attaining 73% in Porphyra sp. and 88% in H. fusiforme. For cooked H. fusiforme, the AsI attained in the bioaccessible fraction was 26 microg g(-1) seaweed, a concentration that is a warning of the toxicological risk of this food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号