首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A divergent selection experiment for the environmental variability of litter size (Ve) over seven generations was carried out in rabbits at the University Miguel Hernández of Elche. The Ve was estimated as the phenotypic variance within the female, after correcting for year‐season and parity‐lactation status. The aim of this study was to analyse the correlated responses to selection in litter size components. The ovulation rate (OR) and number of implanted embryos (IE) in females were measured by laparoscopy at 12 day of the second gestation. At the end of the second gestation, the total number of kits born was measured (TB). Embryonic (ES), foetal (FS) and prenatal (PS) survival were computed as IE/OR, TB/IE and TB/OR, respectively. A total of 405 laparoscopies were performed. Data were analysed using Bayesian methodology. The correlated response to selection for litter size environmental variability in terms of the litter size components was estimated as either genetic trends, estimated by computing the average estimated breeding values for each generation and each line, or the phenotypic differences between lines. The OR was similar in both lines. However, after seven generations of selection, the homogenous line showed more IE (1.09 embryos for genetic means and 1.23 embryos for phenotypic means) and higher ES than the heterogeneous one (0.07 for genetic means and 0.08 for phenotypic means). The probability of the phenotypic differences between lines being higher than zero (p) was 1.00 and .99, respectively. A higher uterine overcrowding of embryos in the homogeneous line did not penalize FS; as a result, this line continued to show a greater TB (1.01 kits for genetic means and 1.30 kits for phenotypic means, p = .99, in the seventh generation). In conclusion, a decrease in litter size variability showed a favourable effect on ES and led to a higher litter size at birth.  相似文献   

2.
为了解台系杜洛克母猪重复力遗传参数在国内的适应性,充实完善台系杜洛克猪产仔数的重复力,继续选育提高杜洛克猪育种水平及经济效益。通过采用组内相关的方法,对某大型种猪企业的台系杜洛克猪1~8胎次产仔数的重复力进行估测。结果表明:台系杜洛克猪1~8胎次的平均产仔数分别为8.6头、9.65头、9.35头、9.00头、8.30头、8.80头、7.65头;台系杜洛克猪8个胎次平均产仔数为8.44头;台系杜洛克猪产仔数的重复力为0.42。  相似文献   

3.
Bayesian analyses were used to estimate genetic parameters on 5580 records of litter size in the first four parities from 1758 Mule ewes. To examine the appropriateness of fitting repeatability (RM) or multiple trait threshold models (MTM) to litter size of different parities, both models were used to estimate genetic parameters on the observed data and were thereafter compared in a simulation study. Posterior means of the heritabilities of litter size in different parities using a MTM ranged from 0.12 to 0.18 and were higher than the heritability based on the RM (0.08). Posterior means of the genetic correlations between litter sizes of different parities were positive and ranged from 0.24 to 0.71. Data sets were simulated based on the same pedigree structure and genetic parameters of the Mule ewe population obtained from both models. The simulation showed that the relative loss in accuracy and increase in mean squared error (MSE) was substantially higher when using the RM, given that the parameters estimated from the observed data using the opposite model are the true parameters. In contrast, Bayesian information criterion (BIC) selected the RM as most appropriate model given the data because of substantial penalty for the higher number of parameters to be estimated in the MTM model. In conclusion, when the relative change in accuracy and MSE is of main interest for estimation of breeding values of litter size of different parities, the MTM is recommended for the given population. When reduction in risk of using the wrong model is the main aim, the BIC suggest that the RM is the most appropriate model.  相似文献   

4.
Genetic differences in performance of dams were estimated by linear contrasts using means of two selected lines of mice and reciprocal F1's, F2's and backcrosses. The lines were selected for increased 6-wk body weight (W) or increased litter size (L). Genetic differences estimated were direct average (gD), direct heterosis (hD), maternal average (gM), progeny average (gP), and progeny heterosis (hP). For dam weight and feed consumption from 12 to 21 d postpartum (pp), gD was the largest genetic difference and favored line W. For litter size, litter weight at birth, litter efficiency (litter weight gain/dam feed consumption) from birth to 12 d pp and within litter mortality from 1 to 21 d pp, gD favored L and, except for hD in litter efficiency, was the most important genetic difference for these traits. Direct heterosis was the only significant difference for litter weight at 21 d pp, litter efficiency from 12 to 21 d pp and within litter mortality at parturition. The gM were larger in W than in L for dam weight and feed consumption, and for litter size and weight at birth, but they were usually of smaller magnitude than gD. The gP were significant only in litter traits measured before 12 d pp and favored W. For no trait measured was hP of consequence. Line differences in dam and litter weight accounted for genetic differences in dam feed consumption. Genetic differences in litter size at birth were not due to line differences in dam weight. The lower mortality within litters nursed by crossbred dams was responsible for hD on litter weight and litter efficiency. Within but not among lines, higher mortality rates were associated with larger litters.  相似文献   

5.
Genetic parameters for the splayleg (SL) condition were estimated from 37,673 records of pigs from six lines derived from a Large White-Land-race base population. Random selection for 22 generations was practiced in Lines C1 and C2. Line C2 was derived from C1 at Generation 8. Selection lines were as follows: 1) Line I, selected 11 generations for an index of ovulation rate and embryonic survival followed by 11 generations of selection for litter size; 2) Line IOL, derived from Line I at Generation 8 and which underwent eight generations of two-stage selection for ovulation rate and number of fully formed pigs per litter followed by four generations of litter size selection; 3) Line COL, derived from Line C1 at Generation 8 and selected eight generations in two stages for ovulation rate and number of fully formed pigs followed by four generations of litter size selection; and 4) Line T, selected 12 generations for increased testis size. From logistic models, it was found that boars were 224% more likely to have SL than gilts (P < 0.01). Decreases in birth weight, dam age at puberty, dam nipple number, and dam embryonic survival, and increases in dam litter size and inbreeding increased the odds of SL (P < 0.05). Direct and maternal heritabilities of SL were 0.07 and 0.16, respectively, and the correlation between direct and maternal effects was -0.24. Correlations between direct genetic effects for SL and number born alive, nipple number, birth weight, age at puberty, and embryonic survival were -0.19, -0.36, 0.23, -0.19, and -0.32, respectively. Except for the correlation of 0.32 between maternal effects for SL and direct effects for number of live pigs, correlations of SL maternal genetic effects with direct genetic effects of other traits were less than 0.11. Annual direct genetic trends (%) for SL in I, IOL, COL, T, C1, and C2 were -0.003 +/- 0.003, 0.121 +/- 0.012, -0.273 +/-0.009, 0.243 +/-0.014, -0.274 +/-0.004, and 0.086 +/-0.008, respectively; annual maternal genetic trends (%) were 0.106 +/-0.004, 0.508 +/-0.019, 0.383 +/-0.015, 0.527 +/-0.024, 0.188 +/-0.005, and 0.113 +/-0.012, respectively. Annual genetic maternal trend in Line I after Generation 12 was 0.339 +/-0.014. Maternal breeding value for SL is expected to increase as a correlated response to selection for increased litter size and increased size of testes.  相似文献   

6.
SUMMARY: Additive genetic and maternal effects were estimated for several litter traits in rabbits. A total of 457 litters of 3267 animals from a reciprocal crossbreeding experiment were analysed by an animal model using a derivate-free REML procedure. Heritability estimates for litter size at birth, weaning and slaughter ranged from 0.09 to 0.25, for litter-weight traits from 0.00 to 0.13 and for preweaning and postweaning mortality rates from 0.00 to 0.19. Additive genetic contribution to the variation in a litter trait was found to be higher at birth and during the postweaning period than during the suckling period. Maternal effects accounted for approximately 10 % of the variation in most of the preweaning litter traits. Live litter size at birth was found to be the main source of variation in preweaning traits, explaining between 2.3 % and 43.2 % of the total variation. Heritability estimates and genetic correlations indicated live litter size at birth to be a useful selection criterion for the improvement of litter traits in rabbits. Our results indicated that a litter size of approximately 11 would be optimal before litter size at weaning and litter weight at weaning began to decline. Genetic selection for live litter size at birth would result in significant improvement in litter size and litter weight at later ages. ZUSAMMENFASSUNG: Sch?tzung additiv-genetischer und maternaler Effekte auf Wurfmerkmale beim Kaninchen An insgesamt 457 Würfen mit 3267 Einzeltieren, die aus einem reziproken Kreuzungsversuch stammten, wurden additiv-genetische und maternale Effekte für zahlreiche Wurfmerkmale anhand eines Tiermodells (DFREML-Methode) gesch?tzt. Heritabilit?tssch?tzungen wurden für Wurfgr??e und Wurfgewicht zu unterschiedlichen Zeitpunkten (Geburt, Absetzen und Erreichen des Schlachtgewichts) aurchgeführt. Der additiv-genetische Variationsanteil an der Gesamtvariation war dabei bei der Geburt und nach dem Absetzen h?her als w?hrend der S?ugezeit. Die Sch?tzungen schwankten bei der Wurfgr??e zwischen h(2) = 0,09 und h(2) = 0,19 und beim Wurfgewicht zwischen h(2) = 0,00 und h(2) = 0,13. Für die Verlustrate bis zum Absetzen betrug die Heritabilit?t h(2) = 0,00 und für die Verlustrate vom Absetzen bis zum Erreichen des Schlachtgewichts h(2) = 0,19. Durch maternale Effekte wurde bis zum Absetzen ungef?hr 10% der Variation in den untersuchten Merkmalen erkl?rt. Bei Einbeziehung des Merkmals Lebendwurfgr??e bei der Geburt in das Tiermodell lie?en sich 2,3-42,3 % der Gesamtvariation in den Wurfmerkmalen in der S?ugezeit beschreiben. Die Heritabilit?tssch?tzungen und die Sch?tzung genetischer Korrelationen deuten daraufhin, da? die Lebendwurfgr??e bei der Geburt ein erfolgsversprechendes Selektionskriterium für die Verbesserung von Wurfmerkmalen beim Kaninchen darstellt. Die vorliegenden Ergebnisse zeigen an, da? eine Lebendwurfgr??e von 11 Jungtieren anzustreben ist. Bei gr??eren Würfen nimmt die Wurfgr??e und das Wurfgewicht beim Absetzen wieder ab. Genetische Selektion auf Lebendwurfgr??e bei der Geburt verspricht eine signifikante Verbesserung der Wurfgr??e und des Wurfgewichts in sp?teren Lebensabschnitten.  相似文献   

7.
Uterine capacity (UC), defined as the total number of kits from unilaterally ovariectomized does at birth, has a high genetic correlation with litter size. The aim of our research was to identify genomic regions associated with litter size traits through a genomewide association study using rabbits from a divergent selection experiment for UC. A high-density SNP array (200K) was used to genotype 181 does from a control population, high and low UC lines. Traits included total number born (TNB), number born alive (NBA), number born dead, ovulation rate (OR), implanted embryos (IE) and embryo, foetal and prenatal survivals at second parity. We implemented the Bayes B method and the associations were tested by Bayes factors and the percentage of genomic variance (GV) explained by windows. Different genomic regions associated with TNB, NBA, IE and OR were found. These regions explained 7.36%, 1.27%, 15.87% and 3.95% of GV, respectively. Two consecutive windows on chromosome 17 were associated with TNB, NBA and IE. This genomic region accounted for 6.32% of GV of TNB. In this region, we found the BMP4, PTDGR, PTGER2, STYX and CDKN3 candidate genes which presented functional annotations linked to some reproductive processes. Our findings suggest that a genomic region on chromosome 17 has an important effect on litter size traits. However, further analyses are needed to validate this region in other maternal rabbit lines.  相似文献   

8.
Conception rate, prenatal survival and litter size were recorded for 444 ewes of two age groups from five lines of grade Targhee sheep: two unselected control lines, HC1 and DC(C); two lines selected for 20 yr for increased 120-d weight, HW and DH(W); and a line selected for 18 yr for increased multiple births, T. Line T was equal or superior to the control lines in conception rate, prenatal survival and litter size in both age groups, although most of the differences were not significant. The W selected lines were inferior to the C and T lines in fertility and tended to be lower in prenatal survival, among mature ewes, resulting in a significantly lower number of lambs born per corpus luteum in the W lines than in the other two groups. Among yearlings, C ewes were non-significantly lower in fertility than T and W ewes, while W ewes were significantly lower than C and T ewes in prenatal survival. The T line ewes had higher overall reproductive performance than either of the other two groups. Ewes with two ovulations had a significantly higher conception rate than ewes with single ovulations. Gestation period was exceptionally uniform with a coefficient of variation of 1.3% and little difference due either to line or litter size. It was concluded that selection for multiple births improved overall reproductive performance, whereas selection for increased growth rate had an adverse effect on several components of reproduction, leading to a net decline in fitness.  相似文献   

9.
An estimation of the genetic and environmental correlations between prolificacy (kits born alive and number of kits at weaning) and functional longevity in a population selected for litter size at weaning since 1992 was carried out. The method is only an approximation, but suggests that genetically longevity and litter size are not antagonistic objectives in breeding programmes, because the estimated genetic correlations are not significantly different from zero.  相似文献   

10.
The purpose of this study is to use demographic and litter size data on four Spanish maternal lines of rabbits (A, V, H and LP), as a case study, in order to: (i) estimate the effective population size of the lines, as a measure of the rate of increase of inbreeding, and (ii) study whether the inbreeding effect on litter size traits depends on the pattern of its accumulation over time. The lines are being selected for litter size at weaning and are kept closed at the same selection nucleus under the same selection and management programme. The study considered 47 794 l and a pedigree of 14 622 animals. Some practices in mating and selection management allow an increase of the inbreeding coefficient lower than 0.01 per generation in these lines of around 25 males and 125 females. Their effective population size (Ne) was around 57.3, showing that the effect of selection, increasing the inbreeding, was counterbalanced by the management practices, intended to reduce the rate of inbreeding increase. The inbreeding of each individual was broken down into three components: old, intermediate and new inbreeding. The coefficients of regression of the old, intermediate and new inbreeding on total born (TB), number born alive (NBA) and number weaned (NW) per litter showed a decreasing trend from positive to negative values. Regression coefficients significantly different from zero were those for the old inbreeding on TB (6.79 ± 2.37) and NBA (5.92 ± 2.37). The contrast between the coefficients of regression between the old and new inbreeding were significant for the three litter size traits: 7.57 ± 1.72 for TB; 6.66 ± 1.73 for NBA and 5.13 ± 1.67 for NW. These results have been interpreted as the combined action of purging unfavourable genes and artificial selection favoured by the inbreeding throughout the generations of selection.  相似文献   

11.
Gilts raised in large litters produce smaller litters than those raised in small litters. These maternal influences affect the regression coefficient of additive genetic on phenotypic value. Over a range of plausible values, this regression coefficient, and thus genetic change, decreased 5–10% due to maternal effects. So the genetic impact of maternal effects on litter size is minimal. In a selection experiment, selected breeding gilts are raised in large litters. This results in a negative maternal influence on litter size which is mainly environmental. This influence can be eliminated to a large extent by standardization of those litters from which gilts are going to be selected. Selection for fertility seems to be possible if the requirements (accurate correction for fixed effects, optimization of herd management, high selection intensity, standardization of litters and accurate estimation of breeding values) are fulfilled.  相似文献   

12.
Candidate gene markers for litter size in different German pig lines.   总被引:42,自引:0,他引:42  
Three diallelic RFLP markers at candidate gene loci for litter size, the estrogen receptor (ESR) gene, the prolactin receptor (PRLR) gene, and the retinol-binding protein 4 (RBP4) gene, were evaluated for their association with the number of piglets born alive in different German pig lines. Genotyping was performed on boars and sows belonging to three different genetic groups from a single farm. Information on 8,336 litter records from 2,159 sows (German Landrace, n = 1,672; Duroc, n = 214; and a synthetic line, n = 273) was used in the analyses with respect to litter size. Growth performance traits were only analyzed for the synthetic line. The ESR locus showed no polymorphism in the tested boars of the German Landrace and Duroc lines. In the synthetic line, the frequency for the A allele was 0.90 and no homozygous BB animal was detected. No significant associations of ESR alleles with number of piglets born alive, backfat thickness, or average daily gain were observed. A new PCR-RFLP was developed for testing the PRLR polymorphism. The frequencies of PRLR allele A were 0.40 in the German Landrace, 0.49 in the synthetic, and 0.82 in the Duroc line. In the Duroc line, a small additive effect of the allele B on litter size was observed. The allelic substitution effect was 0.71 piglets born alive across all parities (P = 0.05). No significant associations of the PRLR locus with litter and growth performance traits were detected. The frequencies of RBP4 allele A ranged from 0.62 in the synthetic line to 0.67 in the German Landrace to 0.85 in the Duroc line. For the genotyped sows of the synthetic line, there was no indication of a favorable effect of the A allele with respect to litter size. Results of this study demonstrate that allele effects differ between lines or populations. This may be due to possible different linkage phases between the marker alleles and the causal mutations in the different lines. The results may also be explained by many minor genes affecting litter size. A selection strategy should be designed for each line separately and should always consider possible pleiotropic effects.  相似文献   

13.
A population of chimeras was made by aggregating 8- and 16-cell embryos from two mouse strains: a randomly bred line (C) and a selected line characterized by large litters (JU), with litter sizes of 7.7 and 13.5, respectively. The two genotypes were developmentally "balanced", as judged by the high frequency (90%) of chimeras with an intermediate or high degree of coat-color chimerism, a chimeric sex ratio of 2.2:1 males:females, and a high percentage of chimeras (31% of males, 71% of females) with germ cells of both strains. Litter size characteristics, including ovulation rate, implantation rate, rates of pre- and postimplantation embryo survival and number born were studied in the female chimeras and compared with the performance of both parent lines and to the genetic cross of the two lines. Values for JU females exceeded those for C females for all parameters studied except postimplantation embryo survival, which was the same for both lines in second litters and was lower for JU's third litters. For most traits, means for genetic crossbreds and chimeras were similar, regardless of whether the means were at or above the midparent average. In contrast, for ovulation rate and body weight, genetic crossbreds and chimeras clearly differed, with chimeric females being similar to the JU line and genetic crossbred females exhibiting additive inheritance. Because of phenotypic differences between experimental chimeras and crossbreds produced from the same two lines, chimeras may provide a useful model for studying the physiologic basis for expression of genetic differences in quantitative traits.  相似文献   

14.
Serum alkaline phosphatase (SAP) levels were investigated in lambs at birth and 24 hours, 48 hours and 4–6 weeks of age. The lambs were born to ewes which had been on two different planes of nutrition during the last 8 weeks of gestation. At this stage, maternal nutrition directly affects the rate of foetal growth and subsequent birth weight. At birth, lambs born to ewes on the higher nutritional plane had higher SAP values than lambs born to the other ewes. The values at birth reflected the greater intra-uterine growth and birth weight of lambs born to the better nourished ewes. Within the same nutritional group, lambs born in larger litters had lower SAP values than lambs in smaller litters, reflecting the slower foetal growth rate and smaller birth weight of the individuals in the larger litters. The trends in SAP levels present in the early stages were still evident at 4–6 weeks of age.  相似文献   

15.
The effects of parity and litter size on maternal behavior of Small Tail Han sheep was investigated at Linyi University, China. Sixty‐eight ewes were observed from parturition to weaning. Continuous focal animal sampling was used to quantify the duration of maternal behaviors. Ewe feces were collected every 2 days and estradiol concentration was measured with an enzyme immunoassay kit. All lambs were weighed 24 h after parturition and again at 35 days of age. Parity increased sucking, following, grooming, low‐pitched bleat, head‐up and udder‐refusal behavior and decreased aggressive behavior (P < 0.01, P < 0.01, P < 0.05, P < 0.05, P < 0.05, P < 0.05, P < 0.01, respectively), and litter size showed significant effect on sucking, following and low‐pitched bleat behavior (P < 0.05, P < 0.01, P < 0.05, respectively). The lambs of multiparous ewes were significantly heavier than primiparous ewes at birth (P < 0.01) and were significantly heavier at weaning age (P < 0.01). Similar results were founded for birth weight and weaning weight gain in litter size (P < 0.01, P < 0.01, respectively). Estradiol concentration in feces was higher in multiparous ewes than primiparous ewes. Parity and litter size may have effects on maternal behavior during lactation. Ewes that have 2–3 lambs may be more suitable for production of Small Tail Han sheep in China.  相似文献   

16.
17.
18.
The aim of this work was to evaluate the response to 10 generations of selection for ovulation rate. Selection was based on the phenotypic value of ovulation rate, estimated at d 12 of the second gestation by laparoscopy. Selection pressure was approximately 30%. Line size was approximately 20 males and 80 females per generation. Traits recorded were ovulation rate at the second gestation, estimated by laparoscopy as the number of corpora lutea in both ovaries; ovulation rate at the last gestation, estimated postmortem; ovulation rate, analyzed as a single trait including ovulation rate at the second gestation and ovulation rate at the last gestation; right and left ovulation rates; ovulatory difference, estimated as the difference between the right and left ovulation rates; litter size, estimated as the total number of kits born and the number of kits born alive, both recorded at each parity. Totals of 1,477 and 3,031 records from 900 females were used to analyze ovulation rate and litter size, respectively, whereas 1,471 records were used to analyze ovulatory difference, right ovulation rate, and left ovulation rate. Data were analyzed using Bayesian methodology. Heritabilities of ovulation rate, litter size, number of kits born alive, right ovulation rate, left ovulation rate, and ovulatory difference were 0.16, 0.09, 0.08, 0.09, 0.04 and 0.03, respectively. Phenotypic correlations of ovulation rate with litter size, number of kits born alive, and ovulatory difference were 0.09, 0.01, and 0.14, respectively. Genetic correlations of ovulation rate with litter size and with number of kits born alive were estimated with low accuracy, and there was not much evidence for the sign of the correlation. The genetic correlation between ovulation rate and ovulatory difference was positive (P = 0.91). In 10 generations of selection, ovulation rate increased in 1.32 oocytes, with most of the response taking place in the right ovary (1.06 oocytes), but there was no correlated response on litter size (-0.15 kits). In summary, the direct response to selection for ovulation rate was relevant, but it did not modify litter size because of an increase in prenatal mortality.  相似文献   

19.
The objective of this study was to identify issues in genetic evaluation of beef cattle for growth by a random regression model (RRM). Genetic evaluation data included 2,946,847 records of up to nine sequential weights of 812,393 Nellore cattle measured at ages ranging from birth to 733 d. Models considered were a five-trait multiple-trait model (MTM) and a cubic RRM. The MTM included the effects of contemporary group, age of dam class, additive direct, additive maternal, and maternal permanent environment. Both additive effects were assumed correlated. The RRM included the same effects as MTM, with the addition of permanent and random error effects. The purpose of the random error effect, which was in addition to a residual effect with constant variance, was to model heterogeneous residual variances. All effects in RRM were modeled as cubic Legendre polynomials. Expected progeny differences (EPD) were obtained iteratively using a preconditioned conjugate gradient algorithm. Numerically accurate solutions with RRM were not obtained until the random regressions were orthogonalized. Computing requirements of RRM were reduced by more than 50%, without affecting the accuracy by removing regressions corresponding to very low eigen-values and by replacing the random error effects with weights. Afterward, the correlations between EPD from RRM and from MTM for EPD on selected weights were between 0.84 and 0.89. For sires with at least 50 progeny, these correlations increased to 0.92 to 0.97. Low correlations were caused by differences in parameters. The RRM applied to growth i s prone to numerical problems. Estimates of EPD with RRM may be more accurate than those with MTM only if accurate parameters are applied.  相似文献   

20.
In a synthetic closed population of Pannon White rabbits, additive (VA), dominance (VD) and permanent environmental (VPe) variance components as well as doe (bFd) and litter (bFl) inbreeding depression were estimated for the number of kits born alive (NBA), number of kits born dead (NBD) and total number of kits born (TNB). The data set consisted of 18,398 kindling records of 3883 does collected from 1992 to 2009. Six models were used to estimate dominance and inbreeding effects. The most complete model estimated VA and VD to contribute 5.5 ± 1.1% and 4.8 ± 2.4%, respectively, to total phenotypic variance (VP) for NBA; the corresponding values for NBD were 1.9 ± 0.6% and 5.3 ± 2.4%, for TNB, 6.2 ± 1.0% and 8.1 ± 3.2% respectively. These results indicate the presence of considerable VD. Including dominance in the model generally reduced VA and VPe estimates, and had only a very small effect on inbreeding depression estimates. Including inbreeding covariates did not affect estimates of any variance component. A 10% increase in doe inbreeding significantly increased NBD (bFd = 0.18 ± 0.07), while a 10% increase in litter inbreeding significantly reduced NBA (bFl = ?0.41 ± 0.11) and TNB (bFl = ?0.34 ± 0.10). These findings argue for including dominance effects in models of litter size traits in populations that exhibit significant dominance relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号