首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective-To compare anatomic features of cross-sectional specimens with those of MRI images of the heads of loggerhead sea turtles (Caretta caretta). Animals-5 cadavers of juvenile female loggerhead sea turtles. Procedures-Spin-echo T1-weighted and T2-weighted MRI scans were obtained in sagittal, transverse, and dorsal planes with a 0.2-T magnet and head coil. Head specimens were grossly dissected and photographed. Anatomic features of the MRI images were compared with those of gross anatomic sections of the heads from 4 of these turtles. Results-In the MRI images, anatomic details of the turtles' heads were identified by the characteristics of signal intensity of various tissues. Relevant anatomic structures were identified and labeled on the MRI images and corresponding anatomic sections. Conclusions and Clinical Relevance-The MRI images obtained through this study provided valid information on anatomic characteristics of the head in juvenile loggerhead sea turtles and should be useful for guiding clinical evaluation of this anatomic region in this species.  相似文献   

2.
The purpose of this study was to produce an anatomic reference for computed tomography (CT) of the head of the foal for use by radiologists, clinicians, and veterinary students. The head from each of 2 foals, euthanized for reasons unrelated to head pathology, was removed and prepared for CT scanning. Using a third-generation CT scanner, 5-mm contiguous transverse images were acquired. The heads were then frozen and sectioned using a band saw, with the cuts matched as closely as possible to the CT slices. The anatomic sections were photographed and radiographed. The radiographs and anatomic photographs were digitized and matched with the corresponding CT image. Each CT image was compared with its corresponding radiographic and anatomic section to assist in the accurate identification of specific structures. Clinically relevant structures were identified and labeled in corresponding images (CT, anatomic slice, and radiograph of slice). Only structures identified in the CT image were labeled in 1 of the other 2 images. Sagittal (reference) images of the horse's head were reconstructed from the transverse CT scans, and were used to indicate the level from which each of the transverse images was obtained. Corresponding labeled images were then formatted together with a legend for identification of specific anatomic structures.  相似文献   

3.
The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. The head was scanned using high-resolution imaging with a slice thickness of 8 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was placed in a walk-in freezer until completely frozen. The body was then sectioned at 13-mm (head at 8-mm) intervals, with the cuts matched as closely as possible to the CT slices. The forzen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Intact, sagittally sectioned, and disarticulated dog skulls were used as reference models. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In this paper, the CT anatomy of the head and neck of the mesaticephalic dog is presented.  相似文献   

4.
The purpose of this investigation was to define the anatomy of the cranioencephalic structures in horses using computed tomography (CT). Transverse images of two isolated equine cadaver heads were obtained using a Toshiba 600 HQ (third-generation equipment TCT). CT images were compared to corresponding frozen cross-sections of the cadaver head. Relevant anatomical structures were identified and labelled at each level. The resulting images provided excellent anatomic detail of the structures of the central nervous system and associated formations. Annotated CT images from this study are intended as a reference for clinical CT imaging studies of the equine head.  相似文献   

5.
The aim of this study was to determine the normal computed tomography (CT) appearance of the vertebral column and coelomic structures of the loggerhead sea turtle (Caretta caretta) and to use three-dimensional (3D) and multiplanar reconstructions to indicate the position of each organ in relation to the vertebrae and carapace. Transverse sections of 1mm thickness were performed in seven clinically healthy and in five dead loggerhead sea turtles using multi-detector CT equipment. A computer workstation was used for multiplanar and 3D reconstructions. Dead turtles were frozen and sectioned in the transverse, dorsal and sagittal planes to compare the anatomical structures' appearance with CT images. Clinically relevant organs including the oesophagus, stomach, trachea, bronchi, lungs, liver, gallbladder, heart, spleen, kidneys and vertebral canal were identified in CT images. Computed tomography provides detailed information on the respiratory system and skeleton; the location of the coelomic structures with respect to the carapace and the vertebrae that is provided in this work will facilitate the use of other ancillary diagnostic techniques such as ultrasound, radiography and biopsy, thereby improving safety of access in surgical procedures.  相似文献   

6.
MAGNETIC RESONANCE IMAGING OF THE NORMAL FELINE BRAIN   总被引:2,自引:1,他引:1  
The Purpose of this study was to produce an atlas of magnetic resonance images (MRI) of the feline brain and associated structures. The head of nine clinically normal cats was imaged in 2 or 3 anatomic planes and 3 sets of technical parameters resulting in T1, T2, and proton-weighted density images. Images were compared with anatomic texts, with preserved and sectioned feline cadaver heads, with preserved and sectioned feline brains, and with intact, sectioned, and disarticulated feline skulls for aid in identification of structures. Anatomic and neuroanatomic structures are identified on selected images in different planes as reference for MR morphology of the normal feline brain and related structures.  相似文献   

7.
8.
9.
10.
The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was frozen. The body was then sectioned at 13-mm intervals, with the cuts matched as closely as possible to the CT slices. The frozen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In previous papers, the head and neck, and the thorax and cranial abdomen of the mesaticephalic (beagle) dog were presented. In this paper, the caudal part of the abdomen and pelvis of the bitch and male dog are presented.  相似文献   

11.
The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was placed in a walk-in freezer until completely frozen. The body was then sectioned at 13-mm intervals, with the cuts matched as closely as possible to the CT slices. The frozen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In a previous paper, the head and neck of the mesaticephalic (beagle) dog was presented. In this paper, the thorax and cranial part of the abdomen of the dog are presented.  相似文献   

12.
The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16‐slice multidetector CT scanner. Tarsi were frozen at ?20o C and sectioned to 10‐mm‐thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology.  相似文献   

13.
OBJECTIVE: To compare cross-sectional anatomic specimens with images obtained via magnetic resonance imaging (MRI) of the coelomic structures of loggerhead sea turtles (Caretta caretta). ANIMALS: 5 clinically normal live turtles and 5 dead turtles. PROCEDURES: MRI was used to produce T1- and T2- weighted images of the turtles, which were compared with gross anatomic sections of 3 of the 5 dead turtles. The other 2 dead turtles received injection with latex and were dissected to provide additional cardiovascular anatomic data. RESULTS: The general view on the 3 oriented planes provided good understanding of cross-sectional anatomic features. Likewise, major anatomic structures such as the esophagus, stomach, lungs, intestine (duodenum and colon), liver, gallbladder, spleen, kidneys, urinary bladder, heart, bronchi, and vessels could be clearly imaged. It was not possible to recognize the ureters or reproductive tract. CONCLUSIONS AND CLINICAL RELEVANCE: By providing reference information for clinical use, MRI may be valuable for detailed assessment of the internal anatomic structures of loggerhead sea turtles. Drawbacks exist in association with anesthesia and the cost and availability of MRI, but the technique does provide excellent images of most internal organs. Information concerning structures such as the pancreas, ureters, intestinal segments (jejunum and ileum), and the reproductive tract is limited because of inconsistent visualization.  相似文献   

14.
Alberto  Arencibia  DVM  PhD  Jose M.  Vázquez  DVM  PhD  Raduán  Jaber  DVM  Francisco  Gil  DVM  PhD  Juan A.  Ramiírez  MD  PhD  Miguel  Rivero  DVM  Nelson  González  DVM  PhD  Erik R.  Wisner  DVM 《Veterinary radiology & ultrasound》2000,41(4):313-319
The purpose of this investigation was to define the magnetic resonance imaging anatomy of the rostral part of the equine head. 10 mm-thick, T1-weighted images of two isolated equine cadaver heads were obtained using a 1.5 Tesla magnet and a body coil. MR images were compared to corresponding frozen cross-sections of the cadaver head. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the oral and nasal cavities, paranasal sinuses and associated structures. Annotated MR images from this study are intended as a reference for clinical MR imaging studies of the equine head.  相似文献   

15.
The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images.  相似文献   

16.
Accurate interpretation of thoracic magnetic resonance images requires a thorough knowledge of anatomy of this region. The purpose of this communication is to describe the normal cross sectional anatomy of the thoracic cavity of the cat, using MR images, dissections and macroscopic sections. In this study, three cats were used. The animals were anesthetized and positioned in sternal recumbency in the MR scanner. MR imaging was performed at the Special Diagnostic Service of San Roque Clinic of Las Palmas de Gran Canaria with a superconducting magnet operating at a field strength of 1.5 Tesla and a human body coil. Spin echo pulse sequences were used to obtain T1-weighted images in tranverse and sagittal planes. At the conclusion of imaging, the cats were euthanatized for medical reasons unrelated to disease of thorax. The cats were frozen and then sectioned using an electric band saw. The cuts were matched as closely as possible to the MR images for identifying the normal planimetric anatomy of the thoracic structures. MR T1-weighted spin echo images provided excellent anatomic appearance of the thorax structures. In MR images the grey scale is directly related to the signal intensity of the thoracic cavity structures. Thus, fat and nerves had higher signal intensity compared with the lower signal intensity of the respiratory system. Bone marrow and muscles had a intermediate signal intensity and appeared gray. The intensity signal of the articular fluid permits a good differentiation of the opposing cartilage surfaces on all MR images. The planimetric or sectional anatomy of the thoracic cavity in the cat allows a correct morphologic and topographic evaluation of the anatomic structures, being helpful tool for the identification of the MR images. The information presented should serve as an initial reference to evaluate MR images of the feline thorax and to assist interpretation of lesions of this region.  相似文献   

17.
The structure of paranasal sinuses in cattle is difficult to understand due to its complexity, age-related changes, and insufficient published data. In this prospective, anatomic study, we described the anatomy of the paranasal sinuses in the Holstein cow using computed tomography (CT) and cross-sectional anatomic slices. Twelve healthy adult Holstein cow heads were used for this study. The heads were scanned using CT, and frozen anatomical sections were taken. The locations, borders, and relationships of the paranasal sinuses were defined on the anatomical sections and CT images. The paranasal sinuses on each side of the head consisted of conchal (dorsal, middle, and ventral), maxillary, lacrimal, palatine, frontal, sphenoid sinuses, and ethmoidal cells. The frontal sinus pneumatized all bones surrounding the cranial cavity, except for the ethmoidal and body of basisphenoid bones. The sphenoid and ventral conchal sinuses were the most asymmetrical, and the middle conchal sinus was the simplest. The ventral conchal sinus was detected in eleven animals, one of which was unilateral. This sinus communicated with the middle nasal meatus (13/21) and ventral nasal meatus (8/21). Findings can be used as background for interpreting CT studies of cattle with clinical signs of sinonasal region diseases. Future cross-sectional radiological and reconstructive anatomical studies and investigation of the postnatal development of related structures in cattle are needed.  相似文献   

18.
De Zani  D.  Borgonovo  S.  Biggi  M.  Vignati  S.  Scandella  M.  Lazzaretti  S.  Modina  S.  Zani  D. 《Veterinary research communications》2010,34(1):13-16
Clinical and radiographic investigations of paranasal sinuses in horses are difficult due to the complex anatomy of these regions, the lack of patognomonic symptoms, and the low sensitivity of conventional diagnostic techniques. The aim of this study was to produce an anatomical atlas to support computed tomography (CT) and sinuscopy of the paranasal sinuses of the adult horse. Transverse, sagittal, and dorsal CT images were acquired, and sinuscopy with both rigid and flexible endoscopes was performed. The heads were frozen and sectioned using a band saw, with the cuts aligned as close as possible with the CT transverse slices. Each CT image was compared with its corresponding anatomical section and sinuscopy image to assist in the accurate identification of specific structures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号