首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
硼与小麦不同器官中IAA、GA3、iPA和ABA含量的关系   总被引:1,自引:0,他引:1  
用溶液培养试验研究硼与小麦不同器官中激素含量的关系。结果表明,无硼处理与对照B10处理相比小麦穗部IAA含量亏缺,而且运输受阻,茎部有IAA积累。无硼处理小麦不同器官中IAA含量及比例都发生变化。B0与B10处理GA3含量变化趋势不同,B0呈低于B10处理的趋势。两个处理的iPA含量变化差异更大,B0处理穗部iPA明显低于B10处理;茎部也是如此,且两个处理变化趋势正相反。无硼处理旗叶ABA含量随生育期逐渐升高,施硼处理基本不变。可能这些变化与缺硼导致的小麦雄性不育有关。  相似文献   

2.
硼与小麦不同器官中IAA、GA3、iPA和ABA含量的关系   总被引:1,自引:1,他引:1  
用溶液培养试验研究硼与小麦不同器官中激素含量的关系。结果表明,无硼处理与对照B10处理相比小麦穗部IAA含量亏缺,而且运输受阻,茎部有IAA积累。无硼处理小麦不同器官中IAA含量及比例都发生变化。B0与B10处理GA3含量变化趋势不同,B0呈低于B10处理的趋势。两个处理的iPA含量变化差异更大,B0处理穗部iPA明显低于B10处理;茎部也是如此,且两个处理变化趋势正相反。无硼处理旗叶ABA含量随生育期逐渐升高,施硼处理基本不变。可能这些变化与缺硼导致的小麦雄性不育有关。  相似文献   

3.
渗透胁迫下烤烟根和叶片中内源激素含量的变化   总被引:5,自引:0,他引:5  
采用酶联吸附免疫测定(ELISA)技术分析了渗透胁迫下烤烟根和叶片中脱落酸(ABA)、生长素(IAA)、赤霉素(GA3)和异戊烯基腺嘌呤(iPA)4种内源激素含量的变化。结果表明,渗透胁迫下烤烟叶片水势降低,蛋白质含量增加,根和叶中ABA和iPA含量升高,IAA和GA3含量减少。培养液渗透势-0.5 MPa与-0.25 MPa两处理相比,前者烟叶水势和ABA含量较低,蛋白质及IAA、GA3和iPA含量较高,根中iPA和叶中ABA含量达到高峰及根中GA3含量出现低谷所需时间较短,其它指标的变化二者同步。根与叶中激素含量相比,在胁迫处理前期(6 h)根中IAA和GA3含量的降低幅度较大,ABA含量峰值出现较早,说明烤烟根中的激素对渗透胁迫的反应更加敏感。  相似文献   

4.
棉株不同器官中几种内源激素的变化及相关关系   总被引:9,自引:5,他引:9  
本试验以转Bt基因抗虫棉GK 1 2为试材 ,研究不同生育期棉花幼叶、功能叶、衰老叶片、根组织和伤流中内源激素的变化。结果表明 :①细胞分裂素两组分iPA +iP和ZR +Z对叶片、根系建构及功能的调控作用是协同互补关系 ,在幼叶、功能叶、衰老叶片和根组织中iPA +iP和ZR +Z的含量变化趋势相反。iPA +iP和ZR +Z均呈单峰曲线变化趋势 ,其中iPA +iP开口向下 ,ZR +Z则开口向上。②赤霉素两组分GA3 和GA4在幼叶、功能叶、衰老叶片和根组织中的变化趋势相似 ,其中GA3 主要调控着根系和叶片的建构与功能 ,GA4参与调控叶片的衰老。③IAA和ABA在幼叶、功能叶、衰老叶片和根组织中的变化趋势不一致。盛花期之后 ,幼叶和功能叶片中的IAA和ABA含量上升 ,衰老叶片和根组织中的含量下降。ABA启动叶片和根系的衰老过程 ,启动后ABA含量下降。④伤流液中iPA +iP、ZR +Z、GA3 、GA4、IAA和ABA的变化动态均呈单峰曲线。  相似文献   

5.
【目的】 通过研究枳橙砧木 (硼不敏感型) 和枳壳砧木 (硼敏感型) 对不同硼浓度处理的反应,重点揭示两种柑橘砧木硼利用效率、光合性能及产物的差异。 【方法】 采用营养液培养的方法,设置 B0 (B0)、2 (B2)、5 (B5)、10 (B10) 和 50 μmol/L (B50) 5 个硼浓度对枳橙和枳壳砧木进行培养,通过测定植株硼含量,叶片中不同形态硼、色素含量,光合速率及糖类物质含量,探讨不同砧木硼利用效率及光合性能的差异。 【结果】 在相同硼浓度条件下,枳橙砧木植株的硼利用效率均大于枳壳砧木,不施硼时,枳橙的硼利用效率较枳壳砧木高 38.6%;两种砧木半束缚态硼/自由态硼的比值 (R) ,在各个硼处理中,枳壳砧木的 R 值均低于枳橙砧木,即枳橙砧木在细胞水平上的硼利用能力大于枳壳砧木;缺硼会降低枳壳和枳橙砧木叶绿素 a (Chl a)、叶绿素 b (Chl b) 和类胡萝卜素 (Car) 等光合色素的含量,其中枳壳砧木受缺硼影响较大,且不施硼显著降低了这两种砧木的净光合速率,相同硼水平条件下,枳橙砧木的净光合速率显著高于枳壳砧木 (B10 除外) ;两种砧木叶片可溶性糖、果糖和淀粉含量在 B0 时均高于其他处理,B0、B2 及 B5 处理,枳壳砧木叶片可溶性糖、蔗糖、果糖均显著高于枳橙砧木。 【结论】 枳橙砧木在植株水平和细胞水平的硼效率均高于枳壳砧木,光合特性和光合产物积累的不同或许是两者硼效率差异的一个关键因子。   相似文献   

6.
黄瓜缺硼症状与激素变化关系的研究   总被引:5,自引:0,他引:5  
在营养液培养条件下 ,研究了黄瓜缺硼处理不同时间外部症状及其体内乙烯和IAA含量变化。结果表明 ,缺硼处理后 5d ,黄瓜幼叶开始出现缺硼症状 ;叶片中IAA含量降低发生在缺硼处理后处理后 3d ,即缺硼症状出现之前 ;乙烯释放量增加则发生在处理后 5d ,是伴随缺硼症状出现而升高的 ;生长点中IAA累积则发生在缺硼处理后处理后 6d ,即缺硼症状出现之后。黄瓜根尖在缺硼处理 3d ,缺硼症状就十分明显。缺硼黄瓜体内IAA平衡遭到破坏可能是缺硼症状出现的主要原因  相似文献   

7.
  【目的】  探究缺硼对槟榔幼苗生理特征和根系形态的影响,以期为槟榔缺硼(B)诊断提供理论依据。  【方法】  以‘热研1号’槟榔幼苗为材料进行了砂培试验。设置营养液中不加B (B0,0 μmol/L) 和添加常规硼 (B50,50 μmol/L) 两个浓度处理。生长3个月后,测定了槟榔幼苗生物量、株高、硼含量、叶片糖类物质以及抗氧化酶活性、丙二醛含量、光合速率,观察了不同处理下根尖及根尖细胞的形态。  【结果】  与B50处理相比,B0处理显著降低了槟榔幼苗株高、地下部鲜重和干重、总鲜重、地上部和地下部硼含量;B0处理槟榔叶片蔗糖和淀粉含量下降,可溶性总糖含量无显著变化,叶片光合速率降低,且MDA含量、POD活性显著升高。在B0条件下,槟榔根系变短,根尖明显膨大,细胞壁明显增厚,且内壁上积累了大量的颗粒物,根系活力显著降低。  【结论】  缺硼导致槟榔幼苗根尖解剖结构受到破坏,养分吸收运转能力降低,叶片抗氧化系统受到损伤,光合能力下降,最终抑制植株生长。  相似文献   

8.
硼对小麦体内碳水化合物同化与运输的影响   总被引:14,自引:0,他引:14  
用溶液培养及14 C标记等方法研究硼对小麦体内碳水化合物的同化与运输的影响。结果表明 :( 1 )无硼 (B0 )和严重缺硼 (B0 .3)处理茎秆水溶性糖的含量高 ,不是由于缺硼而导致的糖分运输受阻 ,而是对雄蕊结构异常的一种适应 ,造成糖在茎秆的积累。 ( 2 )无硼影响小麦总糖的积累 ;营养生长阶段缺硼不影响总糖的积累 ,生殖生长阶段影响总糖的积累 ,主要表现为籽粒不能形成 ,糖的积累降低。  相似文献   

9.
通过调查分析,研究了土长期施肥条件下土壤中矿质氮含量变化及其与地上冬小麦叶片SPAD值。结果表明:(1)整个冬小麦生长期不同土层硝态氮和铵态氮的变化趋势不一致,硝态氮含量是先下降后上升的变化,而铵态氮含量呈一直上升的变化趋势。在没有施过氮肥的处理中,0—20cm,20—40cm土层中土壤硝态氮、铵态氮含量显著低于施用氮肥的处理;(2)冬小麦生长时期,各个处理叶片SPAD值各异,但都是先升高后下降的变化,无氮肥施用的叶片SPAD值低于施氮肥的处理;(3)冬小麦各个生长时期叶片SPAD值与土壤不同层次(0—20cm,20—40cm)硝态氮含量呈正相关关系,而与铵态氮含量相关性不显著,这表明小麦是对硝态氮较为敏感的作物。本试验结果可以为进一步合理调控氮肥施用、明确施氮对小麦产量和品质的影响提供一定的基础依据。  相似文献   

10.
本试验采用三种温度处理,研究黄瓜产量、转化酶、IAA、叶绿素变化规律.结果表明不同处理的产量存在极显著差异.结瓜期各个处理IAA、转化酶、叶绿素变化趋势基本一致,在含量和活性上存在差异,基本趋势是C处理大于B处理,B处理大于A处理.  相似文献   

11.
Heat and alkali treatments of foods, widely used in food processing, result in the formation of dehydro and cross-linked amino acids such as dehydroalanine, methyldehydroalanine, beta-aminoalanine, lysinoalanine (LAL), ornithinoalanine, histidinoalanine (HAL), phenylethylaminoalanine, lanthionine (LAN), and methyl-lanthionine present in proteins and are frequently accompanied by concurrent racemization of L-amino acid isomers to D-analogues. The mechanism of LAL formation is a two-step process: first, hydroxide ion-catalyzed elimination of H(2)S from cystine and H(2)O, phosphate, and glycosidic moieties from serine residues to yield a dehydroalanine intermediate; second, reaction of the double bond of dehydroalanine with the epsilon-NH(2) group of lysine to form LAL. Analogous elimination-addition reactions are postulated to produce the other unusual amino acids. Processing conditions that favor these transformations include high pH, temperature, and exposure time. Factors that minimize LAL formation include the presence of SH-containing amino acids, sodium sulfite, ammonia, biogenic amines, ascorbic acid, citric acid, malic acid, and glucose; dephosphorylation of O-phosphoryl esters; and acylation of epsilon-NH(2) groups of lysine. The presence of LAL residues along a protein chain decreases digestibility and nutritional quality in rodents and primates but enhances nutritional quality in ruminants. LAL has a strong affinity for copper and other metal ions and is reported to induce enlargement of nuclei of rats and mice but not of primate kidney cells. LAL, LAN, and HAL also occur naturally in certain peptide and protein antibiotics (cinnamycin, duramycin, epidermin, nisin, and subtilin) and in body organs and tissues (aorta, bone, collagen, dentin, and eye cataracts), where their formation may be a function of the aging process. These findings are not only of theoretical interest but also have practical implications for nutrition, food safety, and health. Further research needs are suggested for each of these categories. These overlapping aspects are discussed in terms of general concepts for a better understanding of the impact of LAL and related compounds in the diet. Such an understanding can lead to improvement in food quality and safety, nutrition, microbiology, and human health.  相似文献   

12.
Nitrofurans were broadly used as an extremely effective veterinary antibiotic especially in pig and poultry production farms. Because of fears of the carcinogenic effects on humans, the nitrofurans were banned from use in livestock production in many countries, including the European Union. The present study examines the accumulation, distribution, and depletion of furaltadone and nifursol and of their tissue-bound metabolites [3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) and 3,5-dinitro-salicylic acid hydrazine (DNSAH), respectively, in poultry edible tissues (muscle, liver, and gizzards) following administration to chickens of therapeutic and subtherapeutic concentrations of both compounds. Nitrofurans determination was performed by high-performance liquid chromatography-diode array detection and liquid chromatography-tandem mass spectrometry, respectively, for feeds and for poultry tissues. Furaltadone and nifursol, in very low concentrations, were found in samples of muscle, liver, and chicken's gizzard collected from slaughtered animals after 5 weeks of treatment and no withdrawal time period. When a withdrawal time period of 3 weeks was respected, no detectable nitrofuran parent compounds was observed in all of the studied matrices. For AMOZ, concentrations of 270 μg/kg in meat, 80 μg/kg in liver, and 331 μg/kg in gizzard were determined after administration of a medicated feed with furaltadone (132 mg/kg), 3 weeks after withdrawal of treatment. For DNSAH, the concentration values obtained are much lower than those observed for AMOZ. For meat, liver, and gizzard, DNSAH concentrations of 2.5, 6.4, and 10.3 μg/kg, respectively, were determined, after administration of a medicated feed with nifursol (98 mg/kg), 3 weeks after withdrawal of treatment. The gizzard could be considered a selected matrix for nitrofuran residues evaluation in poultry, due to its capacity of retaining either nitrofuran parent compounds or metabolites in higher concentrations, regardless of the administered dose or of the respected withdrawal time period.  相似文献   

13.
Among plant-derived odorants, damascenone is one of the most ubiquitous, sometimes occurring as an apparent natural product but more commonly occurring in processed foodstuffs and beverages. It has been widely reported as a component of alcoholic beverages, particularly of wines made from the grape Vitis vinifera . Although damascenone has one of the lowest ortho- and retronasal detection thresholds of any odorant, its contribution to the sensory properties of most products remains poorly understood. Damascenone can be formed by acid-catalyzed hydrolyses of plant-derived apocarotenoids, in both aglycon and glycoconjugated forms. These reactions can account for the formation of damascenone in some, but not all, products. In wine, damascenone can also be subject to degradation processes, particularly by reaction with sulfur dioxide.  相似文献   

14.
The total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone, were determined. Grape seed and green tea were analyzed for their phenolic constituents using high-performance liquid chromatography. The total phenolics of the plant extracts, determined by the Folin-Ciocalteu method, ranged from 24.8 to 92.5 mg of chlorogenic acid equivalent/g dry material. The antioxidant activities of methanolic extracts determined by conjugated diene measurement of methyl linoleate were 3.4-86.3%. The antioxidant activity of the extracts using chicken fat by an oxidative stability instrument (4.6-10.2 h of induction time) followed a similar trend in antioxidant activity as determined by the Folin-Ciocalteu method. Seven phenolics in grape seed and green tea extracts were identified that ranged from 15.38 to 1158.49 and 18.3 to 1087.02 mg/100 g of extract, respectively. Plant extracts such as green tea and grape seed extracts can be used to retard lipid oxidation in a variety of food products.  相似文献   

15.
This study was conducted to determine relationships between Al toxicity and mineral uptake of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.), and rye (Secale cereale L.). Two culti‐vars of each species were grown in 1/5‐strength Steinberg solution with 0, 3, 6, or 12 ppm Al added. The solutions were adjusted to pH 4.8 at transplanting and were not adjusted thereafter. The plants were grown in a growth chamber for 19 days before harvesting to determine nutrient solution pH, dry weights, and Al, Ca, Mg, K, and P levels in plants. Increasing Al concentration reduced the final pH of solutions. The addition of 12 ppm Al severely reduced the growth and increased Al concentration of plant tops. The Al levels in roots generally increased with increments of added Al up to 6 ppm. Increasing Al decreased the uptake of Ca, Mg, and P by plant tops more than that of K. Regression analyses indicated that Al toxicity was associated with increasing K/Ca + Mg equivalent ratios and decreasing P concentration in plant tops. Differences between species were: higher Al concentration in rye than wheat with 6 and 12 ppm Al, higher translocation of Ca from roots to tops in wheat than in rye and Mg in triticale and wheat than rye; K/Ca + Mg equivalent ratios associated with 50% reduction in top growth followed the order: triticales > tolerant wheat > sensitive wheat > rye. Differences in mineral uptake associated with Al toxicity in wheat were more indicative of differential Al sensitivity in wheat than in triticale and rye which have higher internal Al tolerance.  相似文献   

16.
Barley (Hordeum vulgare L.) is a cereal grown for animal feed, human consumption, and malting. Nutrient concentrations are important as they provide information regarding the dietary values of barley consumed by animals or human beings. In addition, grain nutrient removal may be useful for refining fertilizer recommendations. A study was conducted in 2015 and 2016 investigating the cultivar effects on grain yield, quality, and grain nutrient concentrations and removal under irrigated conditions for two-row barley cultivars. Adjunct and feed cultivars produced the highest yields compared with the all-malt and food cultivars. Specific quality and nutrient values were greater than or equal to in the food cultivar compared to the malt or feed cultivars. Variations in nutrient concentrations were measured among the adjunct and all-malt cultivars, which could potentially affect the malting and brewing qualities. Grain yield, quality, nutrient concentrations and nutrient removal varied among cultivars grown under identical environmental conditions, which may influence end-use.  相似文献   

17.
Abstract

Long‐term no‐tillage has profound effects on soil properties which can affect the availability of plant nutrient elements. The objectives were to study the effects of tillage and lime treatments on soil pH and extractable soil micronutrients where poultry litter was used as a nitrogen (N) source. Surface soil samples were taken in the spring and fall for two years from a long‐term tillage experiment that had been in place for nine years. There were two tillage treatments [conventional (CT) and no‐tillage (NT)] and six lime/ gypsum treatments (control, 8,960 kg gypsum ha‐1 every fourth year, 4,480 kg lime ha‐1 every fourth year, and three treatments of 8,960 kg lime ha‐1 in a four‐year period divided by application times into 1, 2, and 4 treatments per year). Poultry litter was applied each year of the two‐year experiment at a rate of 8.96 Mg ha‐1 on a dry weight basis. The crop was corn (Zea maize L.). Soil samples were analyzed for pH and Mehlich‐1 zinc (Zn), manganese (Mn), and copper (Cu). Soil pH was higher for NT than CT and was higher in the spring than in the fall. Lime rates resulted in soil pH increases, but showed less difference for CT than NT. The three 8,960 kg ha‐1 per four yr treatments caused an interaction in that for CT the pH increased more for 2,240 kg ha‐1each year than for 8,960 kg ha‐1 every fourth year and the opposite was true for NT. Extractable Zn, Mn, and Cu all responded to this interaction being lower for the higher pH plots. Extractable Zn was higher for NT possibly due to high Zn from the poultry litter and non‐incorporation for NT. Extractable Cu was lower for NT as expected from the soil pH, whereas extractable Mn was not affected by tillage. Extractable Zn and Cu both increased over time due to inputs from the poultry litter. Neither extractable Zn nor Mn responded to increasing lime rates, however Cu decreased with increasing lime rate. Extractable Cu was influenced mainly by soil pH differences due to tillage and lime. Extractable Zn was influenced much more by tillage and from inputs by the poultry litter and not as much by pH differences. Extractable Mn was the least responsive to tillage and lime treatments of the three micronutrients studied.  相似文献   

18.
Abstract

The phytotoxicity of five nonessential elements (Co, V, Ti, Ag, Cr) to higher plants was studied in solution culture experiments with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen). All, but in varying degrees, tended to concentrate in roots with a decreasing gradient to stems and leaves. Cobalt was one of the more mobile of the five trace metals. Its toxicity was expressed as severe chlorosis; 43 (with 10‐5 M) and 142 (with 10‐4 M) μg Co/g dry weight in leaves resulted in severe chlorosis. Vanadium as 10‐4 M vanadate resulted in smaller plants but not in chlorosis. Leaf, stem, and root V, respectively, were 13, 8, and 881 μg/g dry weight. Titanium was somewhat mobile with considerable yield decrease at 10‐4 M; leaf, stem, and root Ti concentrations, respectively, were 202, 48, and 2420 μg/g. Symptoms were chlorosis, necrotic spots on leaves, and stunting. Silver was very lethal at 10‐4 M AgNO3; at 10‐5 M yields were greatly decreased, but plants were grown without symptoms. Leaf, stem, and root concentrations of Ag for this treatment, respectively, were 5.8, 5.1, and 1760 μg/g dry weight. Plants grown with 10‐5 N Cr2O7 were decreased in yield by about 25% with or without EDTA (ethylenediamine tetraacetic acid) while the same level of Cr2(SO4)3 was essentially without effect. For the two salts, the leaf, stem, root concentrations for Cr, respectively were 2.2 and 1.3, 0.7 and 0. 7, and 140 and 104 μg/g. Most of the trace metals studied here had interactions in the uptake and/or distribution of other elements.  相似文献   

19.
20.
This study was designed to estimate the dietary intake of arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) by the general population of Catalonia, Spain. The concentrations of these elements were determined in food samples randomly acquired in seven cities of Catalonia between June and August 2000. A total of 11 food groups were included in the study. As, Cd, Hg, and Pb levels were measured by ICP-MS and AAS. The dietary intake of these elements was determined by a total diet study. Calculations were carried out on the basis of recent data on the consumption of the selected food items. Trace element intake was estimated for five population groups: children, adolescents, male and female adults, and seniors. The highest dietary intakes of As (223.6 microg/day), Cd (15.7 microg/day), Hg (21.2 microg/day), and Pb (28.4 microg/day) corresponded to male adults. For all analyzed elements, fish and shellfish was the group showing the highest contribution to the respective intakes. In comparison with previous results, a general decrease in As, Cd, Hg, and Pb intake has occurred. The dietary intake of these elements was also compared with the provisional tolerable weekly intake (PTWI). Dietary intakes of As, Cd, Hg, and Pb by the population of Catalonia are currently well below the respective PTWIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号