首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

2.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

3.
Soil organic carbon (SOC) plays an essential role in the sustainability of natural and agricultural systems. The identification of sensitive SOC fractions can be crucial for an understanding of SOC dynamics and stabilization. The objective of this study was to assess the effect of long‐term no‐tillage (NT) on SOC content and its distribution between particulate organic matter (POM) and mineral‐associated organic matter (Min) fractions in five different cereal production areas of Aragon (north‐east Spain). The study was conducted under on‐farm conditions where pairs of adjacent fields under NT and conventional tillage (CT) were compared. An undisturbed soil nearby under native vegetation (NAT) was included. The results indicate that SOC was significantly affected by tillage in the first 5 cm with the greatest concentrations found in NT (1.5–43% more than in CT). Below 40 cm, SOC under NT decreased (20–40%) to values similar or less than those under CT. However, the stratification ratio (SR) never reached the threshold value of 2. The POM‐C fraction, disproportionate to its small contribution to total SOC (10–30%), was greatly affected by soil management. The pronounced stratification in this fraction (SR>2 in NT) and its usefulness for differentiating the study sites in terms of response to NT make POM‐C a good indicator of changes in soil management under the study conditions. Results from this on‐farm study indicate that NT can be recommended as an alternative strategy to increase organic carbon at the soil surface in the cereal production areas of Aragon and in other analogous areas.  相似文献   

4.
No‐till (NT) farming can restore the soil organic carbon (SOC) pool of agricultural soils, but the SOC pool size and retention rate can vary with soil type and duration of NT. Therefore, the objectives of this study were to determine the effects of NT and soil drainage characteristics on SOC accumulation across a series of NT fields on Alfisols in Ohio, USA. Sites under NT for 9 (NT9), 13 (NT13), 36 (NT36), 48 (NT48) and 49 (NT49) years were selected for the study. Soil was somewhat poorly drained at the NT48 site but moderately well drained at the other sites. The NT48 and NT49 on‐station sites were under continuous corn (Zea mays), while the other sites were farmers' fields in a corn–soybean (Glycine max) rotation. At each location, the SOC pool (0–30 cm) in the NT field was compared to that of an adjacent plough‐till (PT) and woodlot (WL). At the NT36, NT48 and NT49 sites, the retention rate of corn‐derived C was determined using stable C isotope (13C) techniques. In the 0‐ to 10‐cm soil layer, SOC concentration was significantly larger under NT than PT, but a tillage effect was rarely detected below that depth. Across sites, the SOC pool in that layer averaged 36.4, 20 and 40.8 Mg C/ha at the NT, PT and WL sites, respectively. For the 0‐ to 30‐cm layer, the SOC pool for NT (83.4 Mg C/ha) was still 57% greater than under PT. However, there was no consistent trend in the SOC pool with NT duration probably due to the legacy of past management practices and SOC content differences that may have existed among the study sites prior to their conversion to NT. The retention rate of corn‐derived C was 524, 263 and 203 kg C/ha/yr at the NT36, NT48 and NT49 sites. In contrast, the retention rate of corn‐C under PT averaged 25 and 153 kg C/ha/yr at the NT49 (moderately well‐drained) and NT48 (somewhat poorly drained) sites, respectively. The conversion from PT to NT resulted in greater retention of corn‐derived C. Thus, adoption of NT would be beneficial to SOC sequestration in agricultural soils of the region.  相似文献   

5.
Because Mediterranean ecosystems are prone to fire, their soils are expected to contain relevant amounts of black carbon (BC); nevertheless, quantitative information is scarce. Herein, we provide data on the abundance of BC in the surface soil (uppermost 5 cm) of shrubland plots on old agricultural fields diversely affected by fires (0, 1, or 2 wildfires in the last 25 y) and with contrasted land‐use histories (either never cropped, early abandoned, or recently abandoned). Black C and black nitrogen (BN) were quantified in the surface horizon (0–5 cm) as the residue of low‐temperature dichromate oxidation, after previous destruction of mineral matter with HF. The obtained amounts of BC ranged from 0.73 to 10.32 g (kg dw)–1 (mean: 3.07, which corresponds to an average of 8.62% of the total organic C), while the amounts of BN ranged from 21.5 to 373.0 mg (kg dw)–1 (mean: 97.1, or an average of 4.30% of the total N of the samples). Repeated fires did not consistently increase either the BC or the BN amounts. Black‐C and (especially) BN accumulation seems related to fine silt, whereas the effect of clay is unclear. Even though the amounts of BC obtained in this study are slightly higher than those from other ecosystems, including Mediterranean broad‐leaved forests, overall they are far from the very high values reported in the literature for chernozems from Germany or Canada. Thus, on the whole, in Mediterranean shrublands affected by wildfires, BC does not seem to be a dominant fraction in the soil organic C.  相似文献   

6.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

7.
Changes in agricultural management strategies have received much attention in recent years with a view to increasing or maintaining the amount of carbon (C) sequestered as soil organic C (SOC). In many parts of the world, minimum or no‐till management has been promoted as a means of improving soil quality, reducing losses of erosion and potentially increasing SOC stocks. However, no‐till systems can become problematic and potentially disease‐prone, especially due to high crop residue loadings. Consequently, residue removal either by harvesting or burning off may be employed to reduce these pressures. Here, we examined the effect of crop residue removal on C storage in soil that had been under no‐till management for 20 yr. We predicted improved physical properties (i.e. lower bulk density) and greater microbial activity under the residue retention soils due to greater readily available C and nutrients derived from crop residues. In contrast, we predicted relative reductions in SOC in the no residue soils due to a lack of available residue‐derived C for microbial use. Residue removal caused a relative C loss from the soil, which was related to C input, amount of nutrient availability and microbial activity. We demonstrate the importance of maintaining crop residue cover in no‐till cropping systems for soil function and highlight the potentially deleterious effects of changing management strategy to increased residue harvesting or removal by burning.  相似文献   

8.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

9.
Soil organic carbon (SOC) and selected soil properties were measured in fringe and ditch marshes and cropland of old and young reclaimed areas in a subtropical estuary in China in order to investigate the effects of land use and reclamation history on SOC. The results show that after the conversion of wetlands to cropland, a longer reclamation history (>20 yr) resulted in greater soil bulk density, salinity, clay and silt, and lower soil moisture, SOC and sand content, whereas a shorter reclamation history (<20 yr) induced smaller values for soil pH, moisture and sand. Ditch marshes had greater average SOC in the top 50 cm than fringe marshes and cropland. SOC decreased generally down soil profiles from 0 to 50 cm in depth, except for the obvious accumulation of SOC in deeper soils from old fringe and young ditch marshes. Ditch marshes had the greatest SOC densities in the top 50 cm in both regions compared to the other land uses. SOC densities in the top 50 cm were less in croplands than in fringe marshes in the young region, while there were no significant differences between them in the older one. Except for cropland, SOC densities in the top 50 cm of the fringe or ditch marshes in the old region were not significantly different from those in the young region. SOC in both regions was reduced by 13.53 × 104 t (12.98%) in the top 50 cm of the marshes after conversion to cropland, whereas the regional SOC storage increased by 29.25 t when ditch marshes were included. The results from regression analysis show that bulk density and soil moisture significantly influenced SOC. The total SOC stored in both ditch marshes and croplands was higher compared to fringe marshes. The regional SOC storage in the top 50 cm was not reduced after reclamation due to C accumulation in the ditch marshes. The regional effects of cultural practices should be taken into account in devising strategies for managing soils in coastal wetlands, particularly in the developing world.  相似文献   

10.
11.
Biochar amendments offer promising potential to improve soil fertility, soil organic carbon (SOC) and crop yields; however, a limited research has explored these benefits of biochar in the arid and semi‐arid regions. This two‐year field study investigated the effects of Acacia tree biomass‐derived biochar, applied at 0 and 10 t ha?1 rates with farmyard manure (FYM) or poultry manure (PM) and mineral phosphorus (P) fertilizer combinations (100 kg P ha‐1), on maize (Zea mays L.) productivity, P use efficiency (PUE) and farm profitability. The application of biochar with organic–inorganic P fertilizers significantly increased soil P and SOC contents than the sole organic or inorganic P fertilizers. Addition of biochar and PM as 100% P source resulted in the highest soil P (104% increase over control) and SOC contents (203% higher than control). However, maize productivity and PUE were significantly higher under balanced P fertilizer (50% organic + 50% mineral fertilizer) with biochar and the increase was 110%, 94% and 170% than 100%‐FYM, 100%‐PM and 100% mineral fertilizer, respectively. Maize productivity and yield correlated significantly positively with soil P and SOC contents These positive effects were possibly due to the ability of biochar to improve soil properties, P availability from organic–inorganic fertilizers and SOC which resulted in higher PUE and maize productivity. Despite the significant positive relationship of PUE with net economic returns, biochar incorporation with PM and mineral fertilizer combination was economically profitable, whereas FYM along biochar was not profitable due to short duration of the field experiments.  相似文献   

12.
耕作及轮作对土壤氮素径流流失的影响   总被引:17,自引:2,他引:17  
5年轮作和1年水平沟耕作试验表明:在不同的坡度上,与传统耕作法相比,水平沟减少产流7%,径流液铵态氮浓度提高19%,流失量达到13.01kg/(km2·a),比传统耕作多流失1.11kg/(km2·a);径流硝态氮浓度减少27%,比传统耕作减少7.68kg/(km2·a);径流硝态氮流失减少量和铵态氮增加量相差6倍,水平沟可减少6.57kg/(km2·a)矿质氮流失;水平沟拦截泥沙25%左右,泥沙中全氮富集率提高13%,土壤全氮流失457kg/(km2·a),平均减少18%;一季黑豆和一季黄豆及两季黑豆和一季黄豆参与的5年轮作周期,土壤侵蚀量仅为896t/(km2·a)和984t/(km2·a),不及糜子和土豆参与轮作周期的1/2.  相似文献   

13.
Soil particulate organic carbon under different land use and management   总被引:11,自引:0,他引:11  
Abstract. Changes in particulate organic carbon (POC) relative to total organic carbon (TOC) were measured in soils from five agronomic trial sites in New South Wales, Australia. These sites covered a wide range of different land use and management practices. POC made up 42–74% of TOC and tended to be greater under pasture and more conservative management than traditional cropping regimes. It was the form of organic carbon preferentially lost when soils under long-term pasture were brought under cultivation. It was also the dominant form of organic carbon accumulating under more conservative management practices (direct drilling, stubble retained and organic farming). Across all sites, changes in POC accounted for 81.2% (range 69–94%) of the changes in total organic carbon caused by differences in land use and management. Significant differences were found between pasture and cropped soils in the carbon content in the <53 μm fraction, particularly for hardsetting soils. However, even with these, POC was a more sensitive indicator of change caused by land use and management practices than TOC. The current method for measuring POC involves dispersion using sodium hexametaphosphate. The dispersing agent was found to extract 4–19 % of the TOC, leading to a significant under-estimation of POC.  相似文献   

14.
A 3-year field trial examined in a long-term no-till system the effects of surface-applied lime and cover black oat ( Avena strigosa Schreb) residues on soil chemical attributes, root growth and grain yield of corn ( Zea mays L.) and soybean ( Glycine max L. Merrill) on a loamy, kaolinitic, thermic Typic Hapludox in Paraná State, Brazil. The treatments consisted of dolomitic lime broadcast on the soil surface at 0 or 12 t/ha, with and without cover of black oat residues. Corn and soybeans were grown without rainfall limitation. Applying lime on the surface improved soil acidity and decreased aluminium (Al) toxicity to a 10-cm depth 1 year after application. Surface liming increased pH and the content of exchangeable Ca2+ to a 20-cm depth, and decreased Al toxicity to a 40- to 60-cm depth, 3 years after application, indicating that the surface-applied lime moved deeper. Cover black oat residues did not favour the mobility of surface-applied lime to alleviate subsoil acidity and an increase in the Al3+ saturation level at the soil surface was found in unlimed plots with black oat residues. Root growth and grain yields of corn and soybean were not influenced by surface liming with or without cover black oat residue. Despite the soil acidity level, root length of corn and soybean ranged from 55 to 60% at 0- to 10-cm depth. The results suggest that Al toxicity is low in no-till systems during cropping seasons with adequate and well-distributed rainfall, but this effect is not related to the presence of cover oat residues.  相似文献   

15.
Despite the importance of soil organic matter (SOM), very few long‐term data concerning soil organic‐C dynamics are available for calibrating and evaluating C models. The long‐term 14C‐turnover field experiment, established in 1967 in Fuchsenbigl, Lower Austria, offers the unique opportunity to follow the fate of labeled C under different crop‐management systems (bare fallow, spring wheat, crop rotation) over a period of more than 35 y. Compared with the crop‐rotation and spring‐wheat treatments, the decline of total organic C was largest in the bare‐fallow treatments, because no significant C input has occurred since 1967. Nonetheless, the decline was not as fast as predicted with the original RothC‐26.3‐model decomposition rate constants. In this work, we therefore calibrated the Roth‐C‐26.3 model for the Pannonian climatic region based on the field‐experiment results. The main adjustment was in the decomposition rate constant for the humified soil C pool (HUM), which was set to 0.009 instead of 0.02 y–1 as determined in the original Rothamsted field trial. This resulted in a higher HUM pool in the calibrated model because of a longer turnover period (111 vs. 50 y). The modeled output based on the calibrated model fitted better to measured values than output obtained with the original Roth‐C‐26.3‐model parameters. Additionally, the original decomposition rate constant for resistant plant material (RPM) was changed from 0.3 to 0.6 y–1 to describe the decomposition of 14C‐labeled straw more accurately. Application of the calibrated model (modified HUM decomposition rate) to simulate removal of crop residues showed that this can entail a long‐term decline of SOM. However, these impacts are strongly dependent on the crop types and on environmental conditions at a given location.  相似文献   

16.
Switchgrass (Panicum virgatum L.) has been proposed as a sustainable bioenergy crop because of its high yield potential, adaptation to marginal sites, and tolerance to water and nutrient limitations. A better understanding of the potential effects of biomass energy crop production practices on soil biological properties and organic matter dynamics is critical to its production. Our objective was to evaluate changes in C pools under a warm-season perennial switchgrass in different soils compared to typically-grown crops collected at College Station, Dallas, and Stephenville, TX in February 2001. Sampling depths were 0-5, 5-15, and 15-30 cm. Switchgrass increased soil organic C (SOC), soil microbial biomass C (SMBC), mineralizable C, and particulate organic matter C (POM-C) compared to conventional cropping systems. Soil C concentrations were in the order: long-term coastal bermudagrass [Cynodon dactylon (L.) Pers.]> switchgrass or kleingrass (Panicum coloratum L.) planted in 1992> switchgrass 1997> conventional cropping systems. Soil C concentrations tended to increase with increasing clay content. Greater microbial biomass C followed the order of Dallas> College Station> Stephenville, and ranged from approximately 180 mg C kg-1 soil at Stephenville to 1 900 mg C kg-1 soil at Dallas. Particulate organic C was more sensitive than other fractions to management, increasing as much as 6-fold under long-term coastal bermudagrass compared to conventional cropping systems. Our study indicated that conversion of conventional cropping systems into switchgrass production can sequestrate more SOC and improve soil biological properties in the southern USA.  相似文献   

17.
Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States, was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N, SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter (SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid climate. Received: 20 September 1996  相似文献   

18.
 Soil respiration was measured by closed chamber and gradient methods in soils under forest, sown meadow and crops. Annual total soil respiration determined with the closed chamber method ranged from 180 to 642 g CO2-C m–2 year–1 and from 145 to 382 g CO2-C m–2 year–1 determined with the CO2 profile method. Soil respiration increased in the order: cropland<sown meadow<forest. The C balance calculated as the difference between net primary production (sink) and respiration of heterotrophs (source) suggested an equilibrium between the input and output of C in the cropland, and sequestration of 135 and 387 g CO2-C m–2 year–1 in the forest and meadow, respectively. Received: 1 December 1997  相似文献   

19.
Research information from a systematic planned study on the effects of vehicular passages and axle load on soil carbon dioxide (CO2) fluxes and soil carbon (C) sequestration under long‐term NT farming is scanty. Therefore, the present study was conducted on an on‐going 20‐year experiment to assess the impacts of variable vehicular passages of a low axle load on soil CO2 emission and soil C sequestration from a no‐till (NT) managed corn (Zea mays L.)–soybean (Glycine max Linneo) rotation in comparison with that a soil under woodlots (soils under natural wooded plantation). The experimental treatment consisted of an empty wagon [0 Mg load for compaction (C‐0; control)] compared with 2 (C‐2) and 4 (C‐4) passages of 2.5 Mg water wagon axle load, applied to the entire plot every year during April/May for 20 consecutive years. Soil samples were obtained in November 2016 to determine the effects of various vehicular passages on C and nitrogen (N) contents and CO2 emissions. Soil CO2 fluxes were measured from November 16, 2016, to May 30, 2017, on the bi‐weekly (November to December and April to May) and monthly (January to March) basis by using high‐density polyvinyl chloride static gas chambers. The soil CO2 fluxes ranged from –1.05 to 9.03 g CO2 m?2 d?1. The lowest soil CO2 fluxes were observed in December coinciding with the minimum soil temperature. In general, daily soil CO2 fluxes were higher under C‐0 than those under other treatments. Vehicular traffic and axle load reduced the cumulative emission of CO2 by 22.6 and 29.8% under C‐2 and C‐4, respectively, compared with that under C‐0 (6.09 Mg ha?1). Soil and air temperatures had a significant positive correlation with the diurnal fluxes of soil CO2 in all the treatments except that under C‐4. Electrical conductivity, soil C and N contents and pools did not differ significantly among the treatments. Further, 2 to 4 passages of vehicles with 2.5 Mg of axle load decreased the soil CO2 emission on Crosby silt loam under NT as compared to that under the control. Therefore, continuous cultivation of row crops with moderate trafficking under NT and residue retention is recommended, and it also reduces the potential of soil CO2 emission while improving the soil organic C pools of well‐drained soils of Central Ohio.  相似文献   

20.
Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial for understanding carbon dynamics in terrestrial ecosystems. In this study, a natural incubation experiment was carried out using intact soil cores transferred from high altitude(1 500 m) to low(900 m) altitude to mimic climate change scenarios in a typical cold-temperate mountainous area in Japan. Soil microbial activities, indicated by substrate-induced respiration(SIR) and metabolic quotient(q CO2), together with soil physicalchemical properties(abiotic factors) and soil functional enzyme and microbial properties(biotic factors), were investigated throughout the growing season in 2013. Results of principal component analysis(PCA) indicated that soil microbial biomass carbon(MBC) andβ-glucosidase activity were the most important factors characterizing the responses of soil microbes to global warming. Although there was a statistical difference of 2.82 ℃ between the two altitudes, such variations in soil physical-chemical properties did not show any remarkable effect on soil microbial activities, suggesting that they might indirectly impact carbon dynamics through biotic factors such as soil functional enzymes. It was also found that the biotic factors mainly controlled soil microbial activities at elevated temperature,which might trigger the inner soil dynamics to respond to the changing environment. Future studies should hence take more biotic variables into account for accurately projecting the responses of soil metabolic activities to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号