首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Knowledge of crop production in suboptimal environmental conditions not only helps to sustain crop production but also aids in the design of low-input systems. The objective of this study was to evaluate the effects of water stress imposed at low-sensitive growth stages (vegetative, reproductive, and both vegetative and reproductive) and level of nitrogen (N) supply (100 and 200 kg ha−1) on the physiological and agronomic characteristics of two hybrids of maize (Zea mays L.). A two-site field experiment was carried out using a randomized complete block design with three replications and a split-factorial arrangement. A water deficit (WD) was induced by withholding irrigation at different stages of crop development. The results showed that proline content increased and the relative water content, leaf greenness, 100-kernel weight and grain yield decreased under conditions of WD. The highest IWUE was obtained when maize endured WD at vegetative stage at two sites. The limited irrigation imposed on maize during reproductive stage resulted in more yield reduction than that during vegetative stage, compared with fully irrigated treatment. The 100-kernel weight was the most sensitive yield component to determine the yield variation in maize plant when the WD treatments were imposed in low-sensitive growth stages. The results of the statistical regression analysis showed liner relationships between RGR during a period bracketing the V8 or R3 stages and 100-kernel weight in all the WD treatments. The increase of N supply improved yield and IWUE when maize plant endured once irrigation shortage at vegetative stage. But, the performance of high N fertilizer reduced and eliminated when water deficit imposed once at reproductive stage and twice at vegetative and reproductive stages, respectively. Furthermore, the response of T.C647 hybrid to increase of N supply was stronger than S.C647 hybrid.  相似文献   

2.
Field experiments were conducted in a deep Vertisol at the Indian Institute of Soil Science, Bhopal during the years 2001–2005 to assess the effect of five different irrigation strategies through combinations of sprinkler and flood irrigation and two N application methods on yield and water use efficiency of wheat (cv WH 147). The amount of irrigation applied each year differed according to the availability of water in the water harvesting pond to simulate the actual water crisis faced by the farmers in this region during these years due to monsoon failure. Results indicated that when wheat was grown only with 8-cm irrigation at sowing or 14 cm up to the crown root initiation stage, dry sowing of wheat immediately followed by sprinkler and subsequent irrigation through flooding produced the highest yield and water and nitrogen use efficiencies. However, when 20-cm irrigation was supplied up to the flowering stage or 14-cm irrigation was supplied up to tillering stage through sprinkler in 4 and 3 splits, respectively, at critical growth stages, maximized the grain yield and water and nitrogen use efficiencies. Across the years, the crop yield and water and nitrogen use efficiencies increased with increase in water supply.  相似文献   

3.
Salinization and nitrate leaching are two of the leading threats to the environment of the European Mediterranean regions. Inefficient use of water and fertilizers has led to a nitrate increase in the aquifers and reduction in crop yields caused by salts. In this study, a triple emitter source irrigation system delivers water, salt (Na+), and fertilizer (N) applications to maize (Zea mays L.). The objective of the study was to evaluate the combined effect of saline water and nitrogen application on crop yields in two different textured soils of Alentejo (Portugal) and to assess if increasing salinity levels of the irrigation water can be compensated by application of nitrogen while still obtaining acceptable crop yield. Maximum yield was obtained from both soils with an application of 13 g m−2 of nitrogen. Yield response to Na+ application was different in the two studied soils and depended on the total amount of Na+ or irrigation water applied. No significant interaction was found between nitrogen and sodium, but a positive effect on maize yield was observed in the medium textured soil for amounts of Na+ less than 905 g m−2 when applied in the irrigation water.  相似文献   

4.
Field studies were conducted during a 3-year period to determine wheat (Triticum aestivum L.) yield in response to irrigation scheduling and variable fertilization.Irrigation scheduling was done on the basis of cumulative pan evaporation. Irrigations were given at 25, 50 and 75% available water in the top 60 cm soil profile. The amount of irrigation water applied at each irrigation was equivalent to 75% of the cumulative open pan evaporation. The crop was fertilized at the rate of 0, 60, and 120 kg/ha nitrogen.The yield of wheat was significantly affected by irrigation water and nitrogen treatments. Maximum yield was obtained with irrigation at 50% available soil water and 120 kg/ha nitrogen addition (5092 kg/ha). Consumptive use of water was maximum when irrigation was applied at 75% available soil water. The irrigation at 50% available soil water, however, resulted in greatest yield per cm water use by the crop.  相似文献   

5.
Yield and nitrogen use efficiency (NUE) of wheat was investigated under field conditions using two types of irrigation waters with and without nitrogen on a sandy-loam to loamy-sand soil during 1992–1993 and 1993–1994. Depending upon different nitrogen treatments, the mean crop yield ranges in 1992–1993 were: grain yield 6.19–6.87 Mg ha and biomass 15.41–16.34 Mg ha−1 receiving treated effluent. The mean crop yield ranges in 1993–1994 were: grain yield 0.46–3.23 Mg ha−1 (well water) and 5.20–6.54 Mg ha−1 (treated effluent); and biomass 1.84–10.80 Mg ha−1 (well water), and 16.00–19.29 Mg ha−1 (treated effluent). The NUE for grain yield in 1992–1993 was between 16.70–50.23 kg kg−1 N (well water) and 20.65–91.56 kg kg−1 N (treated effluent). Whereas the NUE in 1993-94, varied between 10.49–32.13 kg grain kg−1 N (well water) and 21.30–72.93 kg grain kg−1 N (treated effluent). The NUE for total biomass in 1992–1993 varied between 46.54–130.32 kg kg−1 N (well water) and 53.66–158.77 kg kg−1 N (treated effluent). Similarly, the NUE in 1993–1994 varied between 35.99–102.1 kg biomass kg−1 N (well water) and 59.27–161.89 kg biomass kg−1 N (treated effluent). A significant decrease in NUE was observed with increasing nitrogen application both for grain and biomass production. In conclusion, a higher grain yield and NUE of wheat crop can be achieved with low application rates of nitrogen if the crop is irrigated with treated effluent containing nitrogen in the range of 20 mg L−1 and above.  相似文献   

6.
The present investigation was undertaken to evaluate the effect of various levels of water and N application through drip irrigation on seed cotton yield and water use efficiency (WUE). In this experiment three levels of water (Epan 0.4, 0.3, and 0.2) and three levels of N (100, 75, and 50% of recommended N, 75 kg/ha) through drip were compared with check-basin method of irrigation under two methods of planting (normal sowing, NS; paired sowing, PS). The results revealed that when the same quantity of irrigation water and N was applied through drip irrigation system, it increased the seed cotton yield to 2144 from 1624 kg/ha (an increase of 32%) under check-basin method of irrigation. When the quantity of water through drip was reduced to 75%, the increase in seed cotton yield was 12%; however, when water was reduced to 50%, it resulted 2% lower yield than check-basin. The decrease in N through fertigation resulted in reduction in seed cotton yield at all the levels of water supply, but the magnitude of reduction was the highest at highest level of water supply. In paired sowing (PS), 20% higher seed cotton yield was obtained as compared with check-basin method under NS along with 50% saving of water. In paired sowing the sacrifice of 9% seed cotton yield as compared with NS resulted in saving of 50% water as well as the cost of laterals because there was one lateral for two paired rows. The WUE increased by 26% (22.1 from 17.6 kg/ha cm) in drip irrigation system when same quantity of water and N fertilizer was applied as compared with check-basin. WUE was not affected with quantity of water but decrease in rate of N caused a decrease in WUE at all the quantities of water applied. In general, WUE was higher in PS as compared with NS. The agronomic efficiency of nitrogen increased from 21.65 to 28.59 kg of seed cotton per kg of N applied when same quantity of water and N was applied through drip irrigation as compared with check-basin. However, decrease in quantity of water applied resulted in a decrease in agronomic efficiency of N but reverse was true for rates of N applied. When the same quantity of water and N was applied under both the methods of planting, PS produced 22% higher seed cotton yield and along with reduced cost owing to half the number of laterals required.  相似文献   

7.
A combination of high input management systems, high annual rainfall and deep, permeable soils in northern Tasmania create conditions that are conducive to high drainage and nitrogen losses below the root zone. An understanding of the extent and mechanism of such losses will enable farm managers and their consultants to identify and implement more sustainable management practices that minimise potential adverse financial and environmental consequences. Analysing the fate of water and nutrients in farming systems is complex and influenced by a wide range of factors including management, soil characteristics, seasonal climate variability and management history of the paddock/farm in question. This paper describes a novel farm system modelling approach based on the model APSIM, for analysing the fate of nitrogen and water in mixed vegetable-based farming enterprises. The study was based on seven case farms across the Panatana catchment in northern Tasmania. Substantial simulated drainage losses (>100 mm average seasonal loss) were apparent for all crop and rotation elements across all farms in response to the surplus between crop water supply and crop water use. Crop nitrogen demand was found to be close to crop nitrogen supply for all crop and pasture rotation elements with the exception of potato, which had an average surplus nitrogen supply of 89 kg N/ha. This resulted in potato having much higher nitrate nitrogen leaching losses (32 kg N/ha) compared to other crops (<10 kg N/ha). Simulations suggest that practicable management options such as deficit-based irrigation and reduced N fertiliser rates will maintain current levels of productivity while reducing potential offsite N loss and generating significant financial savings via reduced input costs.  相似文献   

8.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

9.
Summary In rainfed rice, the nitrogen status of soil and plant is closely related to the moisture regime in the soil. The lower the soil moisture content, the lower the nitrogen use efficiency in the plants.In this study, the yield and growth responses of four rice cultivars to seven irrigation and three nitrogen levels were evaluated using the line source sprinkler system. Visual observations on the degree of drought reaction and measurement of leaf water potential (LWP) were also made.The effect of drought was least on the traditional variety Kinandang Patong and most on the modern variety IR 20. Increasing nitrogen levels from 0 (no nitrogen fertilizer) to 60 and 120 Kg N/ha increased the degree of water stress. This also resulted in decreased LWP especially when the total water applied was minimal. At all levels of nitrogen, Kinandang Patong had significantly higher LWP than IR 20. There was a curvilinear decrease in the number of days to heading and a linear increase in plant height and dry matter production with increase in total water applied.The yield-water-fertilizer relationships of the four cultivars revealed different production surfaces. The early-maturing IR 52 rice gave the highest grain yield at 120 kg N/ha and with maximum water application of 850 mm. Without nitrogen fertilizer application, Kinandang Patong gave the highest predicted yield with 550 mm of water applied. At 120 kg N/ha and 550 mm of water, IR 36 was superior in yield to other rices tested.Results suggest that in areas of uncertain moisture supply, nitrogen application rate should be reduced from that normally used for irrigated rice.  相似文献   

10.
Summary Wheat was grown in field and glasshouse experiments to assess the effect of nitrogen fertilizer on yield when water stress occurred in the later half of the growth. N application was deferred until the main culm apex of the plant was at the double-ridge stage of development. In the glasshouse water stress was imposed by altering the watering regime; in the field it was anticipated as naturally occurring and compared to an irrigated control. The response to deferred N was much stronger at adequate water supply giving rise to a significant positive N X W interaction effect. This positive N X W interaction was shown by number of ears, leaf area index, green area duration, water use and root growth, as well as grain yield. In both the glasshouse and field, N increased post-anthesis green area duration (PGD) which was highly correlated with grain yield, but since the components of grain yield determining the response to N were largely established by anthesis (number of ears), PGD does not appear to increase grain yield, which was rather caused by increased survival of tillers. In concert with its effect on PGD, deferred N resulted in greater root survival and/or growth at deeper layers late in the season. Water stress as measured in these experiments was insufficient to cause decreases in yield from use of N at low water supply. However, in the field nitrogen application did lower plant water potential late in the growing season.  相似文献   

11.
Water scarcity and soil nitrogen (N) loss are important limitations for agricultural production in semi-arid region especially for rice production. Zeolite (Z) as a soil conditioner can be used to retrain water and nitrogen in near-surface soil layer in lowland rice production system. The objectives of this study were to investigate the effects of different application rates of natural zeolite (clinoptilolite) and nitrogen on rice yield, yield components, soil nitrogen, water use, water productivity in a silty clay soil in 2004 and 2005. Zeolite was only applied in the first year. In order to study the long-term and continuous effect of zeolite on the objectives of the study, no zeolite was applied in the second year and the study was conducted on the same land as the first year. Zeolite and N were applied at rates of 0, 2, 4, and 8 t ha−1 and 0, 20, 40, and 80 kg ha−1, respectively in 2004. In 2005, each plot received the same amount of N as received in 2004. It is concluded that by decreasing N application rates, higher Z application rate is needed to improve grain yield. Highest grain yield was obtained at N application rate of 80 kg ha−1 and Z application rate of 4 t ha−1. Higher grain yield was mostly attributed to lower unfilled grain percentage and higher 1000-grain weight that were a result of higher N application rate and N retention in soil due to Z application. Nitrogen and Z applications resulted in higher grain protein contents and nitrogen recovery efficiency (NRE). Based on these results and due to higher N retention in soil under Z application, improved grain yield quality, nitrogen-use efficiency (NUE), and nitrogen recovery efficiency (NRE) could be obtained at Z application rate of 8 t ha−1 and N application rate of 80 kg ha−1 or more. However, this was not satisfied for NUE. Moreover, it is found that at higher N application rates lower Z application rates are needed to effectively retain soil residual mineral nitrogen. Furthermore, at N application rates of 80 kg ha−1 or more, Z application increased soil water retention and resulted in lower seasonal water use and higher water productivity. In general, it was concluded that the effect of Z application in retaining soil N was also effective in the second year.  相似文献   

12.
The impacts of a leguminous summer cover crop (sunn hemp; Crotalaria juncea) on nitrogen leaching from a corn (Zea mays L.) field was evaluated by direct measurements of soil water content and nitrogen balance components, complemented by direct and inverse modeling as an exploratory tool to better understand water flow and nitrogen balances in the soil. Water and nitrogen inputs and outputs were measured during winter corn production in an experimental field located in the south Miami-Dade basin in southern Florida (USA). Data from the last two seasons (2001-2002 and 2002-2003) of a 4-year study are presented. The field was divided into six 0.13 ha plots. One-half of the plots were rotated with sunn hemp (CC plots) during the summer while the remaining plots were kept fallow (NC plots). Sweet corn management was uniform on all plots and followed grower recommended practices. A numerical model (WAVE) for describing water and agrochemical movement in the soil was used to simulate water and nitrogen balances in both types of plots during the corn seasons. The hydrodynamic component of WAVE was calibrated with soil water data collected continuously at three depths, which resulted in accurate soil water content predictions (coefficients of efficiency of 0.85 and 0.91 for CC and NC plots, respectively). Measured components of the nitrogen balance (corn yields, estimated nitrogen uptake, and soil organic nitrogen) were used to positively assess the quality of the nitrogen simulation results. Results of the modeled water balance indicate that using sunn hemp as a cover crop improved the soil physical conditions (increase in soil water retention) and subsequently enhanced actual crop evapotranspiration and reduced soil drainage. However, nitrogen simulation results suggest that, although corn nitrogen uptake and yields were slightly higher in the CC plots than in the NC plots, there were net increases of soil N content that resulted in increased N leaching to the shallow aquifer. Therefore, the use of sunn hemp as cover crop should be coupled with reductions in N fertilizer applied to the winter crop to account for the net increase in soil N content.  相似文献   

13.
Summary Little research has been reported which quantifies the response of a carrot (Daucus carrota L. var sativa DC.) seed crop to water management. While the area of seed production of this crop in the United States is less than 3000ha, the return ranges from US $2000 to $ 10 000 ha–1. Because of the need to mature and dry the seed on the plant, carrot seed is generally grown in areas with negligible summer rain and thus depends on irrigation to supply the crop water requirement. A study was conducted to determine the effect of irrigation water management on seed production and crop water use of carrots grown by the root-to-seed method. Two carrot types (Nantes and Imperator) were evaluated in 9 irrigation treatments over a three year study period. Irrigation treatments which replaced a percentage of the calculated crop evapotranspiration on either a daily basis or when a soil water depletion reached 30 mm were used. A trickle irrigation system with the laterals placed on the carrot bed was used to apply a uniform and accurate amount of water. There was a marked difference in the crop response to the water management of the two carrot types used. The Nantes type exhibited a positive response to moderate water deficits in terms of improved pure live seed (PLS) yield while the Imperator achieved its maximum yield when it was not stressed. Higher irrigation applications in the Nantes type resulted in reduced yields while the Imperator was not affected after its non-stress water requirement was met. Soil water data indicated that the most active zone of extraction of water was to a depth of 1.5 m in the soil profile. As the depth of applied water approached the crop water requirement, the depth of extraction was reduced. Increasing the frequency of irrigation also tended to reduce the depth of extraction of soil water. A total crop water use of approximately 550 to 620 mm was needed to achieve the best PLS yield which is roughly equal to potential evapotranspiration in the San Joaquin Valley, during the time that the crop water use was calculated. In such a climate, the irrigation interval should not exceed 3 to 5 days depending on the time of year.  相似文献   

14.
为了探明滨海盐碱地不同灌溉方式及氮肥施用量对水肥盐迁移过程及作物生长的影响,基于大田试验,研究不同灌溉方式及灌水量(F:漫灌,360 mm;D1:滴灌,360 mm;D2:滴灌,288 mm;D3:滴灌,216 mm)、氮肥处理(N1:280 kg/hm2;N2:196 kg/hm2;N3:112 kg/hm2)对盐碱地土壤水肥盐分布含量及对春玉米各生长指标的影响.结果表明,在滴灌模式下,同一灌水量,N1的剖面平均含水量最低,D1,D2出现洗盐点,存在适合作物生长的浅盐区;灌水后D1N1的硝态氮含量增加最显著且含量最高,滴灌处理对应的低氮处理无明显硝态氮积累点,相同灌水量下,漫灌的有效氮含量均高于滴灌,但其有效氮利用率低于滴灌处理;不同施氮对春玉米干物质的差异随灌水量增加而增加.各处理水分利用效率与肥料偏生产力之间产生明显差异,高水低氮肥料偏生产力明显提高,但其水分利用效率低下,D1N1产量最高;在考虑作物产量及水肥利用效率时,采用滴灌方式,则灌水量288~360 mm、施氮量196 kg/hm2为推荐水肥措施.  相似文献   

15.
In dry land agriculture, crop failure is often due to dry seed beds which hamper crop stand establishment and root growth. Irrigation with small amounts of water may make the difference between success and failure of the crop. A 2-year field study on a sandy loam soil evaluated the response of wheat to irrigation with 4—60 mm water applied in various ways. An amount of 4 or 6 mm water applied in the furrow enhanced above-ground plant growth, root growth, grain yield and water use considerably compared to the same amount of water surface applied to seeded rows. With surface irrigation of 40 or 60 mm water, crop growth and grain yield increased further; however, a significantly higher grain yield was obtained with post-seeding rather than pre-seeding irrigation.  相似文献   

16.
氮肥减量后移对喷灌玉米产量和水氮利用效率的影响   总被引:1,自引:0,他引:1  
【目的】优化井灌区田间水肥管理。【方法】试验于2018年6—9月在河南省许昌灌溉试验站进行,以当地主栽玉米品种登海3737(P1)和豫单9953(P2)为试验材料,设置3种施肥调控方式,分别为当地传统施肥模式CK(N、P2O5、K2O施量分别为315、75、75 kg/hm^2,全部基施),优化模式F1(N、P2O5、K2O施量分别为225、75、75kg/hm^2,40%三叶期和60%拔节期追肥),优化模式F2(N、P2O5、K2O施量分别为225、75、75kg/hm^2,30%三叶期、30%拔节期和40%大喇叭口期追肥),研究了喷灌水肥一体化下氮肥减量后移对不同品种夏玉米生长发育、产量和水分利用效率的影响。【结果】增加施肥频次和施肥时间后移可提高玉米叶面积系数(LAI)和延缓叶片衰老,增加玉米干物质累积量以及最大生长速率。喷灌水肥一体化(F1、F2处理均值)较传统施肥籽粒产量提高7.8%,耗水量降低11.9%,水分利用效率(WUE)提高22.2%,籽粒氮肥偏生产力(PFPY)提高51.1%,生物量氮肥偏生产力提高49.2%。登海3737干物质累积、最大生长速率、WUE和PFPY的均值较豫单9953分别增加2.8%、7.7%、8.5%和8.6%,最大生长速率出现的时间没有差异。豫单9953干物质积累快增期持续时间比登海3737增加5.3 d。不同品种之间产量和构成要素差异极显著。登海3737平均产量为11 319 kg/hm^2,较豫单9953增产8.4%,其中穗长、百粒质量对产量贡献较大,分别提高22.5%和18.2%。【结论】本研究中,F2处理为最佳施肥模式,即N、P2O5、K2O施量分别为225、75、75 kg/hm^2,施肥配比为30%三叶期、30%拔节期、40%大喇叭口期。  相似文献   

17.
Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from an experiment where four N fertigation levels were applied to a bell pepper-cauliflower-Swiss chard rotation in a sandy loam soil. All the input data were obtained from measurements, transfer functions or were included in the model databases. Model runs were without specific site calibration. The use of soil input parameters based on the same pedotransfer functions in both models resulted in a very similar simulation of soil water content in spite of the different nature of the approaches. Good correlations were found between the simulated water draining below 60 cm and that calculated by water balance. Accuracy of the predicted nitrate nitrogen (NO3-N) contents in the 0-90 cm soil profile was acceptable with both models, with values of the mean absolute error (MAE) below the average standard deviation of the observations. The uptake of nitrate was better simulated with EU-Rotate_N where specific crop N demand algorithms are involved. In the simulations with Hydrus-2D the evapotranspiration demand was a limiting factor for N uptake, resulting in an increasing underestimation of uptake with decreasing N fertilizer rates. Simulated N leaching below a depth of 60 cm was higher with Hydrus-2D due to a higher nitrate concentration in percolated water. Comparison of the observed and predicted yield response to N applications with EU-Rotate_N demonstrated that the best fertigation strategy could be identified and the risk of nitrate leaching quantified with this model. The results showed that for a successful solving of the problem studied, Hydrus-2D probably would need a more complex calibration, and that the EU-Rotate_N model can provide acceptable predictions by adjusting basic parameters for the growing conditions. Further research with other crops and soil types will allow up-scaling the quantification of N leaching from a field level to regional and national levels, identifying best management strategies in relation to N use from an environmental and economic perspective.  相似文献   

18.
【目的】提高水氮亏缺下夏玉米籽粒产量并促进水氮耦合效应,实现夏玉米节水增产。【方法】采用田间小区试验,设定4个生物炭施用水平(0、5、10、15t/hm2,分别记为C0、C1、C2、C3)、2种灌溉方式(正常灌溉I1、亏缺灌溉I2)和2个施氮水平(常规施氮N1、亏缺施氮N2),正常、亏缺灌溉灌水量分别为100%和50%作物需水量,常规、亏缺施氮量分别为200 kg/hm2和100 kg/hm2,探究了不同水氮条件下生物炭对砂壤土持水保肥效果以及夏玉米水氮耦合效应的影响。【结果】添加5 t/hm2和10 t/hm2生物炭处理明显提高了土壤总孔隙度和持水能力,并减少了土壤铵态氮和硝态氮的淋洗,10 t/hm2下效果最佳。同时,5 t/hm2和10 t/hm2生物炭可促进夏玉米根系生长,提高籽粒产量及水氮利用效率,在10 t/hm2下产量,水分利用效率和氮素偏生产力显著增加(P<0.05),...  相似文献   

19.
为了探明施氮量对再生水灌溉设施番茄根际土壤供氮能力的影响,通过田间小区试验,对不同施氮处理番茄关键生育阶段根际、非根际土壤矿质氮和全氮、番茄生物量和产量、氮肥偏生产力、表观氮素损失量及土壤供氮能力进行了对比分析。研究结果表明,氮肥减施20%处理和氮肥减施30%处理,番茄关键生育期根际土壤矿质氮保持在55mg/kg以上,根际与非根际土壤矿质氮差异介于10.47%~12.63%之间,促进了非根际土壤矿质营养向根际土壤迁移;氮肥减施20%处理和氮肥减施30%处理氮肥偏生产力、作物氮生产力和产量均显著高于常规施氮处理。氮肥追施量控制189~216kg/hm2、辅以再生水灌溉,促进了非根际土壤矿质营养向根际土壤迁移,提高了根际土壤供氮能力,有效削减了0~30cm根层土壤表观氮素损失,保证了番茄关键生育阶段生长对土壤矿质营养需求,显著提高了番茄关键生育阶段氮肥偏生产力和番茄产量。  相似文献   

20.
[目的]揭示拔节期淹水胁迫下施氮量对玉米干物质积累分配及氮素吸收利用的影响.[方法]以春玉米"宜单629"为供试作物,采用2因素裂区田间试验,主处理为土壤水分状况,包括全生育期适宜水分(CS处理)和拔节期淹水6d(YS处理);副处理为施氮量,包括0、90、180、270 kg/hm2和360 kg/hm2,分别记为N0...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号