首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

2.
The knowledge of the rate at which trees grow in urban areas is an important aspect to consider as it can influence our quantification and valuation of the ecosystem services provided by an urban forest. This study investigates growth variations in diameter and height for four common urban tree species (Acer pseudoplatanus, Betula pendula, Fraxinus excelsior and Quercus robur) across five cities in Great Britain (GB) and how the typical radial growth of two of those species (F. excelsior and Q. robur) changes with climate. Dendrochronology was used to identify tree age and changes in ring width and diameter at breast height (DBH) and tree height were measured in-situ at the time of coring. Results indicate a substantial variation in the mean annual growth rates and the relationships between DBH and age or height and age of each species across different cities. However, the multiple factors affecting tree growth seem to influence different species in different ways, with for example A. pseudoplatanus trees showing overall the fastest growth in Peterborough but B. pendula ones showing the slowest. Precipitation and temperature had an effect on radial growth of F. excelsior and Q. robur trees in GB, but the strength and direction of influence varied with time of year, species and city. In particular, low precipitation at the start or during the growing season was found to be a significant factor limiting radial growth. A trend towards a reduction in ring width increment was therefore identified in hot and dry years, primarily in south-eastern cities but in other cities too. This highlights the risk that a changing climate may have on the growth and, consequently, on the ecosystem service provision of healthy urban trees.  相似文献   

3.
An analysis of tree health in urban greeneries exposed to winter road salt contamination was carried out in the cities of Alytus and Kaunas, Lithuania, during spring and summer 2009–2014. Trees were assessed for crown dieback, crown defoliation and foliage discolouration. In addition, the prevalence of saprotrophic pathogenic fungi that cause sooty mold disease was assessed in street and recreational plantings. Tilia cordata Mill. (small-leaved lime) was found to be the most common tree species among urban deciduous trees. Summarising the tree foliage results, saprotrophic fungi were detected on 16 species plants belonging to 13 genera. Three species of fungal pathogens belonging to two genera, two families, two classes, and two divisions, and 12 species of anamorphic fungi from nine genera were isolated and identified from Tilia cordata leaves. The most frequent sooty mold disease agents were Aspergillus brasiliensis and Cladosporium herbarum. Nonetheless, a weak correlation between salt contamination and lime tree damage by sooty mold was found.  相似文献   

4.
Urban trees provide a wide range of ecosystem services for city residents, with tall, mature trees with wide crowns generally regarded as preferable. The tree biomass which is responsible for shading, pollution removal, rain runoff retention etc. gets periodically reduced by the municipal tree management practice of pruning. This is a necessary activity, which reduces the risk of infrastructure damage and falling branches, but many estimates of ecosystem service provision in cities do not consider its impact explicitly. Tree mortality is also higher in cities, preventing trees from attaining and remaining at large sizes. This study used extensive field measurements of tree structure to estimate the impact of pruning on 8 tree species in two Italian cities: Taranto and Florence. Crown widths were reduced by 1.6 m on average, however there is large variation between species variation with branches more often being removed for thinning crowns resulting in larger gap fractions, which increased by 15% on average. No significant differences were observed for crown widths or gap fraction between trees pruned 3 and 4 years previously, suggesting that tree crowns structurally recover from pruning after 3 years. A deterministic model revealed that current urban forest pruning rates (every 6 years) and mortality (1%) may create a situation in which a city dominated by the species studied benefits from 93.5% of the maximum ecosystem services possible. This work will allow more nuanced estimates of urban forest services to be calculated.  相似文献   

5.
Trees are an integral component of the urban environment and important for human well-being, adaption measures to climate change and sustainable urban transformation. Understanding the small-scale impacts of urban trees and strategically managing the ecosystem services they provide requires high-resolution information on urban forest structure, which is still scarce. In contrast, there is an abundance of data portraying urban areas and an associated trend towards smart cities and digital twins as analysis platforms. A GIS workflow is presented in this paper that may close this data gap by classifying the urban forest from LiDAR point clouds, detecting and reconstructing individual crowns, and enabling a tree representation within semantic 3D city models. The workflow is designed to provide robust results for point clouds with a density of at least 4 pts/m2 that are widely available. Evaluation was conducted by mapping the urban forest of Dresden (Germany) using a point cloud with 4 pts/m². An object-based data fusion approach is implemented for the classification of the urban forest. A classification accuracy of 95 % for different urban settings is achieved by combining LiDAR with multispectral imagery and a 3D building model. Individual trees are detected by local maxima filtering and crowns are segmented using marker-controlled watershed segmentation. Evaluation highlights the influences of both urban and forest structure on individual tree detection. Substantial differences in detection accuracies are evident between trees along streets (72 %) and structurally more complex tree stands in green areas (31 %), as well as dependencies on tree height and crown diameter. Furthermore, an approach for parameterized reconstruction of tree crowns is presented, which enables efficient and realistic city-wide modeling. The suitability of LiDAR to measure individual tree metrics is illustrated as well as a framework for modeling individual tree crowns via geometric primitives.  相似文献   

6.
In densely populated cities that are dominated by concrete buildings, urban parks serve as major green infrastructures for ecological and environmental functions. Trees are one of the important components that support these green infrastructures. Despite plenty of urban parks established in Hong Kong in the last 20 years, knowledge of tree composition and diversity is outdated. There were also no studies that investigated the differences in tree diversity in relation to park history. Therefore, this study aims to identify the temporary changes in tree composition and diversity in Hong Kong, by conducting a plot-based tree survey in 32 urban parks of different ages. Overall, 2801 trees belonging to 181 species were recorded in 319 plots across all the parks. A ridit analysis was conducted and it indicated the mature size of trees were not significantly larger in old parks. However, the linear mixed-effects models and the post-hoc tests suggested that DBH, tree height and the proportion of crown dieback for each class of tree size were greater in the old parks. Moreover, the composition of top-ranking dominant tree species varied substantially, where more ornamental and exotic trees were adopted in new parks. For species richness, the sample-based species accumulation curves of different park age overlapped when the horizontal axis of the curve was scaled by the average number of combined individual trees. When the horizontal axis was scaled by the number of plots, the curve for the old parks was above the curve for the new parks. The differences derived from these two accumulation methods indicated a higher tree density in old parks. For species evenness, both the rank-abundance curves and Rényi diversity curves depicted a similar low species evenness in old and new parks. These results suggested that species diversity remained largely unchanged from old parks to new parks though the dominant tree species varied. Greater attention should be paid to increase the species evenness in all urban parks, increase tree density in new parks and improve tree maintenance in old parks.  相似文献   

7.
Street trees are threatened by multiple stresses from biophysical and anthropogenic factors. This situation can be extremely challenging in highly developed urban areas with limited space for tree planting. Asia has some of the most densely populated cities globally, but there is a lack of data on factors affecting street tree health in the region. This study aims to examine the impact of constrained planting environments on the health condition of street trees through a case study in Kyoto City, Japan. The health condition of 1230 street trees distributed throughout the city was assessed from June to October 2018. Additionally, several tree- and site-related variables were collected to identify their impact on tree health. Trees that were in excellent and good condition accounted for 19.9 % and 32.0 % of the sample population, respectively. Multivariate linear regression (N = 1139) revealed that tree health condition was significantly related to pruning intensity, tree pit size, adjacent land use, presence/absence of tree grate or guard, width of sidewalk, tree height, presence/absence of dedicated cycle route, tree pit pattern, crown light exposure, DBH and tree pit type. Platanus × acerifolia and other trees with large diameters exhibited relatively poor condition, along with those in tree pits with concrete paving, without tree grates, or in industrial areas, whereas trees planted in strips exceeding 1.8 m in length and exposed to weak pruning showed the best condition. These results imply the potential for healthy growth of street trees in the restricted planting spaces of Kyoto City, which suggests appropriate management and planting practices. Moreover, our empirical data can inform urban tree managers to support their efforts in making decisions on the better matching of species tolerances with urban site conditions for future street tree plans.  相似文献   

8.
Tree growth equations are an important and common tool used to effectively assess the yield and determine management practices in forest plantations. Increasingly, they are being developed for urban forests, providing tools to assist urban forest managers with species selection, placement, and estimation of management costs and ecosystem services. This study describes the development of allometric equations for Fraxinus americana and F. pennsylvanica growing in Oakville, Canada. With data collected from 103 ash trees, five allometric models were tested to develop equations estimating diameter-at-breast-height (dbh), tree height, crown width and crown height, using age and dbh as explanatory variables. Mean annual growth rates are presented to demonstrate species growth performance and were not significantly different over the first 40 years of growth for the two species. Of all the tested random coefficient models for both species, the cubic with weight 1/x provided the best fit for estimating dbh from age. The best models for other parameters were the loglog for crown height from dbh, the quadratic for crown diameter from dbh, and the linear for tree height from dbh for F. americana. Model types showed more consistency for F. pennsylvanica with linear providing the best fit for crown diameter, crown height and tree height from dbh. The number of model types suggests the difficulty of fitting any single model to the vast array of conditions affecting plant growth in urban areas where management practices and environment can significantly influence tree size and growth. These models may be used to estimate the growth of ash tree populations in Oakville and communities with similar climate, soil, planting, and management environments.  相似文献   

9.
Quantitative measurements of structure and morphology of urban trees are hardly exhausted so far, especially in regard to variations caused by altering urban environments. However, structure and functions of trees are heavily interwoven. In fact, knowledge about structural attributes is essential for a better understanding of urban ecosystem functions and services. In order to scrutinize spatially explicit and detailed structural attributes under varying urban environments, we acquired terrestrial laser scans and applied the according methodological approaches to the common urban tree species black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata Mill.). We analyzed 52 small-leaved limes and 41 black locust trees within the city of Munich (Germany). Species as well as growing location had a significant effect on the height-diameter relation. We also found greater crown volumes for small-leaved lime. Black locust however, displayed more crown projection area and likely more shade efficient crown shapes at similar volumes. Stem inclination of black locust was found to be higher in parks than in street canyons with town squares lying in between. Furthermore, black locust displayed strong crown asymmetry in park areas, likely caused by competition with neighbors. The angles of main branches did not differ significantly between both species nor between the growing location. Branch angles, branch bending, the length of the branches as well as species and growing location had a significant effect on vertical crown center position, i.e. general crown shape. Surface complexity of lime is lower than of black locust, with its lowest manifestation in parks. Fractal-like crown surface structures, increasing surface roughness and complexity, were found to be more pronounced for black locust than for small-leaved lime. Thereby, black locust featured the highest crown surface complexity in parks, the lowest in street canyons. The results suggest that studies on spatially explicit tree structures may contribute to more target oriented tree plantings and thus, more effective exploitation of ecosystem services and benefits.  相似文献   

10.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

11.
Sampling inventories are strategies to gather qualified information for managing urban forests, given the scarcity of budgetary resources for a complete inventory and lack of public engagement to reduce costs. However, procedures for testing sampling sufficiency can be unspecified in researches related to urban forest inventories and do not follow any specific pattern. Hence, to determine the sampling sufficiency, we tested different variables related to the trunk, crown, number of trees, and species, focusing on different aims of an inventory of trees on sidewalks. At a level of 10% of the total number of plots, each measuring 50.0 m × 3.0 m, we performed a stratified inventory of a city streetscape whose composition and quality represents most South American cities, with a non-patterned tree compostion. Sampling sufficiency was analyzed considering a limit of error of 10% and 15% by using 12 different variables. The stratification process was necessary for most of the variables analyzed (p > 0.01), with errors ranging from 5.87% to 15.28%. Sampling sufficiency was achieved for 10% of the total population of trees on sidewalks, at a 10% error limit for seven variables: diameter at breast height (DBH), cross-section area, crown diameter, crown area, number of species, and number of species per square meter of sidewalk and per kilometer of the street. However, this result was influenced by the variability of the variables used to estimate sampling sufficiency. As it is not possible to achieve different goals (tree registration, benefits, and diversity) with just one variable like the number of trees per kilometer of street, the sampling sufficiency estimation should be based on the use of at least the DBH, crown diameter, number of trees, and number of species. It would be a better strategy to ensure more reliable data estimations for sampling inventories of trees on sidewalks.  相似文献   

12.
Citizen science has been gaining popularity in ecological research and resource management in general and in urban forestry specifically. As municipalities and nonprofits engage volunteers in tree data collection, it is critical to understand data quality. We investigated observation error by comparing street tree data collected by experts to data collected by less experienced field crews in Lombard, IL; Grand Rapids, MI; Philadelphia, PA; and Malmö, Sweden. Participants occasionally missed trees (1.2%) or counted extra trees (1.0%). Participants were approximately 90% consistent with experts for site type, land use, dieback, and genus identification. Within correct genera, participants recorded species consistent with experts for 84.8% of trees. Mortality status was highly consistent (99.8% of live trees correctly reported as such), however, there were few standing dead trees overall to evaluate this issue. Crown transparency and wood condition had the poorest performance and participants expressed concerns with these variables; we conclude that these variables should be dropped from future citizen science projects. In measuring diameter at breast height (DBH), participants had challenges with multi-stemmed trees. For single-stem trees, DBH measured by participants matched expert values exactly for 20.2% of trees, within 0.254 cm for 54.4%, and within 2.54 cm for 93.3%. Participants’ DBH values were slightly larger than expert DBH on average (+0.33 cm), indicating systematic bias. Volunteer data collection may be a viable option for some urban forest management and research needs, particularly if genus-level identification and DBH at coarse precision are acceptable. To promote greater consistency among field crews, we suggest techniques to encourage consistent population counts, using simpler methods for multi-stemmed trees, providing more resources for species identification, and more photo examples for other variables. Citizen science urban forest inventory and monitoring projects should use data validation and quality assurance procedures to enhance and document data quality.  相似文献   

13.
Atmospheric pollution is a threatening problem around the world, with tropospheric ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10) among the most harmful pollutants for citizens’ health. Nature-based solutions such as urban trees can cut down air concentrations of these pollutants thanks to stomatal uptake and dry deposition on their canopies and, in addition, uptake carbon dioxide (CO2) and store carbon in their tissues. Unfortunately, some species emit biogenic Volatile Organic Compounds (bVOCs) that are O3-precursors leading to air quality deterioration. As a proper selection of species is essential for urban greening, we developed an innovative single-tree model (FlorTree) to estimate the maximum flux of air pollutants. FlorTree considered species-specific parameters, such as tree morphology (height and crown leaf area), leaf/shoot structure, leaf habit (deciduous/evergreen) and eco-physiological responses to environmental factors, for 221 urban tree and shrub species. We applied the FlorTree model to examine i) which are the best species for air pollution removal in the case study of Florence (Italy) and ii) whether the species-specific removal performance is affected by different climate and air pollution conditions in other cities, namely Bucharest (Romania) and Tokyo (Japan). Results suggested that 24 tall trees (mainly broadleaves belonging to Tilia, Acer and Fraxinus genus) may be recommended for Florence due to their large crowns at maturity (50 years old), relatively high stomatal conductance and no bVOCs release. These general characteristics, however, were affected by climatic and pollutant conditions, suggesting that FlorTree must be applied to the local conditions. Therefore, our results demonstrated that FlorTree can be applied in any city for maximizing the air quality improvement by urban trees.  相似文献   

14.
Current knowledge on the growth models of urban forest plantations several years after their establishment still remains poor and fragmentary. Furthermore few studies have assessed the growth of urban plantations on reclaimed land, such as brownfield sites.This paper assesses urban forest plantations in terms of tree height growth, crown width and vertical structural using as a case study tree inventory-data collected in an urban forest plantation (Parco Nord Milano, PNM northern Italy). In this research tree inventory-data was used to achieve the following objectives: (i) to develop a series of tree height-growth models and tree crown-width models for the main taxonomic units in the study-area; (ii) to analyse the temporal pattern of current increments of tree height; (iii) to assess the vertical stratification of tree crowns using a method developed by Latham et al. (1998).The results suggest that during the earlier stage after planting, trees reach high levels of growth (tree height and crown width) regardless of the taxonomic unit. Evidence is found to support a high level of spatial competition between individual trees of different taxonomic units in as little as 15–18 years. Competition between trees appears to be mainly affected by diametrical differentiation rather than hypsometric variation: trees grow more in diameter than in height. Furthermore a decrease in longitudinal growth was observed for most tree species while the radial growth tends to be constant over time. The research at PNM shows that in temperate climates this can be achieved in less than 30 years. We believe that these analyses could provide important data supporting the planning of new urban forest plantations on reclaimed land and inter alia provide some answers to the questions around plantations growth evaluation and management.  相似文献   

15.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

16.
The planting of trees in streets and parks is critical for urban greening efforts that seek to improve climate-change resilience in cities around the world. Ecosystem services provided by urban trees range from mitigating urban heat island effects to enhancing human well-being and conserving native biodiversity. At the same time, such tree services trade off with disservices that include risk to human safety from falling branches and infrastructure damage from root growth. Here, we performed a survey of residents of a sub-tropical region in eastern Australia to determine community perceptions of the ecosystem services and disservices linked to urban tree plantings. Our aim was to better understand the diverse perceptions of the community, prior to on-the-ground implementation of urban greening, to help guide planting programs in streets and parklands that are vulnerable to UHI effects in the region. We found strong evidence for a high level of public awareness about the beneficial ecosystem services that urban trees can provide. A broad spectrum of beneficial tree services were valued highly by the community in their urban environment including the planting of native trees that can attract and provide food for preferred wildlife; provide shade and reduce heat; allow for a strong connection with nature; have the potential to store carbon to mitigate climate change; provide a level of protection from bushfires; have aesthetically pleasing properties; and produce food for people. At the same time, however, community concerns about tree disservices were concentrated primarily on root damage to infrastructure as well as property damage and injury from falling branches. Our elicitation of community attitudes to tree services and disservices will allow for residents’ most important values and strongest concerns about trees to be explicitly taken into account when establishing a community-inclusive approach to urban tree planting.  相似文献   

17.
Urban warming affects many millions of city dwellers worldwide. The current study evaluated the extent to which trees reduce air and surface temperatures in urban settings across Greater Sydney, Australia. Summertime air and surface temperatures were measured directly in the shade of 470 individual trees planted in three contrasting contexts (parks, nature strips, asphalt) and compared with temperatures in paired adjacent areas receiving full sunlight. Differences between shade and sunlit temperatures were evaluated against measured morphological traits (leaf area index [LAI], clear stem height, crown depth, height and diameter at breast height) for all trees. On average, tree shade reduced mean and maximum air temperatures by 1.1 °C and 3.7 °C, respectively. Temperatures of standardised reference surfaces (black and white tiles and artificial grass) in tree shade were up to 45 °C lower compared to full-sun exposure, and were also lower in parks and nature strips compared to asphalt settings. The surface temperature of shaded natural grass was cooler compared to sunlit natural grass, although this difference did not vary between nature strip and park settings. The magnitude of air and surface temperature reductions due to tree shade was significantly, positively related to tree-level LAI and these relationships were stronger in asphalt and park contexts compared to nature strips. These findings can inform decisions made by urban managers and planners around the selection of tree characteristics to enhance cooling benefits in different contexts, as an important step towards more liveable and resilient cities.  相似文献   

18.
Trimming is an important practice for reducing potential contact between trees and power lines. V-trimming occurs when a tree is located directly under the electrical wires and results in the formation of a bilateral crown, but not much is known about a tree’s reaction and acclimation to such a repeated stress in an urban context.Using Terrestrial Laser Scanning (TLS), we present a study that focuses on documenting (i) short term effect of V-trimming on the tree structure, through the quantification and analysis of the dispersion of trimming induced branch loss and subsequent growth reaction, and, (ii) long term acclimation (i.e. changes in biomass location) of tree structure to repeated unidirectional trimming. A voxelisation method was used to derive space exploration metrics from TLS data based on explored volume quantification and voxels dispersion within the tree crown.Our results show that V-trimming induces a significant decrease in explored crown space volume (12.8% on average) but that this loss is regained by trimmed trees within only 1 year following trimming thanks to a rapid regrowth rate. This was supported by an analysis of radial growth that showed that the growth of trimmed trees was greater than non-trimmed trees although this tendency was not statistically significant. In our study this regrowth was achieved without suckering; instead the regrowth mainly occurred within the crown periphery. We also observed that trimming had a significant influence on the way trees explore space with their crowns. While non-trimmed trees explored space preferentially toward a South direction, trimmed trees explored space in directions perpendicular to the wires (East and West). We also observed that crown biomass was located more in the extreme crown periphery in trimmed trees compared to non-trimmed trees.  相似文献   

19.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

20.
Today's urban forest increasingly consists of planted trees, especially as native forest fragments yield to urban sprawl. These trees are usually larger (over 2-m tall) than typical reforestation trees and grow very little for the first few years after planting. Stressful urban sites exacerbate this effect and many practitioners hope to shorten the time required to reach environmentally functional size by fertilizing at planting. This is a controversial practice since nitrogen (N) application creates the potential for water quality impairment and effectiveness is uncertain. It is not clear how nitrogen application affects large trees with radically altered root:shoot ratios or how nursery production methods and restrictive sites affect response. In a series of five separate studies, we tested several N rates on ten shade tree species (both field- and container-grown) and transplanted to a range of urban sites, from a relatively undisturbed forest fragment to a highly compacted cutover soil with an absent A horizon. Trunk diameter increase, as an integrative metric of tree biomass accumulation, was followed for up to 4 years on each experiment. Overall, we saw little effect from fertilizing at planting at any rate we tested, regardless of location. Three studies that included leaf analysis with a SPAD-502 chlorophyll meter indicated that neither SPAD meter values or N concentration within leaves was increased by fertilizing at planting, suggesting that the newly planted shade trees took up very little of the applied N. Overall, SPAD-502 readings correlated well with actual leaf N concentration (r=0.692). This group of studies indicates that fertilization at planting does not increase post-transplant growth, even in stressful urban sites and it is therefore not effective at shortening the establishment period of transplanted shade trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号