首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urban trees can potentially mitigate environmental degradation accompanying rapid urbanisation via a range of tree benefits and services. But uncertainty exists about the extent of tree benefits and services because urban trees also impose costs (e.g. asthma) and may create hazards (e.g. windthrow). Few researchers have systematically assessed how urban tree benefits and costs vary across different cities, geographic scales and climates. This paper provides a quantitative review of 115 original urban tree studies, examining: (i) research locations, (ii) research methods, and (iii) assessment techniques for tree services and disservices. Researchers published findings in 33 journals from diverse disciplines including: forestry, land use planning, ecology, and economics. Research has been geographically concentrated (64% of studies were conducted in North America). Nearly all studies (91.3%) used quantitative research, and most studies (60%) employed natural science methods. Demonstrated tree benefits include: economic, social, health, visual and aesthetic benefits; identified ecosystem services include: carbon sequestration, air quality improvement, storm water attenuation, and energy conservation. Disservices include: maintenance costs, light attenuation, infrastructure damage and health problems, among others. Additional research is required to better inform public policy, including comparative assessment of tree services and disservices, and assessment of urban residents and land managers’ understanding of tree benefits and costs.  相似文献   

2.
A working group within the European Union funded COST Action E12, “Urban Forests and Trees”, carried out a survey between 1999 and 2001 to study current tree establishment practice in European towns and cities. An extensive questionnaire requesting information on the urban area, selection of tree species, establishment and aftercare practices and the main damaging factors was sent to tree professionals in urban areas in each of 17 countries.Indicators such as the relationship between the urban population and the number of street trees were used to compare urban areas. While most central European cities have a ratio of 50–80 street trees per 1000 inhabitants, the tree density was as low as 20 street trees per 1000 inhabitants for Nice. Often only a few species are planted and this may give cause for concern, since species diversity is considered an important factor in increasing the resilience of the urban tree population to abiotic and biotic stresses.The planting of larger street trees of 20–30 cm circumference, usually with hessian-wrapped rootballs, is becoming increasingly common practice. However, some countries report the use of mostly bare-rooted stock of much smaller trees (less than 12 cm circumference). Establishment costs for street trees range from less than 200 Euro to over 1500 Euro each. Poor site conditions, and impacts such as utility trenching are considered to be major restrictions to healthy tree life. Vandalism affects up to 30%of newly planted street trees in some towns and cities.Overall, the survey reveals large differences in tree establishment and management practices among European cities. There is a need to provide urban tree managers with guidance on good practice for tree selection and establishment based on empirical information. The survey was a first step towards collecting the necessary urban forest information from across Europe.  相似文献   

3.
Urban trees provide a wide range of ecosystem services for city residents, with tall, mature trees with wide crowns generally regarded as preferable. The tree biomass which is responsible for shading, pollution removal, rain runoff retention etc. gets periodically reduced by the municipal tree management practice of pruning. This is a necessary activity, which reduces the risk of infrastructure damage and falling branches, but many estimates of ecosystem service provision in cities do not consider its impact explicitly. Tree mortality is also higher in cities, preventing trees from attaining and remaining at large sizes. This study used extensive field measurements of tree structure to estimate the impact of pruning on 8 tree species in two Italian cities: Taranto and Florence. Crown widths were reduced by 1.6 m on average, however there is large variation between species variation with branches more often being removed for thinning crowns resulting in larger gap fractions, which increased by 15% on average. No significant differences were observed for crown widths or gap fraction between trees pruned 3 and 4 years previously, suggesting that tree crowns structurally recover from pruning after 3 years. A deterministic model revealed that current urban forest pruning rates (every 6 years) and mortality (1%) may create a situation in which a city dominated by the species studied benefits from 93.5% of the maximum ecosystem services possible. This work will allow more nuanced estimates of urban forest services to be calculated.  相似文献   

4.
Research points to numerous benefits provided by urban street trees including qualitative and quantitative public health, economic, and environmental advantages for a city and its residents. As with other key aspects of city management that help develop municipal success, urban forestry requires foresight, commitment and planning that lead to effective policies and strategies. Good street tree management based on effective policies can maximise street tree benefits. Poorly conceived policies or the absence of effective policies can lead to the opposite result. A case study of the neighbouring cities of Loma Linda and Redlands, California illustrates this difference. The urban tree care and protection policies in these two cities have evolved differently. The differences may be attributable to contrasting municipal commitments to preservation and to best-practice management principles. Based on a comparative analysis of street tree policies of the two cities, it can be concluded that a local culture favouring tree protection and reflective guidelines and policies can result in proactive and successful management of an urban forest. Such policies also include provision for gathering data essential for strategic tree planting, care and removal.  相似文献   

5.
In densely populated cities that are dominated by concrete buildings, urban parks serve as major green infrastructures for ecological and environmental functions. Trees are one of the important components that support these green infrastructures. Despite plenty of urban parks established in Hong Kong in the last 20 years, knowledge of tree composition and diversity is outdated. There were also no studies that investigated the differences in tree diversity in relation to park history. Therefore, this study aims to identify the temporary changes in tree composition and diversity in Hong Kong, by conducting a plot-based tree survey in 32 urban parks of different ages. Overall, 2801 trees belonging to 181 species were recorded in 319 plots across all the parks. A ridit analysis was conducted and it indicated the mature size of trees were not significantly larger in old parks. However, the linear mixed-effects models and the post-hoc tests suggested that DBH, tree height and the proportion of crown dieback for each class of tree size were greater in the old parks. Moreover, the composition of top-ranking dominant tree species varied substantially, where more ornamental and exotic trees were adopted in new parks. For species richness, the sample-based species accumulation curves of different park age overlapped when the horizontal axis of the curve was scaled by the average number of combined individual trees. When the horizontal axis was scaled by the number of plots, the curve for the old parks was above the curve for the new parks. The differences derived from these two accumulation methods indicated a higher tree density in old parks. For species evenness, both the rank-abundance curves and Rényi diversity curves depicted a similar low species evenness in old and new parks. These results suggested that species diversity remained largely unchanged from old parks to new parks though the dominant tree species varied. Greater attention should be paid to increase the species evenness in all urban parks, increase tree density in new parks and improve tree maintenance in old parks.  相似文献   

6.
Many exemplary projects have demonstrated that Nature-based Solutions (NBS) can contribute to climate change adaptation, but now the challenge is to scale up their use. Setting realistic policy goals requires knowing the amount of different NBS types that can fit in the urban space and the benefits that can be expected. This research aims to assess the potential for a full-scale implementation of NBS for climate-change adaptation in European cities, the expected benefits and co-benefits, and how these quantities relate to the urban structure of the cities.We selected three case studies: Barcelona (Spain), Malmö (Sweden), and Utrecht (the Netherlands), and developed six scenarios that simulate the current condition, the full-scale implementation of different NBS strategies (i.e., installing green roofs, de-sealing parking areas, enhancing vegetation in urban parks, and planting street trees), and a combination of them. Then we applied spatially-explicit methods to assess, for each scenario, two climate change-related benefits, i.e. heat mitigation and stormwater regulation, and three co-benefits, namely carbon storage, biodiversity potential, and overall greenness. Finally, by breaking down the results per land use class, we investigated how the potential and benefits vary depending on the urban form.Most scenarios provide multiple benefits, but each one is characterized by a specific mix. In all cities, a full-scale deployment of green roofs shows the greatest potential to reduce runoff and increase biodiversity, while tree planting -either along streets or in urban parks– produces the greatest impact on heat mitigation and greenness. However, these results entail interventions of different size and in different locations. Planting street trees maximizes interventions in residential areas, but key opportunities for integrating most NBS types also lie in commercial and industrial areas. The results on the pros and cons of each scenario can support policy-makers in designing targeted NBS strategies for climate change adaptation.  相似文献   

7.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

8.
The urban forest provides our communities with a host of benefits through the delivery of ecosystem services. To properly quantify and sustain these benefits, we require a strong baseline understanding of forest structure and diversity. To date, fine-scale work considering urban forest diversity and ecosystem services has often been limited to trees on public land, considering only one or two green space types. However, the governance of urban green spaces means tree species composition is influenced by management decisions at various levels, including by institutions, municipalities, and individual landowners responsible for their care. Using a mixed-method approach combining a traditional field-inventory and community science project, we inventoried urban trees in the residential neighbourhood of Notre-Dame-de-Grȃce, Montreal. We assessed how tree diversity, composition and structure varies across multiple green space types in the public and private domain (parks, institutions, street rights of way and private yards) at multiple scales. We assessed how service-based traits – traits capturing aspects of plant form and functions that urban residents find beneficial – differed across green space types, with implications for the distribution of ecosystem services across the urban landscape. Green space types displayed meaningful differences in tree diversity, structure, and service-based traits. For example, the inclusion of private trees contributed an additional 52 species (>30% of total species) not found in the local public tree inventory. Trees on private land also tended to be smaller than those in the public domain. Beyond patterns of tree richness, size, and abundance we also observed differences in the composition of tree species and service-based traits at site-scales, particularly between street rights-of way and private yards. While species composition varied considerably across street blocks, blocks were very similar to one another in terms of mean service-based traits. Contrastingly, while species composition was similar from yard to yard, yards differed significantly in mean service-based trait values. Our work emphasises that public tree inventories are unlikely to be fully representative of urban forest composition, structure, and benefits, with implications for urban forest management at larger spatial scales.  相似文献   

9.
Trees along footpath zones (or verges) grow on the “front-line” of urban forest ecosystems, increasingly recognised as essential to the quality of human life in cities. Growing so close to where residents live, work and travel, these street trees require careful planning and active management in order to balance their benefits against risks, liabilities, impacts and costs. Securing support and investment for urban trees is tough and robust business cases begin with accurate information about the resource. Few studies have accounted for spatial heterogeneity within a single land-use type in analyses of structure and composition of street tree populations. Remotely sensed footpath tree canopy cover data was used as a basis for stratification of random sampling across residential suburbs in the study area of Brisbane, Australia. Analysis of field survey data collected in 2010 from 80 representative sample sites in 52 suburbs revealed street tree population (432,445 ± 26,293) and stocking level (78%) estimates with low (6.08%) sampling error. Results also suggest that this population was transitioning to low risk, small-medium sized species with unproven longevity that could limit the capacity of the Brisbane’s Neighbourhood Shadeways planting program to expand from 35% footpath tree canopy cover in 2010, to a target of a 50% by 2031. This study advances the use of contemporary techniques for sampling extensive, unevenly distributed urban tree populations and the value of accurate resource knowledge to inform evidence-based planning and investment for urban forests.  相似文献   

10.
Urban tree cover is inequitable in many American cities, with low-income and non-white neighborhoods typically having the least coverage. Some municipal and non-profit tree planting programs aim to address this inequity by targeting low-income neighborhoods; however, many programs face lack of participation or resistance from local residents. In this study, we aimed to uncover the economic, social, cultural, and physical barriers that community leaders face in planting trees and fostering engagement in a neighborhood with low tree canopy. In collaboration with an urban greening nonprofit in Philadelphia, Pennsylvania (US), twenty in-depth interviews were conducted with community leaders in a low canopy neighborhood, North Philadelphia. Half of these leaders were already involved with local tree planting programs, while the other half were not. Findings reveal that despite broad appreciation for trees and greenspaces, there are concerns about the risks and costs residents assume over the course of a tree’s life cycle, the threat of neighborhood development and gentrification associated with trees, limited plantable space, and limited time and capacity for community organizations. Additionally, these barriers to participation may be amplified among low-income and communities of color who face the legacies of historical tree disservices and municipal structural disinvestment. Addressing community concerns regarding the long-term care of trees beyond the initial tree planting would likely require further programmatic support. Overall, this research highlights the complexity of addressing inequities in tree canopy and the importance of integrating resident and community leader perspectives about disservices and management costs into tree planting initiatives.  相似文献   

11.
Urban green spaces provide critical social and ecological support for cities, but we know little about their diversity and composition in cities of the Global South. This is especially true of lesser known urban spaces such as sacred sites, which are of important cultural and biodiversity significance. We examine tree diversity and composition in sacred sites in Bengaluru, one of India’s fastest growing cities. We recorded 5504 trees from 93 species across 62 temples, churches, and Hindu, Christian and Muslim cemeteries in central areas of Bengaluru. Over half (52%) of the tree species were of native origin, a much higher proportion when compared to other green spaces in the city such as parks. Tree density in sacred sites was much higher than that in parks and informal settlements in Bengaluru. Temples and Hindu cemeteries contained the highest proportion of native species, with large numbers of Ficus benghalensis, a keystone sacred species. Trees in sacred spaces provide an important buffer against urban environmental stress in Indian cities, and serve as refuges for urban wildlife and biodiversity. We need greater information on these lesser known, but culturally significant alternate spaces. They play an important, though ignored role in the environmental sustainability of rapidly growing cities in the Global South.  相似文献   

12.
Sampling inventories are strategies to gather qualified information for managing urban forests, given the scarcity of budgetary resources for a complete inventory and lack of public engagement to reduce costs. However, procedures for testing sampling sufficiency can be unspecified in researches related to urban forest inventories and do not follow any specific pattern. Hence, to determine the sampling sufficiency, we tested different variables related to the trunk, crown, number of trees, and species, focusing on different aims of an inventory of trees on sidewalks. At a level of 10% of the total number of plots, each measuring 50.0 m × 3.0 m, we performed a stratified inventory of a city streetscape whose composition and quality represents most South American cities, with a non-patterned tree compostion. Sampling sufficiency was analyzed considering a limit of error of 10% and 15% by using 12 different variables. The stratification process was necessary for most of the variables analyzed (p > 0.01), with errors ranging from 5.87% to 15.28%. Sampling sufficiency was achieved for 10% of the total population of trees on sidewalks, at a 10% error limit for seven variables: diameter at breast height (DBH), cross-section area, crown diameter, crown area, number of species, and number of species per square meter of sidewalk and per kilometer of the street. However, this result was influenced by the variability of the variables used to estimate sampling sufficiency. As it is not possible to achieve different goals (tree registration, benefits, and diversity) with just one variable like the number of trees per kilometer of street, the sampling sufficiency estimation should be based on the use of at least the DBH, crown diameter, number of trees, and number of species. It would be a better strategy to ensure more reliable data estimations for sampling inventories of trees on sidewalks.  相似文献   

13.
Trees are an integral component of the urban environment and important for human well-being, adaption measures to climate change and sustainable urban transformation. Understanding the small-scale impacts of urban trees and strategically managing the ecosystem services they provide requires high-resolution information on urban forest structure, which is still scarce. In contrast, there is an abundance of data portraying urban areas and an associated trend towards smart cities and digital twins as analysis platforms. A GIS workflow is presented in this paper that may close this data gap by classifying the urban forest from LiDAR point clouds, detecting and reconstructing individual crowns, and enabling a tree representation within semantic 3D city models. The workflow is designed to provide robust results for point clouds with a density of at least 4 pts/m2 that are widely available. Evaluation was conducted by mapping the urban forest of Dresden (Germany) using a point cloud with 4 pts/m². An object-based data fusion approach is implemented for the classification of the urban forest. A classification accuracy of 95 % for different urban settings is achieved by combining LiDAR with multispectral imagery and a 3D building model. Individual trees are detected by local maxima filtering and crowns are segmented using marker-controlled watershed segmentation. Evaluation highlights the influences of both urban and forest structure on individual tree detection. Substantial differences in detection accuracies are evident between trees along streets (72 %) and structurally more complex tree stands in green areas (31 %), as well as dependencies on tree height and crown diameter. Furthermore, an approach for parameterized reconstruction of tree crowns is presented, which enables efficient and realistic city-wide modeling. The suitability of LiDAR to measure individual tree metrics is illustrated as well as a framework for modeling individual tree crowns via geometric primitives.  相似文献   

14.
Processes shaping urban ecosystems reflect and influence the cultural context in which they emerge, bearing implications for ecosystem services (ES) planning and management. Investigating the perception of benefits and losses / costs delivered by a specific service providing unit (SPU) can generate objective orientations suitable for urban planning and management deeply embedded in the social-ecological systems where they occur, because the realization of ES into benefits and losses / costs is mediated by specific beneficiaries and reflects their characteristics, information and use of ecosystems. Street trees are a particularly relevant SPU in many densely built Southern-European cities due to the difficulty in implementing new sizeable green areas. In this study, a questionnaire was developed and applied in Porto to investigate how benefits (cultural, regulating and economic) and losses / costs caused by street trees are perceived by citizens and influenced by a set of socioeconomic variables (N = 819 people aged 18 years or older), and parametric statistical tests were used to analyze the effect of gender, age and school level. Results evidenced that people in Porto valued more environmental benefits (particularly air quality improvement) than cultural ones. School level was the variable accounting for more differences, underlining a tendency in people with lower level of academic education to value less the benefits provided by street trees in Porto and attribute more importance to losses and damages, compared to people who attended university or had higher academic degree. Age also held considerable differences in mean responses, with older people showing more concern towards losses and costs, while gender influenced perception of cultural benefits, which were more important for women than for men. The findings of the research are discussed concerning implications for environmental justice, planning and management of urban ecosystems.  相似文献   

15.
Paired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the 20 analyzed cities had statistically significant declines in tree cover, while 16 cities had statistically significant increases in impervious cover. Only one city (Syracuse, NY) had a statistically significant increase in tree cover. City tree cover was reduced, on average, by about 0.27 percent/yr, while impervious surfaces increased at an average rate of about 0.31 percent/yr. As tree cover provides a simple means to assess the magnitude of the overall urban forest resource, monitoring of tree cover changes is important to understand how tree cover and various environmental benefits derived from the trees may be changing. Photo-interpretation of digital aerial images can provide a simple and timely means to assess urban tree cover change to help cities monitor progress in sustaining desired urban tree cover levels.  相似文献   

16.
Green Infrastructure (GI) practices have shown to be promising in mitigating the air pollution in urban areas of several cities across the world. GI practices such as trees, green roofs and green walls are widely used in United States and Europe to mitigate the air pollution. However, there is yet limited knowledge available in identifying the most suitable GI strategy for an urban area in improving the air quality. Furthermore, it is evident that Australia is still lagging behind in adapting GI to mitigate air pollution, compared with US and Europe. Therefore, this study analyzed the air quality improvement through several GI scenarios consisting of trees, green roofs and green walls considering a case study area in Melbourne, Australia by using the i-Tree Eco software. The results were compared with case studies in different cities across the world. The results showed that the i-Tree Eco software can be successfully applied to an Australian case study area to quantify the air quality improvement benefits of GI. The results were further assessed with several environmental, economic and social indicators to identify the most suitable GI scenarios for the study area. These indicators were quantified using different methods, to assess the effectiveness of different GI scenarios. The results showed that, trees provided the highest air pollution removal capability among the different GI considered for the study area. Combination of different GI such as green roofs and green walls with trees did not provide a significant increment of air quality improvement however, has provided more local benefits such as building energy savings. The results obtained from this study were also beneficial in developing policies related to future GI applications in major cities of Australia for the air quality improvement.  相似文献   

17.
Urban forestry is generally defined as the art, science and technology of managing trees and forest resources in and around urban community ecosystems for the physiological, sociological, economic, and aesthetic benefits trees provide society. First mentioned in the United States as early as in 1894, the concept underwent a revival during the 1960s as a comprehensive and interdisciplinary approach to the specific challenges related to growing trees in urban environments. Later, urban forestry evoked the interest of scientists and practitioners in other parts of the world. However, harmonization of urban forestry terminology has been complicated by, for example, the involvement of different disciplines and translation difficulties. In many European languages, for example, the direct translation of ‘urban forestry’ relates more to forest ecosystems than to street and park trees. Efforts in North America and Europe defining ‘urban forest’, ‘urban forestry’ and related terms are introduced. A comparative analysis of selected urban forestry terminology in both parts of the world shows that urban forestry has a longer history in North America, based on traditions of shade tree management. Moreover, urban forestry has become more institutionalized in North America. Urban forestry in Europe has built strongly on a century-long tradition of ‘town forestry’. In both parts of the world, definitions of urban forestry and urban forest have become more comprehensive, including all tree stands and individual trees in and around urban areas. Agreement also exists on the multifunctional and multidisciplinary character of urban forestry. These similarities offer opportunities for international harmonization of terminology.  相似文献   

18.
The influence of trees in urban areas is typically assessed using urban microclimate models. These models rely on wind tunnel experiments using small-scale tree models to verify and validate their predictions of the flow field. However, it is not known sufficiently to which extent small model trees used in wind tunnel studies can recreate the behavior of large trees found in cities. In the present study, the drag coefficient and the turbulent flow downstream of model trees are compared with the ones of natural trees of a similar size to determine whether both types of tree provide similar aerodynamic characteristics. Therefore, measurements of the drag force and the flow field, using particle image velocimetry, are performed. The aerodynamic characteristics of the small trees are compared with the ones measured on larger mature trees from previous studies. The present study shows that the drag coefficients of model and natural trees are similar only if both types have a similar aerodynamic porosity and if the model tree can undergo an aerodynamic reconfiguration similar to that of a natural tree. Such reconfiguration implies the reorientation of the branches and leaves due to wind. A study on the influence of seasonal foliar density variation shows that the foliage configuration plays a critical role on the drag coefficient and the flow field. A defoliated tree, such as a deciduous tree in winter, is shown to have a substantially lower drag coefficient and a negligible influence on the flow.  相似文献   

19.
Facing the trend of rapid urbanization, conserving the biodiversity of urban green spaces is a challenge, particularly in a developing region like Latin America. In this sense, it is known that urban sacred sites have significant cultural and conservation significance within cities. However, more needs to be studied about the vegetation they house. Given the scientific gap, the composition, richness and abundance of trees in urban religious sites of Arequipa established since the 16th century were examined, and temporal changes in the composition and distribution of trees between ancient and modern sites were identified. 749 trees of 54 species were recorded in 26 religious’ sites. A higher proportion of exotic species (74%) corresponds in greater quantity to fruit trees (52%). There were no significant differences in tree richness and abundance between ancient and modern sites. However, the ancient sites had higher richness (96.3%) and abundance (71.4%). Likewise, ancient sites present a preference for growing fruit trees in orchards and cloister gardens, unlike modern sites focused on increasing ornamental trees, with a predominance of conifers and palms. Despite the long history of the monuments, the size of the site and the green areas significantly influenced the richness and abundance; similarly, the care of the gardens greatly influenced a site that stored greater diversity and abundance. In this way, it is demonstrated that these culturally significant places house an important tree diversity, with species of nutritional and ornamental value for the self-provisioning of the religious and the beautification of the gardens. In addition, they contribute to environmental sustainability, providing different ecosystem services to cities with rapid population growth.  相似文献   

20.
Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the existing tree populations reveal that, on average, about 1 in 3 trees are planted in cities. Land uses and tree species with the highest proportion of trees planted were residential (74.8 percent of trees planted) and commercial/industrial (61.2 percent) lands, and Gleditsia triacanthos (95.1 percent) and Pinus nigra (91.8 percent). The percentage of the tree population planted is greater in cities developed in grassland areas as compared to cities developed in forests and tends to increase with increased population density and percent impervious cover in cities. New tree influx rates ranged from 4.0 trees/ha/yr in Baltimore to 8.6 trees/ha/yr in Syracuse. About 1 in 20 trees (Baltimore) and 1 in 12 trees (Syracuse) were planted in newly established tree populations. In Syracuse, the recent tree influx has been dominated by Rhamnus cathartica, an exotic invasive species. Without tree planting and management, the urban forest composition in some cities will likely shift to more pioneer or invasive tree species in the near term. As these species typically are smaller and have shorter life-spans, the ability of city systems to sustain more large, long-lived tree species may require human intervention through tree planting and maintenance. Data on tree regeneration and planting proportions and rates can be used to help determine tree planting rates necessary to attain desired tree cover and species composition goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号