首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lesions of the distal deep digital flexor tendon (DDFT) are frequently diagnosed using MRI in horses with foot pain. Intralesional injection of biologic therapeutics shows promise in tendon healing; however, accurate injection of distal deep digital flexor tendon lesions within the hoof is difficult. The aim of this experimental study was to evaluate accuracy of a technique for injection of the deep digital flexor tendon within the hoof using MRI‐guidance, which could be performed in standing patients. We hypothesized that injection of the distal deep digital flexor tendon within the hoof could be accurately guided using open low‐field MRI to target either the lateral or medial lobe at a specific location. Ten cadaver limbs were positioned in an open, low‐field MRI unit. Each distal deep digital flexor tendon lobe was assigned to have a proximal (adjacent to the proximal aspect of the navicular bursa) or distal (adjacent to the navicular bone) injection. A titanium needle was inserted into each tendon lobe, guided by T1‐weighted transverse images acquired simultaneously during injection. Colored dye was injected as a marker and postinjection MRI and gross sections were assessed. The success of injection as evaluated on gross section was 85% (70% proximal, 100% distal). The success of injection as evaluated by MRI was 65% (60% proximal, 70% distal). There was no significant difference between the success of injecting the medial versus lateral lobe. The major limitation of this study was the use of cadaver limbs with normal tendons. The authors conclude that injection of the distal deep digital flexor tendon within the hoof is possible using MRI guidance.  相似文献   

2.
The medical records of 38 horses with puncture wounds of the navicular bursa were reviewed. Only 12 horses had a satisfactory outcome (breeding or riding). Of the remaining 26 horses, 19 were euthanized, five were sold due to persistent severe lameness, one died, and one was lost to long-term follow-up. Different combinations of conservative management prior to surgical debridement and drainage of the navicular bursa were unsuccessful in resolving the condition. Horses that were treated surgically within 1 week of the injury and had a hind leg affected had the best chance of a satisfactory outcome. Additional wound debridement was necessary in 15 horses after initial surgical treatment. The most common complications encountered were navicular bone osteomyelitis and sepsis of the deep digital flexor tendon. Thirteen of 14 horses that had rupture of the deep digital flexor tendon and subluxation of the distal interphalangeal joint had an unsatisfactory outcome. One mare subsequently developed ankylosis of the distal interphalangeal joint and was a useful brood mare. Two horses that had biaxial palmar digital neurectomy because of persistent lameness were later euthanized because of navicular bone fracture and rupture of the deep digital flexor tendon. Results from limited numbers of bacterial cultures and antibiotic sensitivities suggest that penicillin and an aminoglycoside antibiotic should be used as initial antibiotic therapy. Immediate surgical debridement and appropriate antibiotic treatment are recommended as the minimum therapy for penetrating wounds of the navicular bursa in horses.  相似文献   

3.
Navicular syndrome is a multifactorial disease process in horses with multiple structures in the foot contributing to lameness. Surgical debridement is a treatment option for lesions of the navicular bursa and deep digital flexor tendon. This retrospective case series describes the magnetic resonance imaging (MRI) appearance of the navicular bursa following bursoscopy. Seven horses (three being bilaterally affected) with forelimb lameness isolated to the foot, and pre- and post-operative MRI were included. All limbs had concurrent lesions associated with the deep digital flexor tendon, navicular bone, impar ligament, collateral sesamoidean ligament and/or distal interphalangeal joint. All bursae developed or had progression of proliferative bursal tissue following surgery. At recheck MRI, following rehabilitation protocols, almost all horses had improved to resolved lameness with relatively unchanged concurrent lesions despite the navicular bursa appearance worsening. Outcomes for return to work were poor with only two horses going back to the previous level of work.  相似文献   

4.
Reasons for performing study: Currently, there are limited data regarding the long‐term outcome of horses with foot pain treated with corrective shoeing, rest and rehabilitation, and intrasynovial anti‐inflammatory medication to target lesions detected with MRI. Objective: To report the long‐term (≥12 months) outcome of horses with foot lesions following medical therapy. Hypotheses: 1) There is no association between clinical parameters considered and a poor response to therapy. 2) Horses with a deep digital flexor tendinopathy are less likely to respond to medical therapy than horses without a deep digital flexor tendinopathy. Methods: The medical records of horses with foot pain subjected to MRI examination and medical therapy (2005–2007) were evaluated retrospectively. Data collected included history, signalment, occupation, duration and severity of lameness at the time of MRI, radiological and MRI abnormalities. Number of treatments, complications and long‐term response to treatment were obtained by detailed telephone questionnaires. Association between clinical and MRI findings and long‐term lameness were investigated. Results: Frequent abnormal structures included the navicular bone, the deep digital flexor tendon, the navicular bursa and the distal interphalangeal joint. Thirty‐four of 56 horses (60.7%) failed to return to previous level of exercise due to persistent or recurrent lameness or owners' decision to decrease the horse's athletic level; however, 11 horses (32.3%) were being used for light riding. Prognosis for horses with concurrent deep digital flexor tendon, navicular bone and navicular bursa lesions was worse than horses with individual lesions. Deep digital flexor tendinopathy was strongly associated with persistent or recurrent lameness. Conclusions: Horses with multiple foot lesions managed with conservative therapy have a guarded prognosis for long‐term soundness. Deep digital flexor tendinopathies negatively influence prognosis.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the deep digital flexor tendon (DDFT) may contribute to palmar foot pain; ageing degenerative changes may be seen in horses free from lameness; and horses with lameness are likely to have a greater severity of abnormalities than age-matched horses with no history of foot pain. METHODS: Feet were selected from horses with a history of uni- or bilateral forelimb lameness of at least 2 months' duration. Histology of the DDFT from the level of the proximal interphalangeal joint to its insertion were examined and the severity of lesions for each site graded. Associations between lesions of the navicular bone, collateral sesamoidean ligaments (CSL), distal sesamoidean impar ligament, navicular bursa, distal interphalangeal (DIP) joint synovium and collateral ligaments of the DIP joint and DDFT were assessed. RESULTS: There was no relationship between age and grade of histological abnormality of the DDFT. There were significant histological differences between groups for lesions of the dorsal layers of the DDFT, but not for lesions of the palmar aspect. There were significant associations between histological grades for the superficial dorsal layer of the DDFT and flexor aspect of the navicular bone; and between the deep dorsal layer of the DDFT and the proximal border and medulla of the navicular bone. The navicular bursa grade was correlated with grades for the superficial dorsal, deep dorsal and deep palmar layers of the DDFT. The histological grades for the CSL and the superficial dorsal layer of the DDFT were also associated. CONCLUSIONS: Pathological abnormalities in lame horses often involved the DDFT in addition to the navicular bone. Vascular and matrix changes may precede changes in the fibrocartilage of the navicular bone. POTENTIAL RELEVANCE: Identification of factors leading to vascular changes within the interstitium of the DDFT and changes in matrix composition, may help in future management of palmar foot pain.  相似文献   

6.
The study hypothesis was that navicular disease is a process analogous to degenerative joint disease, which leads to changes in navicular fibrocartilage and in deep digital flexor tendon (DDFT) matrix composition and that the process extends to the adjacent distal interphalangeal joint. The objectives were to compare the biochemical composition of the navicular articular and palmar cartilages from 18 horses with navicular disease with 49 horses with no history of front limb lameness, and to compare navicular fibrocartilage with medial meniscus of the stifle and collateral cartilage of the hoof. Cartilage oligomeric matrix protein (COMP), deoxyribonucleic acid (DNA), total glycosaminoglycan (GAG), metalloproteinases MMP-2 and MMP-9 and water content in tissues were measured. Hyaline cartilage had the highest content of COMP and COMP content in hyaline cartilage and tendon was higher in lame horses than in sound horses (p<0.05). The concentration of MMP-2 amount in hyaline cartilage was higher in lame horses than in sound horses. The MMP-2 amounts were significantly higher in tendons compared to other tissue types. Overall, 79% of the lame horses with lesions had MMP-9 in their tendons and the amount was higher than in sound horses (p<0.05). In horses with navicular disease there were matrix changes in navicular hyaline and fibrocartilage as well as the DDFT with potential implications for the pathogenesis and management of the condition.  相似文献   

7.
Abnormalities of the deep digital flexor tendon, navicular bone, and collateral sesamoidean ligament can be difficult to visualize using magnetic resonance imaging (MRI) if bursal fluid is absent. The use of saline podotrochlear bursography improves podotrochlear apparatus evaluation, however, the technique has disadvantages. The objective of this prospective feasibility study was to describe saline arthrography of the distal interphalangeal joint as an alternative technique for improving MRI visualization of the deep digital flexor tendon, navicular bone, collateral sesamoidean ligament, and podotrochlear bursa, and to compare this technique with saline podotrochlear bursography. Eight paired cadaver forelimbs were sampled. Saline podotrochlear bursography or saline arthrography techniques were randomly assigned to one limb, with the alternate technique performed on the contralateral limb. For precontrast and postcontrast studies using each technique, independent observers scored visualization of the dorsal aspect of the deep digital flexor tendon, palmar aspect of the navicular bone, collateral sesamoidean ligament, and podotrochlear bursa. Both contrast techniques improved visualization of structures over precontrast MR images and visualization scores for both techniques were similar. Findings from this study demonstrated that saline arthrography is feasible and comparable to saline podotrochlear bursography for producing podotrochlear bursa distension and separation of the structures of the podotrochlear apparatus on nonweight bearing limbs evaluated with low‐field MRI. Clinical evaluation of saline arthrography on live animals is needed to determine if this technique is safe and effective as an alternative to saline podotrochlear bursography in horses with suspected pathology of the podotrochlear apparatus.  相似文献   

8.
The anatomic variations and the degenerative changes in the collateral cartilages and middle and distal phalanges in 6 Ardenner colts were characterized by radiography, scintigraphy, and magnetic resonance imaging (MRI). The radiographic changes were assessed between the ages of 16.5 and 25 months. An anatomic variation of the middle and distal phalanges was demonstrated in some of the colts. MRI examination of the 6 colts revealed an association between the deep digital flexor tendon cross-sectional area and body weight as well as foot circumference. Also, a thin collateral sesamoidean (suspensory navicular) ligament was observed subjectively. The presence of an extensive ossification of the collateral cartilages of the foot was found in these young horses. The ossification was characterized by the existence of 2 separate ossification centers, which had a tendency to unite. The radiographic interphalangeal degenerative lesions seen appear as bone remodeling of the dorsal edges of the middle and distal phalanx, on the insertion sites of collateral ligaments of the distal interphalangeal joint, the digital extensor tendon, and the distal interphalangeal joint capsule.  相似文献   

9.
Reasons for performing study: To date, few reports exist comparing magnetic resonance imaging (MRI) and computed tomography (CT) for imaging of the equine distal limb, yet clinicians are required to decide which modality to use regularly. Objectives: To report and compare anatomic visualisation scores obtained for CT, contrast enhanced CT (CECT) and standing low‐field MRI (LFMRI) in the equine foot. Hypothesis: Anatomic visualisation score discrepancies would exist between CT, CECT and LFMRI. Methods: Images of 22 lame horses (31 limbs) undergoing both CT and LFMRI of the foot were reviewed. When available, CECT images were reviewed. The deep digital flexor tendon (DDFT) was categorised into proximal to distal levels (A–D), structures were assigned visualisation scores (Grades 0–3) and technique comparisons were made using the paired marginal homogeneity test. Results: Computed tomography and LFMRI had similar visibility scores for the navicular bone, middle phalanx, DDFT‐B, collateral ligaments of the distal interphalangeal joint and collateral sesamoidean ligament of the navicular bone. The proximal and distal phalanx had lower visibility scores with LFMRI. The distal DDFT (C–D), distal sesamoidean impar ligament and synovial structures had higher scores with LFMRI. Contrast enhanced CT lowered DDFT and collateral sesamoidean ligament scores and raised distal interphalangeal synovium CT visualisation scores. Conclusions and potential relevance: Visualisation scores differ depending on imaging technique and anatomic structure of interest. This information increases our understanding of the limitations of CT, CECT and LFMRI to visualise anatomy in clinical cases.  相似文献   

10.
The purpose of this study was to describe the frequency of occurrence of severe ossification of the collateral cartilages (sidebone) coexistent with collateral desmitis of the distal interphalangeal joint (DIPJ) in lame horses. Sidebone was diagnosed and graded on standard radiographs and soft tissue injuries of the foot were diagnosed using standing low‐field magnetic resonance imaging (MRI). Of 15 horses with forelimb lameness and severe sidebone, 9 had evidence of concurrent collateral desmitis of the DIPJ. All 15 horses had damage to other structures (including the deep digital flexor tendon, distal sesamoidean impar ligament, collateral sesamoidean ligament, navicular bone and distal phalanx) within the affected feet as identified on MRI. The clinical and pathophysiological significance of concurrent collateral desmitis of the DIPJ and sidebone is currently uncertain. However, this study shows that injuries to multiple structures within the foot are common and that collateral desmitis of the distal interphalangeal joint is frequently seen in lame horses in conjunction with severe ossification of the collateral cartilages.  相似文献   

11.
Three isolated equine limbs were imaged with a low-field magnetic resonance system with a vertical magnetic field. Each limb was scanned in multiple positions with mild variation of the angle between the magnetic field and the long axis of the limb. When the long axis of the limb was not perpendicular to the magnetic field, a linear hyperintense signal was present at the palmar aspect of one of the deep digital flexor tendon lobes, at the level of the navicular bone and collateral sesamoidean ligaments, in proton density and T1-weighted pulse sequences. With increased angulation of the limb, the palmar hyperintense signal extended farther distally and proximally and additional signal hyperintensity was present at the dorsal aspect of the distal part of the other lobe of the deep digital flexor tendon. Increased signal intensity was also present in the collateral ligament of the distal interphalangeal joint on the same side as the palmar hyperintense signal in the tendon. The changes in the deep digital flexor tendon are due to the specific orientation of fibers at the palmar and dorsal aspect of the tendon, which is responsible for focal manifestation of the magic angle effect. Careful positioning of the limb perpendicular to the magnetic field can prevent this phenomenon. The association of palmar increased signal intensity in the deep digital flexor tendon with increased signal in the collateral ligament of the distal interphalangeal joint on the same side should be recognized as manifestations of the magic angle effect.  相似文献   

12.
Reasons for performing study: Erosion of the palmar (flexor) aspect of the navicular bone is difficult to diagnose with conventional imaging techniques. Objectives: To review the clinical, magnetic resonance (MR) and pathological features of deep erosions of the palmar aspect of the navicular bone. Methods: Cases of deep erosions of the palmar aspect of the navicular bone, diagnosed by standing low field MR imaging, were selected. Clinical details, results of diagnostic procedures, MR features and pathological findings were reviewed. Results: Deep erosions of the palmar aspect of the navicular bone were diagnosed in 16 mature horses, 6 of which were bilaterally lame. Sudden onset of lameness was recorded in 63%. Radiography prior to MR imaging showed equivocal changes in 7 horses. The MR features consisted of focal areas of intermediate or high signal intensity on T1‐, T2*‐ and T2‐weighted images and STIR images affecting the dorsal aspect of the deep digital flexor tendon, the fibrocartilage of the palmar aspect, subchondral compact bone and medulla of the navicular bone. On follow‐up, 7/16 horses (44%) had been subjected to euthanasia and only one was being worked at its previous level. Erosions of the palmar aspect of the navicular bone were confirmed post mortem in 2 horses. Histologically, the lesions were characterised by localised degeneration of fibrocartilage with underlying focal osteonecrosis and fibroplasia. The adjacent deep digital flexor tendon showed fibril formation and fibrocartilaginous metaplasia. Conclusions: Deep erosions of the palmar aspect of the navicular bone are more easily diagnosed by standing low field MR imaging than by conventional radiography. The lesions involve degeneration of the palmar fibrocartilage with underlying osteonecrosis and fibroplasia affecting the subchondral compact bone and medulla, and carry a poor prognosis for return to performance. Potential relevance: Diagnosis of shallow erosive lesions of the palmar fibrocartilage may allow therapeutic intervention earlier in the disease process, thereby preventing progression to deep erosive lesions.  相似文献   

13.
Foot pain is a common presenting complaint in Warmblood horses. The aim of this retrospective, cross‐sectional study was to determine the spectrum of foot lesions detected by magnetic resonance imaging (MRI) in Warmblood horses used for dressage, jumping, and eventing. The medical records of 550 Warmblood horses with foot pain that were scanned using standing MRI were reviewed and the following data were recorded: signalment, occupation, lameness, diagnostic analgesia, imaging results, treatments, and follow‐up assessments. Associations between standing MRI lesions and chronic lameness following treatment were tested. Abnormalities of the navicular bone (409 horses, 74%), distal interphalangeal joint (362 horses, 65%), and deep digital flexor (DDF) tendon (260 horses, 47%) occurred with the highest frequency. The following abnormalities were significantly associated (P < .05) with chronic lameness following conservative therapy: moderate to severe MRI lesions in the trabecular bone of the navicular bone, mild or severe erosions of the flexor surface of the navicular bone, moderate sagittal/parasagittal DDF tendinopathies, and moderate collateral sesamoidean desmopathies. Also, identification of concurrent lesions of the DDF tendon, navicular bone, navicular bursa, and distal sesamoidean impar ligament was associated with chronic lameness after conservative therapy. Development of effective treatment options for foot lesions that respond poorly to conservative therapy is necessary.  相似文献   

14.
Navicular disease is unlikely to be a single disease. The close anatomical and functional relationships between the navicular bone, collateral sesamoidean ligament, distal sesamoidean impar ligament, deep digital flexor tendon, navicular bursa and distal interphalangeal joint result in the frequent occurrence of combinations of injuries. There are a number of different pathological processes that affect the navicular bone, which probably have different aetiopathogeneses. While there is strong evidence that biomechanical forces may result in failure of functional adaptation and excessive modelling, it is likely that each disease or injury type has a multifactorial cause.  相似文献   

15.
The sites of bony attachment of the tendons, ligaments, and fibrous portion of the joint capsules of the equine metacarpophalangeal (fetlock) joint region were determined by gross dissection. These sites were transposed to standard radiographic views of the fetlock joint to yield illustrations that can be used as an aid in the diagnosis of soft tissue pathology from radiographs. Evidence of direct attachment of the common digital extensor tendon to the proximal phalanx was not found. Branches of the superficial digital flexor tendon were found to insert only on the middle phalanx. The recently described sites of insertion of the branches of the superficial digital flexor tendon to the proximal phalanx were found to be sites for attachment of the deep axial palmar ligaments of the proximal interphalangeal joint.  相似文献   

16.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the collateral sesamoidean ligaments (CSLs), distal sesamoidean impar ligament (DSIL), deep digital flexor tendon (DDFT), navicular bone, navicular bursa, distal interphalangeal (DIP) joint or collateral ligaments (CLs) of the DIP joint may contribute to palmar foot pain. METHODS: Feet were selected from horses with a history of unilateral or bilateral forelimb lameness of at least 2 months' duration that was improved by perineural analgesia of the palmar digital nerves, immediately proximal to the cartilages of the foot (Group 1, n = 32); or from age-matched control horses (Group 2, n = 19) that were humanely destroyed for other reasons and had no history of forelimb foot pain. Eight units of tissue were collected for histology: the palmar half of the articular surface of the distal phalanx, including the insertions of the DDFT and DSIL; navicular bone and insertion of the CSLs; DDFT from the level of the proximal interphalangeal (PIP) joint to 5 mm proximal to its insertion; synovial membrane from the palmar pouch of the DIP joint and the navicular bursa; CLs of the DIP joint and DSIL. The severity of histological lesions for each site were graded. Results were compared between Groups 1 and 2. RESULTS: There was no relationship between age and grade of histological abnormality. There were significant histological differences between groups for lesions of the flexor aspect, proximal and distal borders, and medulla of the navicular bone; the DSIL and its insertion and the navicular bursa; but not for lesions of the CSLs, the dorsal aspect of the navicular bone, distal phalanx and articular cartilage, synovium or CLs of the DIP joint. CONCLUSIONS: Pathological abnormalities in lame horses often involved not only the navicular bone, but also the DSIL and navicular bursa. Abnormalities of the navicular bone medulla were generally only seen dorsal to lesions of the FFC. POTENTIAL RELEVANCE: Adaptive and reactive change may be occurring in the navicular apparatus in all horses to variable degrees and determination of the pathogenesis of lesions that lead to pain and biomechanical dysfunction should assist specific preventative or treatment protocols.  相似文献   

17.
18.
Computed tomography (CT) was performed on 12 Finnhorse cadaver forefeet with known radiographic changes in the navicular bone (poor corticomedullary junction, irregular appearance of the flexor central eminence, uneven or unequal thickness of the flexor cortex, and/or irregular outline of the proximal or distal flexor margin). The purpose was to confirm the radiographic findings and to investigate if further information of the flexor aspect of the bone could be gained with CT. In CT, the midsagittal outline as well as the internal structure of the bones varied greatly. Different combinations of trabecular and compact bone were seen within the flexor central eminence. Lucencies within the compact bone were commonly present in the proximal half of the eminence, but in five bones lucencies were also identified in the distal half. Due to partial overlapping of the bone and varying bony composition of the eminence, accurate radiographic evaluation of the shape and internal structure of the flexor central eminence was often found to be difficult. The flexor cortex usually appeared to be thinner in CT than in conventional radiographs. Medullary sclerosis and poor flexor corticomedullary junction were commonly overinterpreted radiographically. New bone formation on the proximal flexor margin of the navicular bone was generally visualized in radiographs, but CT allowed also the evaluation of the internal structure of the bone. In one navicular bone, an avulsion fragment on the distal flexor margin was seen in CT images; radiographically this fragment could not be visualized. It was concluded that the flexor aspect of the navicular bone may be difficult to assess reliably with conventional radiography.  相似文献   

19.
CASE DESCRIPTION: A 5-year-old Appaloosa mare was examined for severe left forelimb lameness of 4 months' duration. CLINICAL FINDINGS: Lameness was evident at the walk and trot and was exacerbated when the horse circled to the left. Signs of pain were elicited in response to hoof testers placed over the frog of the left front hoof, and a palmar digital nerve block eliminated the lameness. Radiographs revealed no abnormalities, but magnetic resonance imaging (MRI) revealed increased bone density in the medullary cavity of the distal sesamoid (navicular) bone in the proton density and T2-weighted images and a defect in the fibrocartilage and subchondral bone of the flexor cortex. TREATMENT AND OUTCOME: Because of the absence of improvement after 4 months and the poor prognosis for return to soundness, the mare was euthanatized. An adhesion between the deep digital flexor tendon and the flexor cortex defect on the navicular bone was grossly evident, and histologic evaluation revealed diffuse replacement of marrow trabecular bone with compact lamellar bone. Changes were consistent with blunt traumatic injury to the navicular bone that resulted in bone proliferation in the medullary cavity. CLINICAL RELEVANCE: Use of MRI enabled detection of changes that were not radiographically evident and enabled accurate diagnosis of the cause of lameness. Navicular bone injury may occur without fracture and should be considered as a differential diagnosis in horses with an acute onset of severe unilateral forelimb lameness originating from the heel portion of the foot.  相似文献   

20.
Analgesia usually occurs within 5 min after administration of local anaesthetic solution into joints or around nerves in the distal portion of the limb. Gait should be assessed within 10 min after diagnostic regional analgesia of the distal portion of the limb because rapid diffusion of anaesthetic solution can result in anaesthesia of other nerve branches, thus confusing results of the examination. A palmar digital nerve block (PDNB) anaesthetises most of the foot, including the distal interphalangeal (DIP) joint (coffin joint), rather than just the palmar half of the foot, as was once commonly believed. To avoid partially anaesthetising the proximal interphalangeal joint (pastern joint), the palmar digital nerves should be anaesthetised near or distal to the proximal margin of the collateral cartilages. Clinicians should be aware that an abaxial sesamoid nerve block (ASNB) may ameliorate or abolish pain within the metacarpo/metatarso‐phalangeal joint (fetlock joint). Mepivacaine administered into the DIP joint desensitises the DIP joint and probably the palmar digital nerves to also cause anaesthesia of the navicular bursa, the navicular bone, the toe region of the sole, the digital portion of the deep digital flexor tendon (DDFT) and the distal portions of the collateral ligaments of the DIP joint. When a large volume of mepivacaine HCl (e.g. 10 ml) is administered, the heel region of the sole may also be desensitised. Only a small percentage of horses with disease of the collateral ligament(s) of the DIP joint show a significant improvement in lameness after intra‐articular analgesia of the DIP joint, and no horse is likely to improve after intrabursal analgesia of the navicular bursa. A PDNB, however, improves lameness substantially in most horses that are lame because of disease of the collateral ligament(s) of the DIP joint, and all affected horses are likely to become sound after an abaxial sesamoid nerve block. The degree of improvement in lameness associated with injury to one or both collateral ligaments of the DIP joint after PDNB is determined by the extent of the injury and the level at which the palmar digital nerves are anaesthetised. The further proximal the level of the injury within the collateral ligament, the less likely that lameness is ameliorated by analgesia of the DIP joint or a PDNB. Verschooten's technique appears to be the most accurate technique for centesis of the navicular bursa. Even though analgesia of the DIP joint results in analgesia of the navicular bursa, analgesia of the navicular bursa does not result in analgesia of the DIP joint. Pain arising from the DIP joint can probably be excluded as a cause of lameness when lameness is attenuated by analgesia of the navicular bursa. Analgesia of the digital flexor tendon sheath (DFTS) is likely to desensitise only structures that are contained within or border on the sheath itself (i.e. the superficial and deep digital flexor tendons, the straight and oblique distal sesamoidean ligaments, the annular ligaments of the fetlock and pastern, and the portion of the DDFT that lies within the foot). Because lameness caused by disease of the DDFT within the foot may fail to improve appreciably after analgesia of the palmar digital nerves, the DIP joint, or the navicular bursa, a portion of the DDFT within the foot and distal to the DFTS probably receives its sensory supply from more proximal deep branches of the medial and lateral palmar digital nerves that enter the DFTS. Performing intrathecal analgesia of the DFTS on horses with lameness that is unchanged after anaesthesia of the palmar digital nerves but resolves after an ASNB, may be useful in localising lameness to that portion of the DDFT that lies within the foot. Resolution of lameness after intrathecal analgesia of the DFTS justifies suspicion of a lesion within the digital portion of the DDFT or within structures contained within the DFTS. The belief that concurrent or sequential intra‐articular administration of medication substantially increases the risk of joint infection or that inflammation caused by the local anaesthetic solution may dampen the therapeutic response to intra‐articular medication appears to be unfounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号