共查询到18条相似文献,搜索用时 62 毫秒
1.
提出了基于色彩通道融合的回转窑火焰图像分割方法,由彩色火焰图像的红绿通道、红蓝通和绿蓝通道构成三幅新的图像,分别从中提取训练样本集,对三个神经网络进行训练,神经网络收敛后,各自对相应的图像进行分割,会得到三种不同的结果,采用均值、中值、模糊逻辑和神经网络四种方法将其进行融合,会得到很高的分割准确率,实验结果表明该方法是可行的。 相似文献
2.
基于RGB颜色相似度的成熟草莓图像分割 总被引:1,自引:0,他引:1
针对复杂背景下的成熟草莓图像,提出了一种基于RGB颜色相似度的成熟草莓图像分割算法(CS\|BASED RSIS)。首先提取成熟草莓区域,确定成熟草莓的主颜色,然后遍历待分割的图像,求出每个像素点相对于主颜色的颜色比和相似度,进行颜色相似度的阈值分类,最后经多次膨胀和去除小面积对象的数学形态学处理,输出分割结果。试验结果表明,在无粘连无遮挡、无粘连有遮挡、有粘连有遮挡3种复杂环境下,与OTSU等图像分割算法相比,CS\|BASED RSIS算法不仅能达到更好的分割效果,而且平均分割时间仅为0965 s,能满足成熟草莓机械化采摘的实时性要求。 相似文献
3.
为系统、全面地分析不同颜色指数对南方稻田图像分割的适应性,以分蘖期、拔节期稻田图像为研究对象,选择36种常用的颜色指数,采用Otsu阈值法开展基于颜色指数和阈值的图像分割研究,通过比较各颜色指数的分割结果,明确分蘖期和拔节期图像分割的主要干扰因素,筛选最适宜稻田图像分割的颜色指数。结果表明:水稻倒影、浮萍是分蘖期稻田图像分割的主要干扰因素,叶片镜面反射、浮萍和土壤阴影是拔节期稻田图像分割的主要干扰因素;组合指数COM2、MxEG、CIVE和GMR在分蘖期图像和拔节期图像均具有较好的分割精度。因此,基于颜色指数COM2、MxEG、CIVE、GMR和Otsu阈值的稻田图像分割方法对稻田图像分割的干扰要素具有较强的区分能力,分割精度较高,更适宜于南方稻田图像处理研究。 相似文献
4.
图像分割是苹果采摘机器准确识别和定位苹果的关键步骤.本研究首先采用线剖面方法对采集的苹果图像针对颜色特征进行分析,提出了利用颜色特征R-B的色差法对青果期苹果图像进行初步分割.在利用分割后的图像提取图像区域的形状特征(面积、周长、圆形度、离心率等).然后将得到的8个形状特征作为BP神经网络的输入量,随机选取一定数量的样本图像作为BP神经网络的训练样本图像和验证样本图像.样本图像经过BP神经网络训练后,建立了绿色苹果图像的分割模型.通过BP神经网络分割后的苹果图像,果实识别率高达89.3%,分割效果良好. 相似文献
5.
自然光或白炽灯照射下的猪肉图像会因反光作用导致亮斑噪声,且猪肉大理石纹纹理具有细小、分布较散等特点,不利于大理石纹识别。针对上述问题,通过对比多种光源条件,找到最佳拍摄环境,避免图像出现亮斑噪声。提取猪背最长肌横截面图的RGB颜色空间的R、G、B 3个颜色分量图,分别用阈值分割法、模糊C均值聚类分割算法(FCM)和基于高斯核的模糊C均值聚类分割算法(KFCM),对R、G、B分量图进行分割试验,通过图像处理技术自动识别出猪肉大理石纹,研究结果表明KFCM算法在R分量图上的分割结果最优。 相似文献
6.
为减少大田环境下光照不足对小麦图像分割的影响,以及提升小麦图像中偏黄叶片的提取效果,提出了将白平衡调整、局部同态滤波预处理和基于概率潜在语义分析(PLSA)模型的颜色命名算法相结合用于小麦图像分割的方法。首先,对大田采集的小麦图像进行白平衡调整,得到准确无偏色的图像;然后对光照不足的图像在HSI彩色模型下对亮度分量I进行局部同态滤波处理,以减少光照不足对图像的影响;最后在RGB彩色模型下基于PLSA模型构建的颜色名RGB值字典,提取图像中绿色和黄色像素点对应区域作为目标区域。结果表明,经白平衡调整后F1值提高1.61个百分点;光照不足图像经局部同态滤波处理后F1值提高12.43个百分点,分割效果明显提升;所提方法对绿色、叶片偏黄及光照不足的小麦图像分割的F1值分别为96.39%、97.29%和96.22%,均达到了较好的分割效果;所提方法与K-means聚类算法相比,虽点状噪音和细小孔洞相对较多,但在分割叶片偏黄小麦上F1值提高4.42%,整体分割效果较好,且稳定性强。 相似文献
7.
针对目前草莓采摘机器人草莓图像分割运算量大、耗时多等问题,根据CIE-XYZ颜色模型及其色度图,提出了一种在RGB彩模型中进行草莓图像色调分割的方法。该方法无需彩色模型转换,时间复杂性能较Lab彩色模型下a通道阈值分割算法与BP神经网络分割算法优越。对该算法进一步改进后,只需加减运算,无需乘除运算。试验结果表明:该算法能很好地实现成熟草莓果实与图像背景的分离,并较好的保存草莓轮廓信息,分割效率>85%;进一步对分割后的图像进行形态学处理,如膨胀、腐蚀等,有效消除了孔洞现象。 相似文献
8.
基于马氏距离的荔枝图像分割设计方法 总被引:4,自引:0,他引:4
在基于颜色特征和聚类的马氏距离算法基础上,利用MATLAB软件设计了人机交互式可视化计算机图像分割程序。运用该程序,对荔枝照片进行了图像分割,分离出复杂背景下的荔枝果实图像。结果表明:该程序能较好地解决复杂彩图中目标图像的分割问题,可以消除因不慎而修改源代码的风险;通过数据分析器和滤波器能准确的对采样数据进行判断以及对含噪声的目标图像作进一步处理。 相似文献
9.
10.
以MiroSot机器人为研究对象,通过理论与实践相结合的方法,对足球机器人视觉系统中的图像分割方法进行研究与分析,提出一种新的彩色图像阈值标定方法,使阈值设定更准确.经过处理,输出图像的质量得到相当程度的改善,既改善图像的视觉效果,又便于计算机对图像进行分析、处理和识别. 相似文献
11.
提出一种新的适用于跟踪移动机器人的视觉系统的彩色图像分割技术,这种方法采用符合人类视觉特性的HIS颜色空间表示图像的颜色特性,利用人对颜色的感知来对颜色分量进行非等间隔的量化并形成特征矢量,根据HIS颜色空间三个基本分量合成的一维特征矢量直方图进行分割,并克服HIS颜色空间存在不可避免的奇点对图像分割的影响.另外采用一种基于背景图像的非均匀光照修正算法,应用在足球机器人中.实验结果表明该方法不仅使目标定位和方向角更精确,而且提高动态环境下的鲁棒性. 相似文献
12.
[目的]获得自然环境下较好分割苹果图像的方法。[方法]选取苹果被遮挡(主要是叶子)、相互重叠的情况作为试验图片,采用欧几里得距离对彩色图像进行预处理,在预处理中,利用边界盒的相似性准则,提高了处理速度;对预处理的结果进行黑白(苹果和非苹果)编码,产生一副二值分割图像;最后采用数学形态学对二值化图像进行处理。[结果]有效的去除了复杂背景、目标物被遮挡、相互重叠等存在的图像噪声,去噪效果良好。[结论]算法对成熟苹果具有很好的分割效果,但不适合未成熟苹果的分割。 相似文献
13.
14.
野外采集的机器视觉图像往往包含复杂背景,会对机器视觉识别紫色土产生影响,为了避免背景干扰,分割提取紫色土区域图像是首要的工作.本文应用3×3小子阵的标准差测度,建立模型优化紫色土区域的土壤与杂质类间和类内方差比,获得优化的置信概率P和H域分割阈值,提出了一种基于切比雪夫不等式的自适应H阈值分割算法,实现基于图像自身紫色土特征的自适应分割,提升初分割出紫色土区域图像的精度.针对初分割结果中的孤立点、离散小土块和空洞,提出了从图像中心点出发的剔除背景区域孤立点和离散小土块的螺旋生长算法和基于4方向边界点确认的紫色土区域的空洞填充算法.仿真实验结果显示:自适应切比雪夫阈值分割算法与螺旋生长算法和空洞填充算法结合,分割提取出紫色土区域图像的误分率降低到3.24%,总时间花销更少,算法是有效的. 相似文献
15.
阈值选择是图像分割的基础,提出了基于三次样条函数的多阈值选取算法,能够应用于图像的多阈值分割。首先对图像的直方图进行三次样条函数拟合,再求出三次样条函数的多个极小值,即图像的阈值。实验结果显示,使用提出提出的方法能较准确地识别出直方图的多个波谷,从而实现对图像的多阈值分割。 相似文献
16.
17.
根据彩色农业图像的特点,以蔗苗为研究对象对OHTA颜色模型的三分量图进行分割试验,发现I3分量图的分割效果比I1、I2分量图的分割效果要好,更加适合干蔗苗图像分割。在I3分量图中,比较了3种阈值分割方法效果,试验结果发现Ostu法与直方图双峰法分割结果更为接近,比迭代法分割效果更好。 相似文献
18.
基于二叉树结构聚类算法的彩色图像分割研究 总被引:1,自引:0,他引:1
提出了一种基于二叉树结构的彩色图像分割方法,首先对待分割图像采用最优阈值化方法获取R,G,B 3个颜色空间的最佳阈值,然后通过构造自适用二叉树进行一次粗分割提取目标区域,最后采用C-均值聚类算法对二叉树的每个叶子节点进行精确分割.试验表明,该算法可以在保留原图像中大部分的信息的基础上,对目标物体进行有效的分割. 相似文献