首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of intraocular pressure in dogs   总被引:2,自引:0,他引:2  
Intraocular pressure (IOP) was measured by four different applanation tonometers in normal dogs. By MacKay-Marg tonometry in 391 dogs (772 eyes) the mean ± SD IOP was 18.8 ± 5.5 mmHg (range 8–52 mmHg). Using Tono-Pen XL tonometry in 421 dogs (823 eyes) the mean IOP was 19.2 ± 5.9 mmHg, and the range was 4.42 mmHg. With MMAC-II tonometry in 80 dogs (158 eyes), the mean IOP was 15.7 ± 2.8 mmHg with a range of 10–30 mmHg. By pneumatonograph tonometry in 135 dogs (255 eyes), the mean IOP was 22.9 ± 6.1 mmHg and the range was 10–47 mmHg. In this study 53 breeds were represented. Of those breeds with six animals or more, no significant differences were detected in IOP between breeds ( P > 0.353) or sex ( P > 0.270). There was a significant decline of 2–4 mmHg ( P > 0.0001) in IOP as age increased from less than 2 years to greater than 6 years of age. This trend was present with all of the four tonometers. There were no significant differences between the MacKay-Marg and TonoPen-XL tonometers ( P > 0.198), but significant differences with the MMAC-II ( P > 0.001) and pneumatonograph ( P > 0.001) tonometers existed compared to the first two instruments. Based on this study and the literature, the mean IOP for the normal dog is 19.0 mmHg with a range of 11 (5%) and 29 (95%) mmHg.  相似文献   

2.
Tonometry was performed to estimate intraocular pressure (IOP) in 12 Nubian ibexes ( Capra ibex nubiana ), 10 Grant zebras ( Equus burchelli  ) and five Arabian oryxes ( Oryx leucoryx ), using both applanation (Tono-Pen) and/or indentation (Schiotz) tonometers. Animals were anesthetized with a mixture of etorphine hydrochloride and acepromazine maleate. Mean (± SD) IOP in the ibex was 17.95 ± 4.78 mmHg (24 eyes, indentation tonometry). In the zebra, indentation tonometry (20 eyes) yielded a mean IOP of 25.30 ± 3.06 mmHg, and applanation tonometry (six eyes) yielded a mean IOP of 29.47 ± 3.43 mmHg. In the oryx, indentation tonometry (five eyes) yielded a mean IOP of 22.68 ± 8.15 mmHg, and applanation tonometry (10 eyes) yielded a mean IOP of 11.76 ± 3.43 mmHg. There were no significant effects of gender, age, weight, side or reading number on the IOP measured in any of the three species. No significant differences were found between the IOP of the three species, nor between the readings of the two instruments, although some of the P -values were close to the significance level.  相似文献   

3.
Contact neodymium:yttrium aluminum garnet (Nd:YAG) laser transscleral cyclophotocoagulation (TSCP) was performed on 23 eyes of 16 horses for treatment of glaucoma. The mean highest preoperative IOP was 51 ± 17 mmHg. Follow-up evaluation was available for 19 eyes 1 day after surgery, 14 eyes from 1 to 2 weeks, 16 eyes from 4 to 6 weeks, 9 eyes from 12 to 16 weeks, and 10 eyes greater than 20 weeks after laser treatment. The mean intraocular pressure (IOP) the day following surgery was 34 ± 13 mmHg. The mean IOP for each follow-up period was: one to two weeks postoperative, 23 ± 9 mmHg; four to six weeks, 24 ± 7 mmHg; 12–16 weeks, 28 ± 10 mmHg; and  20 weeks, 22 ± 9 mmHg. IOP measurements were significantly different from pretreatment values for all follow-up intervals except for weeks 12–16 ( P < 0.05). Treatment success was defined as maintenance of IOP < 30 mmHg. Treatment success was achieved in 93%, 88%, 78%, and 70% of the treated eyes at the 1–2 weeks, 4–6 weeks, 12–16 weeks, and the  20 weeks re-evaluation, respectively. No significant difference was found between the number of eyes visual at presentation (52.2%) and visual at 20 weeks (60%). The most common laser complications were conjunctival hyperemia (21.7%) and corneal ulcers (13.0%). Results of this study indicate that Nd:YAG TSCP is an effective method of controlling IOP and preserving vision in horses with glaucoma. An effective Nd:YAG laser protocol for TSCP in the equine glaucomatous eye is a power setting of 11 W, duration of 0.4 s, applied 5 mm posterior to the limbus at 60 sites, resulting in a total energy dose of 264 J.  相似文献   

4.
Intraocular pressure in normal llamas (Lama glama) and alpacas (Lama pacos)   总被引:1,自引:1,他引:0  
Objective: To determine the mean intraocular pressure in llamas ( Lama glama ) and alpacas ( Lama pacos ) using applanation tonometry. Animals studied: Ten llamas and 10 alpacas. Procedures: Intraocular pressure (IOP) was measured with a Tono-Pen™ XL (Mentor Ophthalmics, Inc., Norwell, MA, USA). Three values, with 5% variance, were recorded for each eye. Least-squares means were determined for IOP for each eye of llamas and alpacas. Controlling for age, differences between left and right eye were analyzed using anova . Two age groups were established, less than 5 years and greater than 5 years. The effect of age on IOP within each group was analyzed by linear regression. Probability values of less than 0.05 were considered significant. Results: Comparison of mean IOP between right ( n  = 20) and left eyes ( n  = 20), independent of species type, showed no differences in IOPs for llamas and alpacas. Mean IOP declined with increasing age in llamas and alpacas. Mean IOPs for 20 eyes in 10 llamas was 16.96 ± 3.51 mmHg. Mean IOP for 20 eyes in 10 alpacas was 16.14 ± 3.74 mmHg. Mean IOP for all eyes ( n  = 40), independent of species, was 16.55 ± 3.55 mmHg. The range of IOP in normal llamas and alpacas within 2 SD (95% of the population) was 14.89±18.21 mmHg. Conclusions: There was no significant difference in IOP between alpacas and llamas. Mean IOP in both species decreased with increased age.  相似文献   

5.
Objective  To determine the accuracy of and to establish reference values for a rebound tonometer (Tonovet®) in normal feline eyes, to compare it with an applanation tonometer (Tonopen Vet®) and to evaluate the effect of topical anesthesia on rebound tonometry.
Procedures  Six enucleated eyes were used to compare both tonometers with direct manometry. Intraocular pressure (IOP) was measured in 100 cats to establish reference values for rebound tonometry. Of these, 22 cats were used to compare rebound tonometry with and without topical anesthesia and 33 cats to compare the rebound and applanation tonometers. All evaluated eyes were free of ocular disease.
Results  Both tonometers correlated well with direct manometry. The best agreement with the rebound tonometer was achieved between 25–50 mmHg. The applanation tonometer was accurate at pressures between 0 and 30 mmHg. The mean IOP in clinically normal cats was 20.74 mmHg with the rebound tonometer and 18.4 mmHg with the applanation tonometer. Topical anesthesia did not significantly affect rebound tonometry.
Conclusions  As the rebound tonometer correlated well with direct manometry in the clinically important pressure range and was well tolerated by cats, it appears suitable for glaucoma diagnosis. The mean IOP obtained with the rebound tonometer was 2–3 mmHg higher than that measured with the applanation tonometer. This difference is within clinically acceptable limits, but indicates that the same type of tonometer should be used in follow-up examinations in a given cat.  相似文献   

6.
Objective  To evaluate and to validate the accuracy of the Perkins® handheld applanation tonometer in the measurement of IOP in dogs and cats.
Animals  Twenty eyes from 10 dogs and 10 cats immediately after sacrifice were used for the postmortem study and 20 eyes from 10 clinically normal and anesthetized dogs and cats were used for the in vivo study. Both eyes of 20 conscious dogs and cats were also evaluated.
Procedure  Readings of IOP postmortem and in vivo were taken using manometry (measured with a mercury column manometer) and tonometry (measured with a Perkins® handheld applanation tonometer). The IOP measurement with Perkins® tonometer in anesthetized and conscious dogs and cats was accomplished by instillation of proxymetacaine 0.5% and of 1% fluorescein eye drops.
Results  The correlation coefficient ( r 2) between the manometry and the Perkins® tonometer were 0.982 (dogs) and 0.988 (cats), and the corresponding linear regression equation were y  = 0.0893 x  + 0.1105 (dogs) and y  = 0.0899 x  + 0.1145 (cats) in the postmortem study. The mean IOP readings with the Perkins® tonometer after calibration curve correction were 14.9 ± 1.6 mmHg (range 12.2–17.2 mmHg) in conscious dogs, and were 15.1 ± 1.7 mmHg (range 12.1–18.7 mmHg) in conscious cats.
Conclusion  There was an excellent correlation between the IOP values obtained from direct ocular manometry and the Perkins® tonometer in dogs and cats. The Perkins® handheld tonometer could be in the future a new alternative for the diagnosis of glaucoma in veterinary ophthalmology.  相似文献   

7.
Ophthalmic examination findings in adult pygmy goats (Capra hicus)   总被引:1,自引:1,他引:0  
Objective To document normal ophthalmic findings and ocular abnormalities in captive adult pygmy goats. Animals studied Ten healthy adult pygmy goats (five male, five female; 5–11 years of age; 26–45 kg body mass) underwent complete ophthalmic examinations. Procedure Direct illumination, diffuse and slit‐beam biomicroscopy, indirect ophthalmoscopy, IOP measurements and Schirmer tear tests were performed. TonoVet® rebound tonometry, followed by topical application of 0.5% ophthalmic proparacaine, and Tono‐Pen XL® applanation tonometry were performed in each eye to obtain estimates of IOP. Results Ophthalmic abnormalities included corneal scars and pigmentation, incipient cataracts, lenticular sclerosis, and vitreal veiling. Mean STT values were 15.8 mm/min, with a range of 10–30 mm/min. Mean IOP values were 11.8 mmHg for TonoVet®‐D, with a range of 9–14 mmHg; 7.9 mmHg for TonoVet®‐P, with a range of 6–12 mmHg; and 10.8 mmHg for Tono‐Pen XL®, with a range of 8–14 mmHg. Conclusions Ophthalmic examination findings in adult pygmy goats, including normal means and ranges for STT and IOP measurements, using applanation and rebound tonometry, are provided.  相似文献   

8.
Objective  To compare the effect of topical latanoprost, intracameral carbachol, or no adjunctive medical therapy on the development of acute postoperative hypertension (POH) and inflammation after routine phacoemulsification and aspiration (PA) of cataracts in dogs.
Design  Retrospective study.
Procedures  Dogs received either one drop of topical 0.005% latanoprost (21 dogs, 39 eyes), an intracameral injection of 0.3 mL of 0.01% carbachol (15 dogs, 30 eyes), or no adjunctive therapy (46 dogs, 90 eyes) immediately following PA of cataract(s). Intraocular pressure (IOP) was measured in all dogs 2 and 4 h after surgery. IOP was measured and aqueous flare assessed at 8 am the day after surgery.
Results  Carbachol-treated dogs had significantly higher mean IOP (33.2 ± SD 20.8 mmHg) 2 h after surgery than dogs receiving no adjunctive therapy (22.0 ± SD 14.1 mmHg) ( P  =  0 .049). There were no significant differences in IOP among groups at any other time point. There were no significant differences in number of POH episodes between dogs treated with carbachol (47%), latanoprost (29%), or dogs that received no adjunctive therapy (33%). There were no significant differences in mean aqueous flare grade between eyes treated with latanoprost (1.7 ± SD 0.4) or carbachol (1.4 ± SD 0.6), and eyes that received no adjunctive therapy (1.7 ± SD 0.4).
Conclusions  Topical 0.005% latanoprost or intracameral injection of 0.3 mL of 0.01% carbachol after PA in dogs did not reduce POH or increase intraocular inflammation compared to dogs not receiving adjunctive therapy after PA of cataracts.  相似文献   

9.
Resumption of luteal activity postpartum and fertility were investigated in an Estonian Holstein high milk production and good fertility dairy herd. Body condition was scored after every 10 days in 54 multiparous dairy cows (71 lactations) calving inside from December to March during 4-year period. Blood samples were taken 1–14 days before calving and 1–14, 28–42 and 63–77 days after calving: analytes estimated were serum aspartate aminotransferase (AST), glucose, ketone bodies, total cholesterol, non-esterified fatty acids and triglycerides. The general linear mixed model was used to compare the data for cows with different characteristics in luteal activity postpartum based on their milk progesterone profiles. Forty-five per cent of cases had abnormal profiles; delayed resumption of ovarian cyclicity postpartum (DC) was the most prevalent abnormality. There was no difference in body condition scores between the groups. The DC and prolonged luteal phase groups had higher serum AST activity (p < 0.01) 1–14 days postpartum compared with normal group. The DC group also had higher cholesterol and triglyceride values (p < 0.05) 28–42 days postpartum and higher milk fat/protein ratio (p < 0.01) on the first month of lactation compared with normal profile group. Despite long post-calving anoestrous period (71 ± 5.0 days; mean ± SEM) DC group had 64.7% first service pregnancy rate (normal group 48.6% and PLP group 37.5%). This study did not find any detrimental effect of prolonged anovulatory period postpartum on subsequent fertility.  相似文献   

10.
Data from 498 cows of 15 breed-types produced in a five-breed diallel (reciprocals pooled) including Angus, Brahman, Hereford, Holstein and Jersey were analyzed for differences in productive longevity, mean life span and reasons for removal from the herd over approximately 14 yr. The only culling related to production was of cows that did not give birth to at least one live calf every 24 mo. Otherwise, cows were only removed when they appeared to be incapable of weaning another live calf. The average age at removal, estimated from linear regression, was 3,470 d, with values ranging from 2,174 d (Jersey) to 4,087 d (Angus-Brahman). Longevity of crossbred cows was greater than that of purebred cows (P less than .001). Purebred cows usually had higher initial rates of removal than crossbred cows. Estimates of mean longevity from the nonlinear regression resembled the results of the linear regression analysis; mean life spans ranged from 6.2 yr (Jersey) to 14.6 yr (Angus-Brahman). The major reason for removal of Brahman and Brahman-cross cows was for reproductive reasons. Angus and Angus-cross cows were culled more frequently for structural unsoundness; Hereford cows had a higher incidence of cancer eye, calving difficulty and mammary problems; cows with 100% dairy breeding had exceptionally high susceptibility to diseases and mineral imbalance.  相似文献   

11.
Objective To determine intraocular pressure (IOP) in adult yellow‐footed tortoises using applanation tonometry. Animals Fifteen healthy adult captive yellow‐footed tortoises (eight males and seven females). Procedures Intraocular pressures were estimated for tortoises by using an applanation tonometer after topical anesthesia. Body length, measured from nuchal to anal scutes, ranged from 27.5 to 57.2 cm. Five measurements from each eye were obtained by a single observer in an ambient temperature of approximately 30 °C. Results Mean ± SEM IOP of 30 eyes of 15 yellow‐footed tortoises was 14.2 ± 1.2 mmHg. Range of IOP was 6–30 mmHg for tortoises. Significant differences were detected neither between right and left eyes (P = 0.357) of individual tortoises, nor between males and females (P = 0.524). Observer's readability was good (intraclass coefficient = 0.65), and IOP did not change over the ordered five measurements. Conclusions There was no significant difference in IOP between males and females in this specie. Tonometry values for normal eyes may represent a useful diagnostic methodology for recognition and treatment of ocular diseases in reptiles.  相似文献   

12.
The normal sonographic appearance of the adult canine gastrointestinal tract has been described. Interpretation of abdominal ultrasonographic findings in puppies is difficult due to the lack of information on normal ultrasonographic findings. The gastrointestinal tract, jejunal lymph node size and the presence and appearance of abdominal fluid were investigated in 23 normal, 7–12-week-old Beagle puppies. The duodenal wall thickness was greater than in other parts of the gastrointestinal tract (mean 3.8 ± standard deviation [SD] 5 mm, range 3.2–4.8 mm). The mean stomach wall thickness was 2.7 ± SD 0.4 mm (range 2.2–3.7 mm), the mean jejunal wall thickness was 2.5 ± SD 0.5 mm (range 1.2–3.4 mm), and the mean colonic wall thickness was 1.3 ± SD 0.3 mm (range 0.7–2.0 mm). In addition, mean duodenal and jejunal mucosal layer thicknesses measured 2.7 ± SD 0.5 mm (range 2.0–3.8 mm) and 1.5 ± SD 0.4 mm (range 0.6–2.5 mm), respectively. Homogenous, hypoechoic jejunal lymph nodes were easily found and the mean thickness was 7.1 ± SD 2.2 mm (range 1.5–12.5 mm). A mild amount of anechoic free peritoneal fluid was present in all puppies.  相似文献   

13.
Intraocular pressure (IOP) was measured in 73 eyes of 37 clinically normal cats with 2 applanation tonometers (Tono-Pen and Mackay-Marg) and the Schiotz indentation tonometer, using the 5.5- and 7.5-g weights. Statistically, the Tono-Pen tonometer underestimated IOP compared with the values obtained by use of the Mackay-Marg tonometer (P less than 0.0001) and the Schiotz tonometer, with either weight and either the human (P less than 0.01) or the canine (P less than 0.0001) calibration tables. Estimates of IOP using the human calibration table and either the 5.5- or 7.5-g weight were not significantly different from each other or from those obtained with the Mackay-Marg tonometer. Schiotz measurements obtained with either weight and converted using the canine calibration table were not only significantly (P less than 0.0001) different from each other, but were also clinically and significantly (P less than 0.0001) higher than measurements obtained with the Tono-Pen and Mackay-Marg tonometers or the Schiotz tonometer, using the human calibration table and either weight. Approximately three quarters of clinically normal cats had an IOP greater than or equal to 30 mm of Hg when Schiotz tonometer measurements were converted with the canine conversion table. The human calibration table was the most clinically useful table for converting Schiotz measurements from clinically normal feline eyes to estimates of IOP in mm of Hg. Normal mean (+/- SD) feline readings with the Schiotz tonometer and the 5.5-g weight was 3.9 +/- 1.4 tonometer scale units (range, 1.0 to 7.5; 95% confidence interval [CI], 1.1 to 6.7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The purposes of the study were to describe the ultrasonographic appearance and measurements of the normal bovine eye, to compare the measurements to those reported previously for cadaveric eyes and to describe differences between ocular dimensions of Holstein Friesian and Jersey cattle. Sixty transpalpebral ocular ultrasonographic examinations were performed on 30 adult Holstein Friesian cows, and 16 examinations were performed on 8 adult Jersey cows. Transpalpebral ultrasonographic images were obtained with a 10 MHz linear transducer in both horizontal and vertical imaging planes. The ultrasonographic appearance of structures within the bovine eye is similar to that in other species, although the ciliary artery was frequently identified, appearing as a 0.33 +/- 0.04 cm diameter hypoechoic area. The axial length of the globe was significantly greater in Holstein Friesian cattle (3.46 +/- 0.09 cm) compared with Jersey cattle (3.27 +/- 0.19 cm; P = 0.001), although the vitreous depth was smaller in Holstein Friesian cattle (1.46 +/- 0.09 cm) (P = 0.0009). The anterioposterior depth of the lens was significantly greater in Jersey cattle (1.92 +/- 0.11 cm) and the cornea was thinner in Jersey cattle (0.17 +/- 0.02 cm). The appearance and ocular distances for live animals were similar to those reported previously for cadaveric specimens. The knowledge of normal ocular dimensions facilitates the use of ultrasonography in the evaluation of ocular disease in cattle.  相似文献   

15.
Intraocular pressure (IOP) was measured in 114 eyes of 57 clinically normal dogs with 2 applanation tonometers (Tono-Pen and Mackay-Marg) and the Schiotz indentation tonometer, using the 5.5- and 7.5-g weights. Significant differences were not detected between measurements obtained with the Tono-Pen and Mackay-Marg tonometers the Mackay-Marg and Schiotz tonometers using either weight and conversion with the human calibration table, or the Tono-Pen and Schiotz tonometers using the 7.5-g weight and the human calibration table. Values obtained by use of the Tono-Pen tonometer were significantly less (P less than 0.005) than values obtained with the Schiotz tonometer when a 5.5-g weight and the human calibration table were used, but the amount was clinically unimportant. Estimates of IOP using the Schiotz tonometer and the canine calibration table, and either the 5.5- or 7.5-g weight were clinically and significantly much higher (P less than 0.0001) than estimates obtained with the Tono-Pen, Mackay-Marg, or Schiotz tonometers, using the human calibration table and either weight. Sixty to 70% of clinically normal dogs had an IOP greater than or equal to 30 mm of Hg when Schiotz scale measurements were converted with the canine conversion table. For clinically normal dogs, the human calibration table was the most clinically useful table for converting Schiotz tonometer measurements to mm of Hg. Normal mean (+/- SD) canine readings with the Schiotz tonometer and the 5.5-g weight was 4.9 +/- 1.5 tonometer scale units (range, 2 to 11; 95% confidence interval, 1.9 to 7.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Diurnal variations in central corneal thickness (CCT) and intraocular pressure (IOP) and their relationships were studied in healthy dogs. Central corneal thickness was measured by ultrasonic pachymetry and IOP by applanation tonometry in 16 beagle dogs. Measurements were taken every 90 min over 12 h (08:00 am to 08:00 pm). The mean CCT and IOP values obtained during the sampling period were 545.6 ± 21.7 μm (range: 471 to 595 μm) and 15 ± 2.2 mmHg (range: 10 to 19 mmHg), respectively. The CCT and IOP showed statistically significant decreases at 6:30 pm and 5:00 pm, respectively (P < 0.001). Central corneal thickness and IOP values were lower in the afternoon/evening than in the morning and were positively correlated. Both findings are important for the diagnostic interpretation of IOP values in dogs.  相似文献   

17.
Pour-on administration of the macrocyclic lactones anti-parasitic compounds in beef and dairy cattle is now worldwide accepted. However, the information available on their milk excretion pattern, after topical administration is rather limited. Additionally, the cattle licking behaviour has been proven to affect the kinetics of these anti-parasitic compounds. The purpose of this study was to investigate the influence of the natural licking behaviour on the plasma and milk disposition of moxidectin (MXD), topically administered (500 μg/kg) in lactating dairy cows. Ten lactating Holstein dairy cows (705 kg body weight) were allocated into two experimental groups ( n  = 5). The licking was prevented during 5 days postadministration in animals in group I, and the remaining cows (group II) were allowed to lick freely. MXD concentrations profiles were measured in plasma and milk over 15 days posttreatment. The licking restriction period caused marked changes in MXD disposition kinetics both in plasma and milk. Both plasma and milk MXD concentrations (partial AUC 0–5 days) were significantly lower ( P  < 0.05) in licking-restricted cows. After the 5-day of restriction period, the animals were allowed to lick freely, which permitted the oral ingestion of MXD, situation clearly reflected both in plasma profile and milk excretion pattern. Despite the enhanced MXD milk concentrations measured in free-licking cows, drug concentrations did not reach the maximum MXD residues limit.  相似文献   

18.
The effect of heat stress on changes in milk production, rectal temperature, respiratory rate and blood chemistry was evaluated in three groups of six mature Holstein, Jersey and Australian Milking Zebu (AMZ) dairy cows. These animals were subjected to a cool environment when the mean temperature-humidity index (THI) was 72+/-1.4 (dry bulb temperature of 22.2-24.4 degrees C and relative humidity of 100-60%) during the month of December. This experiment was repeated during the hotter month of July of the following year, when the mean THI was 93+/-3.1 (dry bulb temperature of 35.6-43.9 degrees C and relative humidity 95-35%). Holstein cows produced more (p <0.01) milk than AMZ and Jersey cows during the cooler months of the year and all the cows were dry during the hotter months from June until September. Heat stress increased (p<0.01) rectal temperature and respiratory rate in all three breeds. Heat stress had no effect on blood pH in Holstein and AMZ cows but lowered (p <0.01) blood pH from 7.42 to 7.34 in Jersey cows. In addition, heat stress lowered (p <0.01) blood pCO2 (kPa), bicarbonate (HCO3, mmol/L), base excess (BE, mmol/L) and plasma chloride (Cl-, mmol/L) in all three breeds. The total haemoglobin (THb, g/dl) was elevated (p <0.01) in all three breeds when they were subjected to heat stress. Heat stress increased (p<0.01) oxygen saturation (O2SAT, %) in Jersey and AMZ cows but lowered it (p <0.01) in Holstein cows. On the other hand, heat stress increased (p <0.01)pO2 (kPa) in Holstein and Jersey cows but lowered it (p <0.01) in AMZ cows. Heat stress increased (p <0.01) plasma potassium (K, mmol/L) and calcium (Ca, mmol/L) only in Holstein and Jersey cows but lowered them (p<0.01) in AMZ cows. The plasma glucose (GLU, mmol/L) increased (p<0.01) with heat stress in Holstein and AMZ cows but decreased (p <0.01) in Jersey cows. Heat stress increased (p<0.01) plasma creatinine (CR, (mol/L) but lowered (p<0.01) plasma creatinine phosphokinase (CPK, IU/L), aspartate aminotransferase (AST, IU/L) and blood urea nitrogen (BUN, mmol/L) in all three breeds. These results indicate that heat-stressed Holstein and AMZ cows were able to maintain their acid-base balance with a marginal change in their pH of 0.02 when their rectal temperatures increased by 0.47 and 0.38 degrees C, respectively. When heat stress increased the rectal temperature in Jersey cows by 0.70 degrees C, the pH decreased (p<0.01) from 7.42 to 7.34. However, even with this decrease 0.08 the pH is still within the lower physiological limit of 7.31.  相似文献   

19.
The objective of this study was to evaluate and validate the accuracy of the Perkins handheld applanation tonometer for measuring intraocular pressure (IOP) in horses and cattle. Both eyes of 10 adult horses and cattle were evaluated in a postmortem study. The eyes from 10 clinically normal adult horses and cattle were also examined after bilateral auriculopalpebral nerve block and topical anesthesia for an in vivo study. IOP was measured postmortem using direct manometry (measured with an aneroid manometer) and tonometry (measured with a Perkins handheld applanation tonometer). The correlation coefficients (r2) for the data from the postmortem manometry and Perkins tonometer study were 0.866 for horses and 0.864 for cattle. In the in vivo study, IOP in horses was 25.1 ± 2.9 mmHg (range 19.0~30.0 mmHg) as measured by manometry and 23.4 ± 3.2 mmHg (range 18.6~28.4 mmHg) according to tonometry. In cattle, IOP was found to be 19.7 ± 1.2 mmHg (range 18.0~22.0 mmHg) by manometry and 18.8 ± 1.7 mmHg (range 15.9~20.8 mmHg) by tonometry. There was a strong correlation between the IOP values obtained by direct ocular manometry and the tonometer in both horses and cattle. Our results demonstrate that the Perkins handheld tonometer could be an additional tool for accurately measuring IOP in equine and bovine eyes.  相似文献   

20.
The relationship of cataract maturity to intraocular pressure in dogs   总被引:2,自引:2,他引:0  
Objective To determine the distribution of intraocular pressure, as measured by applanation tonometry, in dogs with cataracts, and compare these tonometric results to the different stages of cataract formation (incipient, immature, mature, and hypermature). Animals studied Retrospection study of canine clinical patients (86 dogs). Procedures All records of dogs presented from 1991 to 1996 to the university veterinary medical teaching hospital for diagnosis of cataracts and evaluation for cataract surgery were reviewed. The tonometric measurements from the initial ophthalmic examination were selected in cataractous and nonglaucomatous eyes either receiving no topical or no systemic medications. The stage of cataracts was based on the degree of opacification, tapetal reflection, clinical vision, and visibility of the ocular fundus by indirect ophthalmoscopy. The distribution of tonometric results were grouped by the cataract maturity, and compared by anova and Tukey’s general linear tests. Results Intraocular pressure with incipient cataracts ranged from 9 to 17 mmHg (mean 12.7 ± 1.2 mmHg). Intraocular pressure with immature cataracts ranged from 3 to 27 mmHg (mean 13.6 ± 0.6 mmHg). For the mature cataracts, IOP ranged from 5 to 22 mmHg (mean 11.9 ± 0.7 mmHg). For the hypermature cataract group, IOP ranged from 4 to 23 mmHg (mean 10.8 ± 0.6 mmHg). Comparison of the tonometric results among the different stages of cataract formation indicated a significant difference (P = 0.0086) between only the immature and hypermature groups. Conclusions Intraocular pressure in lens‐induced uveitis (LIU) is lowered but the relationship to the stage of cataract maturity is less clear. Significant tonometric differences were present between the immature and hypermature cataract groups, but these differences are too small to be clinically useful. Decreased intraocular pressure of dogs with all stages of cataract formation suggests concurrent LIU during all stages of cataract formation, especially with the mature and hypermature stages. The average tonometric measurements in dogs with these cataracts were about two standard deviations below the mean IOP reported in normal dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号