首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REASONS FOR PERFORMING STUDY: The differential diagnosis of foot pain has long proved difficult and the use of magnetic resonance imaging (MRI) offers the opportunity to further the clinical understanding of the subject. OBJECTIVES: To determine the incidence of deep digital flexor tendon (DDFT) injuries in a series of 75 horses with lameness associated with pain localised to the digit, with no significant detectable radiographic or ultrasonographic abnormalities, using MRI; and to describe a variety of lesion types and relate DDF tendonitis with anamnesis, clinical features, response to local analgesic techniques and nuclear scintigraphic and ultrasonographic findings. METHODS: All horses undergoing MRI of the front feet between January 2001 and October 2002 were reviewed and those with DDFT injuries categorised according to lesion type; horses with primary tendonitis (Group I) and those with concurrent abnormalities of the navicular bone considered to be an important component of the lameness (Group II). The response to perineural analgesia of the palmar digital nerves and palmar (abaxial sesamoid) nerves, intra-articular analgesia of the distal interphalangeal (DIP) joint and analgesia of the navicular bursa were reviewed. The result of ultrasonography of the pastern and foot was recorded. Lateral, dorsal and solar pool and bone phase nuclear scintigraphic images were assessed subjectively and objectively using region of interest (ROI) analysis. RESULTS: Forty-six (61%) of 75 horses examined using MRI had lesions of the DDFT considered to be a major contributor to lameness. Thirty-two horses (43%) had primary DDFT injuries and 14 (19%) a combination of DDF tendonitis and navicular bone pathology. Lesions involved the insertional region of the tendon alone (n = 3), were proximal to the navicular bone (n = 23) or were at a combination of sites (n = 20). Lesion types included core lesions, focal and diffuse dorsal border lesions, sagittal plane splits, insertional injuries and lesions combined with other soft tissue injuries. Many horses had a combination of lesion types. Lameness was abolished by palmar digital analgesia in only 11 of 46 horses (24%). Twenty-one of 31 horses (68%) in Group I showed > 50% improvement in lameness after intra-articular analgesia of the DIP joint, whereas 11 of 12 horses (92%) in Group II had a positive response. Twelve of 18 horses (67%) in Group I had a positive response to analgesia of the navicular bursa. Nineteen horses had lesions of the DDFT extending proximal to the proximal interphalangeal joint seen using MRI, but these were identified ultrasonographically in only 2 horses. Scintigraphic abnormalities suggestive of DDFT injury were seen in 16 of 41 horses (41%), 8 in pool phase images and 8 in bone phase images. CONCLUSIONS AND POTENTIAL RELEVANCE: DDFT injuries are an important cause of lameness associated with pain arising from the digit in horses without detectable radiographic abnormalities. Lameness is not reliably improved by palmar digital analgesia, but may be improved by intra-articular analgesia of the DIP joint in at least 68% of horses. Ultrasonography is not sensitive in detecting lesions of the DDFT in the distal pastern region, but a combination of pool and bone phase scintigraphic images of the digit is helpful in some horses. Further follow-up information is required to determine the prognosis for horses with lesions of the DDFT in the digit and to establish whether this is related to lesion severity and/or location.  相似文献   

2.
Foot pain is an important cause of lameness in horses. When horses with foot pain have no detectable radiographic abnormalities, soft‐tissue assessment remains a diagnostic challenge without magnetic resonance (MR) imaging. Ultrasonography can provide an alternative to MR imaging when that modality is not available but the extent of changes that might be seen has not been characterized. We reviewed the ultrasonographic findings in 39 horses with lameness responding positively to anesthesia of the palmar digital nerves and without radiographically detectable osseous abnormalities. Thirty of the 39 horses had lesions affecting the deep digital flexor tendon (DDFT), 27 had abnormalities in the distal interphalangeal joint of which six had a visible abnormality in the collateral ligament. Ultrasonographic abnormalities were seen in the podotrochlear bursa in 22 horses and in the ligaments of the navicular bone in two horses. Abnormalities of the navicular bone flexor surface were detected in eight horses. In three of the 39 horses, only the DDFT was affected. The other 36 horses had ultrasonographic abnormalities in more than one anatomical structure. Based on our results, ultrasonographic examination provides useful diagnostic information in horses without radiographic changes.  相似文献   

3.
Reasons for performing study: Primary lesions of the deep digital flexor tendon (DDFT) within the digit are an important cause of lameness diagnosed using magnetic resonance imaging (MRI) but appearance of these lesions over time has not been documented. Objectives: To determine whether the magnetic resonance (MR) appearance of different primary DDFT lesions alter over a 6 month period and whether lesion type is a determinant of these changes. Methods: Cases included had lameness attributable to a primary lesion involving the DDFT in the digit diagnosed on MRI. Lesions were typed into parasagittal, dorsal border and core lesions. Approximate volumes and intensities were quantified for each lesion type using T2* scan sequences. Follow‐up examinations and measurements were repeated at 3 and 6 month periods following conservative management. Results: Twenty‐three horses fitted the inclusion criteria. Lesion distribution included: parasagittal (n = 7), dorsal border (n = 11) and core lesions (n = 5). No association was found between age of horse, degree of lameness and lesion type. Only dorsal border lesions showed statistically significant reduction both in volume (initial scan: 0.18 ± 0.14 cm3) at 3 months (0.11 ± 0.10 cm3, P<0.05) and 6 months (0.05 ± 0.05 cm3, P<0.01) and ratiometric intensity (initial scan: 4.06 ± 1.54) at 6 months (2.00 ± 0.43; P<0.01). Parasagittal and core lesions showed no difference in lesion volume or ratiometric intensity. Lameness improved in all lesion types following conservative management. Conclusions: Dorsal border lesions of the DDFT show reduction in both volume and intensity whereas parasagittal and core lesions do not. Potential relevance: Lesion typing may be important in predicting lesion behaviour and short‐term outcome using MR imaging.  相似文献   

4.
We report the use of low-field standing magnetic resonance imaging in the standing horse for the diagnosis of osseous lesions in the metacarpophalangeal (MCP) or metatarsophalangeal (MTP) joint that were not apparent using standard radiography. Thirteen horses were studied and all had thickening of the subchondral bone plate and abnormal signal intensity in the adjacent spongiosa in either the condyles of metacarpal/metatarsal III or the proximal phalanx or both. Abnormalities were characterized by diffuse decreased signal intensity on T1-weighting adjacent to the subchondral bone and within the spongiosa in at least two imaging planes; in the absence of increases in signal intensity in fat-suppressed images, this change was interpreted as bone sclerosis. Nine horses also had a diffuse decreased signal intensity on T2*-weighting in the same areas and five had a diffuse increase in signal intensity in fat-suppressed images in conjunction with a decrease in signal intensity on T1- and T2*-weighted images; the increase in signal intensity in fat-suppressed images was interpreted as fluid accumulation. Five horses had a focal area of change in signal intensity within the subchondral bone with apparent loss of definition between the subchondral bone and the articular cartilage. Eleven horses were available for follow up, of which eight were sound and three remained lame. We conclude that lameness originating from the MCP or MTP joint may be associated with osseous damage in horses of any signalment in the absence of radiographic changes.  相似文献   

5.
Sagittal groove injuries of the proximal phalanx are an important cause of lameness in performance horses. The purpose of this retrospective case series study was to describe standing low‐field magnetic resonance imaging (MRI) characteristics of these injuries in a group of Warmblood horses. Horses with an MRI diagnosis of sagittal groove injuries involving the proximal phalanx and that had follow‐up MRI and clinical outcome information were included. Findings from clinical examinations, diagnostic tests, and other imaging modalities were recorded. All MRI studies were retrieved for re‐evaluation by an experienced, board‐certified veterinary radiologist. A total of 19 horses met inclusion criteria. All horses had MRI lesions consistent with unilateral or bilateral sagittal groove injuries of the proximal phalanx and abnormal mineralization of the sagittal ridge of the third metacarpal/metatarsal bone. Fifteen horses (79%) had concurrent osteoarthritis of the affected metacarpophalangeal/metatarsophalangeal joint. Eighteen horses received conservative therapy and all horses still had osseous abnormalities detected at the time of follow‐up MRI. Thirteen horses (68.5%) were still lame at the time of follow ‐ up, whereas the other six horses (31.5%) had become sound and returned to the previous level of exercise. Findings indicated that, for mature Warmblood horses, acute or chronic injuries of the sagittal groove of the proximal phalanx may have variable standing low‐field MRI characteristics. Based on this sample of 19 horses, findings also indicated that the prognosis for performance soundness in horses diagnosed with sagittal groove injury of the proximal phalanx and concurrent osteoarthritis is poor.  相似文献   

6.
Foot conformation in the horse is commonly thought to be associated with lameness but scientific evidence is scarce although it has been shown in biomechanical studies that foot conformation does influence the forces acting on the deep digital flexor tendon (DDFT) and the navicular bone (NB). The aim of this study was to determine the relationships between foot conformation and different types of lesion within the foot in lame horses. It was hypothesised that certain conformation parameters differ significantly between different types of foot lesions. Conformation parameters were measured on magnetic resonance images in the mid-sagittal plane of 179 lame horses with lesions of their deep digital flexor tendon (DDFT), navicular bone (NB), collateral ligaments of the distal interphalangeal joints and other structures.Conformation parameters differed significantly between lesion groups. A larger sole angle was associated with combined DDFT and NB lesions, but not with NB lesions alone. A more acute angle of the DDFT round the NB was associated with DDFT and NB lesions, and a lower heel height index with DDFT injury. The larger the sole angle the smaller the likelihood of a DDFT or NB lesion with odds ratios of 0.86 and 0.90, respectively. This study shows an association between foot conformation and lesions but it does not allow the identification of conformation as causative factor since foot conformation may change as a consequence of lameness. Future studies will investigate foot-surface interaction in lame vs. sound horses, which may open a preventative and/or therapeutic window in foot lame horses.  相似文献   

7.
Foot pain is a common presenting complaint in Warmblood horses. The aim of this retrospective, cross‐sectional study was to determine the spectrum of foot lesions detected by magnetic resonance imaging (MRI) in Warmblood horses used for dressage, jumping, and eventing. The medical records of 550 Warmblood horses with foot pain that were scanned using standing MRI were reviewed and the following data were recorded: signalment, occupation, lameness, diagnostic analgesia, imaging results, treatments, and follow‐up assessments. Associations between standing MRI lesions and chronic lameness following treatment were tested. Abnormalities of the navicular bone (409 horses, 74%), distal interphalangeal joint (362 horses, 65%), and deep digital flexor (DDF) tendon (260 horses, 47%) occurred with the highest frequency. The following abnormalities were significantly associated (P < .05) with chronic lameness following conservative therapy: moderate to severe MRI lesions in the trabecular bone of the navicular bone, mild or severe erosions of the flexor surface of the navicular bone, moderate sagittal/parasagittal DDF tendinopathies, and moderate collateral sesamoidean desmopathies. Also, identification of concurrent lesions of the DDF tendon, navicular bone, navicular bursa, and distal sesamoidean impar ligament was associated with chronic lameness after conservative therapy. Development of effective treatment options for foot lesions that respond poorly to conservative therapy is necessary.  相似文献   

8.
Reasons for performing study: Diagnostic navicular bursoscopy has been described in limited cases. Review of greater numbers is needed to define its contribution to case management and prognostic values. Objectives: To report: 1) clinical, diagnostic and endoscopic findings in a series of cases, 2) surgical techniques and case outcomes and 3) prognostic values. The authors hypothesise: 1) lameness localising to the navicular bursa is commonly associated with dorsal border deep digital flexor tendon (DDFT) lesions, 2) endoscopy allows extent of injuries to be assessed and treated, 3) case outcome relates to severity of DDFT injury and 4) the technique is safe and associated with little morbidity. Materials and methods: All horses that underwent endoscopy of a forelimb navicular bursa for investigation of lameness were identified. Case files were reviewed and those with injuries within the bursa selected for further analysis. Results: One‐hundred‐and‐fourteen horses were identified. Ninety‐two had injuries within the bursa and DDFT injuries were identified in 98% of bursae. Of those examined with magnetic resonance imaging (MRI), 56% had combination injuries involving the DDFT and navicular bone. Sixty‐one percent of horses returned to work sound, 42% returned to previous performance. Horses with extensive tearing and combination injuries of the DDFT and navicular bone identified with MRI, had worse outcomes. Conclusions: Lameness localising to the navicular bursa is commonly associated with injuries to the dorsal border of the DDFT. Endoscopy permits identification and characterisation of injuries within the navicular bursa and enables lesion management. Outcome following debridement is related to severity of injury but overall is reasonable. Potential relevance: Horses with lameness localising to the navicular bursa may have tears of the DDFT. Bursoscopy is able to contribute diagnostic and prognostic information and debridement of lesions improves outcome compared to cases managed conservatively.  相似文献   

9.
Objective Conventional imaging modalities can diagnose the source of foot pain in most cases, but have limitations in some horses, which can be overcome by using magnetic resonance imaging (MRI). However, there are no reports of the MRI appearance and prevalence of foot lesions of a large series of horses with chronic foot lameness. Methods In the present study, 79 horses with unilateral or bilateral forelimb lameness because of chronic foot pain underwent standing low‐field MRI to make a definitive diagnosis. Results Of the 79 horses, 74 (94%) had alterations in >1 structure in the lame or lamest foot. Navicular bone lesions occurred most frequently (78%) followed by navicular bursitis (57%), deep digital flexor tendonopathies (54%) and collateral desmopathy of the distal interphalangeal joint (39%). Effusion of the distal interphalangeal joint was also a frequent finding (53%). Conclusion Low‐field MRI in a standing patient can detect many lesions of the equine foot associated with chronic lameness without the need for general anaesthesia.  相似文献   

10.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the deep digital flexor tendon (DDFT) may contribute to palmar foot pain; ageing degenerative changes may be seen in horses free from lameness; and horses with lameness are likely to have a greater severity of abnormalities than age-matched horses with no history of foot pain. METHODS: Feet were selected from horses with a history of uni- or bilateral forelimb lameness of at least 2 months' duration. Histology of the DDFT from the level of the proximal interphalangeal joint to its insertion were examined and the severity of lesions for each site graded. Associations between lesions of the navicular bone, collateral sesamoidean ligaments (CSL), distal sesamoidean impar ligament, navicular bursa, distal interphalangeal (DIP) joint synovium and collateral ligaments of the DIP joint and DDFT were assessed. RESULTS: There was no relationship between age and grade of histological abnormality of the DDFT. There were significant histological differences between groups for lesions of the dorsal layers of the DDFT, but not for lesions of the palmar aspect. There were significant associations between histological grades for the superficial dorsal layer of the DDFT and flexor aspect of the navicular bone; and between the deep dorsal layer of the DDFT and the proximal border and medulla of the navicular bone. The navicular bursa grade was correlated with grades for the superficial dorsal, deep dorsal and deep palmar layers of the DDFT. The histological grades for the CSL and the superficial dorsal layer of the DDFT were also associated. CONCLUSIONS: Pathological abnormalities in lame horses often involved the DDFT in addition to the navicular bone. Vascular and matrix changes may precede changes in the fibrocartilage of the navicular bone. POTENTIAL RELEVANCE: Identification of factors leading to vascular changes within the interstitium of the DDFT and changes in matrix composition, may help in future management of palmar foot pain.  相似文献   

11.
Despite the increasing use of magnetic resonance imaging (MRI), ultrasound remains a valuable tool to diagnose injuries that cause distal extremity lameness in the horse. The key to a successful examination is a strong knowledge of anatomy in combination with proper ultrasonographic technique and the patience and dedication to learn these skills. Similar to all imaging modalities, it is equally important to recognize and consider the limitations of ultrasound in this region so that findings can be interpreted appropriately. Ultrasound can be used to diagnose injuries to the deep digital flexor tendon (DDFT), straight distal sesamoidean ligament and branches of the superficial digital flexor tendon using standard pastern ultrasonographic technique. The addition of newer techniques to image the DDFT at the level of P2, the navicular bursa and the collateral sesamoidean ligament can enhance the diagnostic utility of ultrasound in horses with distal extremity lameness. Although visibility is limited, ultrasound can be used to diagnose collateral ligament injuries of the coffin joint in many affected horses. Transcuneal imaging may be useful in some horses to detect abnormalities of the distal sesamoidean impar ligament and navicular bone, but evaluation of the DDFT is limited. Ultrasound should be considered in all horses with distal extremity lameness, regardless of the ability to perform advanced imaging procedures. Information gained is often complementary to other imaging modalities and may provide the basis for recheck examination purposes.  相似文献   

12.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in grades of the distal and palmar aspects of the navicular bone; fair to moderate in grades of the DSIL, and poor agreement for the dorsal and proximal aspects of the navicular bone. The results of this study support our hypothesis and indicate the potential use and limitations of MR imaging for visualization of structural changes within osseous and soft tissue structures of the equine foot.  相似文献   

13.
REASONS FOR PERFORMING STUDY: Nuclear scintigraphy is commonly used as a diagnostic aid for foot pain, but there is limited information about different patterns of radiopharmaceutical uptake (RU) and their correlation with the results of other imaging modalities. OBJECTIVES: To describe patterns of RU in horses with foot pain. MATERIALS AND METHODS: Scintigraphic images of the feet of 264 horses with front foot pain were analysed subjectively and using region of interest analysis. Magnetic resonance images of all feet were analysed prospectively; the navicular bones were reassessed retrospectively and assigned a grade. A Spearman rank correlation test was used to test for a relationship between the scintigraphic grade of the navicular bone and magnetic resonance imaging (MRI) grade. Sensitivity and specificity of scintigraphy for detection of lesions in the deep digital flexor tendon (DDFT), the collateral ligaments (CL) of the distal interphalangeal (DIP) joint and the navicular bone were determined. RESULTS: Increased radiopharmaceutical uptake (IRU) was detected in: a) the navicular bone (36.6%); b) pool phase images in the DDFT (13.0%); and c) at the insertion of the DDFT on the distal phalanx (14.3%). There was focal IRU at the insertion of the medial or lateral CL of the DIP joint in 9.4% and 1.5% of limbs, respectively. There was IRU in the medial and lateral palmar processes in 7.6% and 3.4% of limbs, respectively. There was a significant positive correlation between the scintigraphy grade and total MRI grade for the navicular bone and no difference between either focal or diffuse IRU and total MRI grade. There was high specificity, but low sensitivity of scintigraphy for detection of MR lesions of the navicular bone, the DDFT and the CLs of the DIP joint. CONCLUSIONS: Positive nuclear scintigraphic results are good predictors of injury or disease of the navicular bone, DDFT and CLs of the DIP joint. However, a negative scintigraphic result does not preclude significant injuries. CLINICAL RELEVANCE: Nuclear scintigraphy is a useful tool in the investigation of foot lameness and may help to determine the significance of MR lesions, especially if >1 lesion is identified that may be contributing to lameness.  相似文献   

14.
Bone marrow lesions (BMLs) (also known as ‘bone bruises’, ‘bone oedema’, ‘bone contusions’ and ‘occult fractures’) within the middle phalanx were diagnosed by standing low field magnetic resonance imaging (MRI) in 7 horses. The lesions were characterised by low signal intensity on T1‐ and T2*‐weighted gradient echo sequences, mildly increased signal intensity on T2 fast spin echo sequences, and high signal intensity on short tau inversion recovery (STIR) sequences. Four distinct patterns of abnormal signal were identified: BML associated with osteoarthritis of either the proximal or distal interphalangeal joints; BML associated with soft tissue injury; BML associated with acute trauma; and BML unassociated with any other injury or lameness (assumed to represent bone response to biomechanical stress). Repeat MRI was undertaken in 4 cases. In most cases the BML resolved with rest and time, although lameness was persistent in 2 horses (one of which had an associated osteoarthritis of the proximal interphalangeal joint).  相似文献   

15.
Injury to the oblique and straight distal sesamoidean ligaments is becoming recognized as a more common cause of lameness in horses than was previously thought. The purpose of this study was to review the magnetic resonance (MR) imaging findings of 27 horses affected with desmitis of the oblique and/or straight distal sesamoidean ligament and determine long-term prognosis for horses with this diagnosis. Imaging was performed with horses in right lateral recumbency in a high-field 1 T magnet. All horses had lameness localized to the digit or metacarpophalangeal/metatarsophalangeal joint region with diagnostic local anesthetic blocks. Ten horses had forelimb lameness and 17 horses had hind limb lameness. MR imaging revealed abnormalities in the oblique distal sesamoidean ligaments in 18 horses, in the straight distal sesamoidean ligament in three horses, and in both the oblique and straight distal sesamoidean ligament in six horses. Treatment consisted of a 6-month rest and rehabilitation program in all horses. The digital flexor tendon sheath was injected with methylprednisolone acetate and hyaluronic acid in 22 horses to decrease inflammation in the injured ligaments before starting the rest and rehabilitation program. Two horses had ligament splitting performed, one in the oblique distal sesamoidean ligament and one in the straight distal sesamoidean ligament. MR imaging is an effective method for diagnosing injury to the oblique and straight distal sesamoidean ligaments in horses. Treatment, primarily a 6-month rest and rehabilitation program, allowed 76% of the horses to successfully resume performance.  相似文献   

16.
Reasons for performing study: No previous study compares computed tomography (CT), contrast‐enhanced computed tomography (CECT) and standing low‐field magnetic resonance imaging (LFMRI) to detect lesions in horses with lameness localised to the foot. This study will help clinicians understand the limitations of these techniques. Objectives: To determine if CT, CECT and LFMRI would identify lesions within the distal limb and document discrepancies with lesion distribution and lesion classification. Methods: Lesions in specific structures identified on CT and MR images of feet (31 limbs) from the same horse were reviewed and compared. Distributions of lesions were compared using a Chi‐squared test and techniques analysed using the paired marginal homogeneity test for concordance. Results: Lesions of the deep digital flexor tendon (DDFT) were most common and CT/CECT identified more lesions than LFMRI. Deep digital flexor tendon lesions seen on LFMRI only were frequently distal to the proximal extent of the distal sesamoid and DDFT lesions seen on CT/CECT only were frequently proximal to the distal sesamoid. Lesions identified on LFMRI only were core (23.3%) or splits (43.3%), whereas lesions identified only on CT were abrasions (29.8%), core (15.8%), enlargement (15.8%) or mineralisation (12.3%). Contrast‐enhanced CT improved lesion identification at the DDFT insertion compared to CT and resulted in distal sesamoidean impar ligament and collateral sesamoidean ligament vascular enhancement in 75% of cases. Low‐field MRI and CT/CECT failed to identify soft tissue mineralisation and bone oedema, respectively. Conclusions and potential relevance: Multiple lesions are detected with CT, CECT and LFMRI but there is variability in lesion detection and classification. LFMRI centred only on the podotrochlear apparatus may fail to identify lesions of the pastern or soft tissue mineralisation. Computed tomography may fail to identify DDFT lesions distal to the proximal border of the distal sesamoid.  相似文献   

17.
Lateral digital flexor tendonitis is a rarely reported cause of hind limb lameness in performance horses. The purpose of this retrospective study was to describe clinical and diagnostic imaging findings for a group of horses with lateral digital flexor tendinitis within the tarsal sheath. Equine cases with a diagnosis of lateral digital flexor tendonitis and magnetic resonance imaging (MRI) studies of the affected region were retrieved from North Carolina University's medical record database. Recorded data for included horses were signalment; findings from history, physical examination, lameness examination, and all diagnostic imaging studies; treatment administered; and outcome. Four horses met inclusion criteria. Lameness was mild/moderate in severity and insidious in onset in all patients. Responses to flexion tests were variable. All horses showed positive improvement (70–90%) in lameness after tarsal sheath analgesia. Radiographic, scintigraphic, and ultrasonographic findings were inconclusive. For all horses, MRI characteristics included increased T2, PD, and STIR signal intensity within the lateral digital flexor tendon in the area of the tarsal sheath. Tarsal sheath effusion was slight in three horses, and mild/moderate in one horse. With medical treatment, two horses were sound at 6‐month followup, one horse was sound at 1‐year followup, and one horse had a slight persistent lameness (grade 1/5) at 9‐month followup. Findings supported the use of MRI for diagnosing lateral digital flexor tendonitis within the tarsal sheath in horses. Affected horses may have a good prognosis for return to athletic performance following appropriate medical treatment.  相似文献   

18.
Magnetic resonance (MR) imaging is often performed to determine the cause of palmar heel pain. We evaluated how distension of the navicular bursa affected the MR appearance of the navicular bursa and associated structures. An MR evaluation was performed on normal cadaver limbs and cadaver limbs from horses with lameness localized to the foot. The normal navicular bursae were injected with 2, 4, or 6 ml of solution. The bursae of the feet from lame horses were injected with 4 or 6 ml, and the MR study was repeated. All bursae were examined grossly to verify the presence or absence of adhesions. Clinical patients that had initial MRI abnormalities suggesting adhesions were also evaluated. Distension of the proximal recess of the normal navicular bursa, proximal to the collateral sesamoidean ligament was achieved with 2 ml. Separation of the collateral sesamoidian ligament from the deep digital flexor tendon (DDFT) was achieved with 4 ml. The separation of the navicular bone from the DDFT and distal sesamoidian impar ligament required 6 ml. Adhesions were more clearly defined in the bursa of the two pathologic cadaver limbs following distension. MR bursography used on clinical patients allowed the determination of the presence or absence of adhesions. In these horses, this determination could not have been definitively made without this technique. MR bursography is useful in horses where the presence of adhesions cannot be clearly defined by MRI.  相似文献   

19.
Injury of the distal aspect of the deep digital flexor tendon (DDFT) is a recognized cause of lameness, but diagnosis is difficult. This study aimed to improve understanding of DDFT morphology and pathology using retrospective evaluation of magnetic resonance (MR) images. We hypothesized that: (1) The distal aspect of the DDFT in normal horses would have a repeatable proximal/distal pattern and symmetry between limbs and between lobes; (2) DDFT dimensions would be related to bodyweight, navicular bone dimensions and hoof size; (3) this symmetry and pattern would be lost in DDFT injury; and (4) DDFT size would increase with injury. MR images of 64 live horse limbs, 26 with no identified DDFT lesion and 38 with identified DDFT abnormalities, and 19 normal cadaver limbs were analyzed. Using standardized transverse images, measurements of DDFT cross-sectional area, medial-lateral (ML) width and dorsal-palmar depth were obtained at six preselected sites. A uniform distal to proximal shape pattern was identified in all horses. The flattened crescent shape at the insertion changed to a deeper bilobed shape more proximally, with the mid-navicular area having the greatest cross-sectional area. Strong ML (P < 0.0006) and left/right symmetry (P < 0.02) were observed. In addition, there was a strong association between DDFT cross-sectional area and horse weight (P = 0.005) and between DDFT and navicular bone ML width (P = 0.004). Symmetry between sides or between lobes was lost at sites with a unilateral lesion and correlation between horse weight and DDFT cross-sectional area was lost in the presence of lesions. DDFTs with core lesions had a consistent increase in cross-sectional area overall, but other lesion types had no significant increase in size. The shape and symmetry seen in normal tendons could be related to the mechanical demands placed upon individual lobes. The limited increase in cross-sectional area with injury may be explained by the restrictive structures of the hoof, possibly explaining the ongoing pain seen in such lesions.  相似文献   

20.
Lameness originating from the metacarpo(tarso)phalangeal (MP) joint has a significant effect on the use and athletic competitiveness of a horse. The identification of the cause of lameness originating from the MP joint can be challenging, given the limitations of radiography, ultrasonography, and nuclear scintigraphy. Our purpose was to describe the injury types and incidence in magnetic resonance imaging (MRI) studies from 40 horses with lameness attributable to the MP joint region where it was not possible to reach a clinically plausible diagnosis using other imaging modalities. Horses were examined in a 1.5 T magnet (Siemens Medical Solutions) under general anesthesia. The frequency of occurrence of MR lesions was subchondral bone injury (19), straight or oblique distal sesamoidean desmitis (13), articular cartilage injury and osteoarthritis (eight), suspensory branch desmitis (seven), osteochondral fragmentation (seven), proximal sesamoid bone injury (seven), intersesamoidean desmitis (four), deep digital flexor tendonitis (four), collateral desmitis (three), superficial digital flexor tendonitis (two), enostosis‐like lesions of the proximal phalanx or MCIII (two), desmitis of the palmar annular ligament (one), desmitis of the proximal digital annular ligament (one), and dystrophic calcification of the lateral digital extensor tendon (one). Twenty‐five horses had multiple MR abnormalities. MRI provided information that was complementary to radiography, ultrasonography, and nuclear scintigraphy and that allowed for a comprehensive evaluation of all structures in the MP joint region and a diagnosis in all 40 horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号