首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoterpene compounds of leaf pairs and flowers of Mentha x piperita have been studied by direct headspace sampling using solid-phase microextraction coupled with gas chromatography/mass spectrometry (SPME-GC/MS). The content of peppermint-characteristic compounds such as menthol, menthyl acetate, and neomenthol increased in a basipetal direction (older plant parts), whereas menthone and isomenthone showed higher levels in the acropetal direction (younger plant parts). Higher levels of menthofuran were found in peppermint flowers in contrast to the leaves. SPME sampling resulted in relatively higher amounts of high-volatile monoterpenes and lower detection of less volatile compounds such as menthol and menthone, compared to solvent-based samples from essential oil distillation.  相似文献   

2.
The essential oils from leaves and flowers of costmary, Balsamita major (L.) Desf. (syn. Chrysanthemum balsamita L.), were analyzed at various phases of plant growth. The highest contents of oil both in leaves and in flowers were determined before full blooming, 1.15 and 1.34% (w/w), respectively. Seventy-eight volatile compounds have been identified in the oils of Balsamita major, of which 58 (19 tentatively, 39 positively) have not been reported in this plant previously. Carvone and alpha-thujone were found to be dominating compounds constituting from 51.8 to 68.0% and from 9.0 to 16.1% in the total oil, respectively. Seasonal variations in the oil compositions were not considerable except for the starting phase (May 25, 1995), when the content of carvone was lower and the content of alpha-thujone and sesquiterpenes higher. The content of sesquiterpenes was approximately 2 times higher in flowers than in the leaves. Absolute amount of most components was highest at the bud formation period.  相似文献   

3.
The chemical composition of the essential oils obtained from leaves and bracts of hydroponically cultivated Origanum dictamnus L. (Cretan dittany), growing under various electrical conductivity (EC) levels (2.0, 4.0, and 6.0 mS/cm), was studied, using the nutrient film technique (NFT). The analysis of the essential oil content was achieved by GC-MS technique, and totals of 41 and 38 different compounds were identified in both cases of large-leaved and narrow-leaved samples of leaves and bracts, respectively. Differences in the composition content and of the percentage of each of the constituents in the two studied samples (i.e., large-leaved and narrow-leaved) and within the essential oils of leaves and bracts in both samples were observed. Carvacrol and p-cymene were identified as the main constituents in all essential oils, whereas thymoquinone was found in higher percentage in the essential oils of large-leaved than in narrow-leaved plants. The results obtained from GC-MS analysis were submitted to chemometric analysis, and a phenotypic similarity of the essential oils of narrow-leaved O. dictamnus was observed, whereas the essential oils of large-leaved O. dictamnus showed two separate subgroups.  相似文献   

4.
The steam-distilled oil of cinnamon (Cinnamomum zeylanicum) flowers was analyzed by GC and GC-MS. It consists of 23% hydrocarbons and 74% oxygenated compounds. A total of 26 compounds constituting approximately 97% of the oil were characterized. (E)-Cinnamyl acetate (41.98%), trans-alpha-bergamotene (7.97%), and caryophyllene oxide (7.2%) are found to be major compounds. This is the first report on the chemical composition of the flower oil of Cinnamomum zeylanicum.  相似文献   

5.
The chemical composition of the volatile fraction of myrtle (Myrtus communis L.) alcoholic extracts and essential oils from leaves and berries collected in different places in Sardinia (Italy) was studied. A simple and rapid liquid-liquid extraction method was used to isolate volatile compounds from myrtle alcoholic extracts followed by GC and GC-MS analysis allowing the detection of 24 compounds. The volatile fraction was characterized by the terpenes fraction corresponding to that of the essential oils and by a fatty acid ethyl esters fraction. The variation during extraction of the volatile fraction in alcoholic extracts of berries and leaves was evaluated. Essential oils were obtained by hydrodistillation, and the yields were on average 0.52 +/- 0.03% (v/w dried weight) and 0.02 +/- 0.00% for leaves and berries, respectively. The essential oils were analyzed by GC and GC-MS, and a total of 27 components were detected, accounting for 90.6-98.7% of the total essential oil composition. Strong chemical variability depending on the origin of the samples was observed. The major compounds in the essential oils were alpha-pinene (30.0 and 28.5%), 1,8-cineole (28.8 and 15.3%), and limonene (17.5 and 24.1%) in leaves and berries, respectively, and were characterized by the lack of myrtenyl acetate.  相似文献   

6.
In the period from 2000 to 2002, studies on peppermint (Mentha x piperita) herb and essential oil (EO) production have been conducted at Planteforsk, Apelsvoll Research Centre Div. Kise in Norway. The trials were aimed at finding the optimal harvest date and suitable drying methods to maximize EO yield and to obtain a desirable oil quality. Peppermint plants from the first production year (2000 and 2001) and the second production year (2002) were harvested during flowering at three developmental stages (early, full, and late bloom). Biomass and leaf production were recorded, and the water content of the plant material was detected after the application of different drying methods: instantaneous drying at 30, 50, and 70 degrees C and prewilting (ground drying) for 1 or 5 days followed by final drying at 30 degrees C. Finally, plant samples were transferred to The Plant Biocentre at NTNU, Trondheim, Norway, for hydrodistillation and gas chromatography-mass spectrometry (GC-MS) analyses of the EOs. Peppermint oil yield increased from early to full bloom and late bloom (average of all years and drying methods except for 50 and 70 degrees C: 2.95, 4.13 and 4.20 L/daa, respectively) as an effect of biomass production and leaf growth. The flavor-impact compounds, menthol and menthone, reached their optimum at full bloom (43-54 and 12-30%, respectively). Prewilting led to slight decreased EO levels after 1 day (7.7%) and 5 days of ground drying (1.5%) and no EO quality changes, compared to direct drying at 30 degrees C. The plant weight (H2O content) was drastically decreased to the average under 80 and 45% in all years, thus reducing the energy supply and costs for the necessary final drying step.  相似文献   

7.
In 1996, the production of Achillea millefolium L. at different locations in Norway was investigated with regard to the developmental stage. The oil content differed greatly between the vegetative stage (0.13%) and the stage of full bloom (0.34%). Changes in the composition of yarrow essential oil were found to be related to maturation of the plant, with increasing amounts of monoterpenes in relation to the sesquiterpene. However, a clear trend could be detected only for the monoterpenic compounds with increasing levels of alpha- and beta-pinene and alpha-thujone and decreasing levels of sabinene, borneol, and bornyl acetate. Previously reported as major compounds, chamazulene and germacrene D could be found only in insignificant amounts. A solid-phase microextraction (SPME) procedure was applied for screening of the terpenic composition. Sesquiterpenic compounds such as beta-bisabolene, alpha-bisabolol, and delta-cadinene were detected in substantial amounts by SPME in contrast to the steam-distilled samples.  相似文献   

8.
The productive potential of two different ecotypes of Rosmarinus officinalis (Cevoli and Lunigiana) cultivated in the littoral area near Pisa (northern Tuscany, Italy) and the differences in the yield and composition of the essential oils of leaves, flowers, and stems obtained from different positions of the plants were used to characterize the two ecotypes. The Cevoli ecotype plant produced the highest yield of dry matter (221 g plant-1) in comparison to the Lunigiana ecotype (72 g plant-1). There were significant differences in dry matter production of different organs of both ecotypes. The essential oil contents of Cevoli and Lunigiana ecotypes were similar. In contrast, the oil contents of the different plant parts showed marked differences. The apical part of the plant and the leaves gave the highest essential oil yields. The major difference between the oils of the two ecotypes consisted in the 1,8-cineole contents (6.6 and 37.9% in Cevoli and Lunigiana, respectively). The Cevoli ecotype was determined to be the most suitable for essential oil extraction because it was characterized by a preponderance of flowers and leaves in the apical portion. The Cevoli ecotype could be classifited as an alpha-pinene chemotype, whereas Lunigiana is a 1,8-cineole chemotype.  相似文献   

9.
Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography and ion-trap mass spectrometry has been used to identify biogenic volatile organic compounds present in the headspace of chopped leaves of Eucalyptus (E.) dunnii, E. citriodora, and E. saligna. A simple HS-SPME method entailing 30 min of extraction at 30 degrees C was developed for this purpose. Thirty compounds were identified in the headspace of 60 juvenile chopped Eucalyptus leaves, and another 30 were tentatively identified. The presence of compounds such as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMNT), (E,E)-alpha-farnesene, (E,E,E)-3,7,11,15-tetramethyl-1,3,6,10,14-hexadecapentaene (TMHP), beta-caryophyllene, alpha-humulene, germacrene D, and beta-cubebene in the headspace of the leaves but not in the essential oils from the same Eucalyptus trees and information about the infochemical roles of some of these compounds in other living plant systems suggest they might play a bioactive role in Eucalyptus leaves.  相似文献   

10.
陆占国  李伟 《农业工程学报》2009,25(11):350-353
应用水蒸气蒸馏-溶剂萃取法和微波辅助-溶剂萃取法提取了成熟期马铃薯茎叶挥发性成分。用乙醚为萃取溶剂的水蒸气蒸馏法提取时,以0.533%(m/m)得油率获得精油;以正己烷为溶剂的微波辅助萃取法的最适提取条件为:温度60℃,时间9 min,液料比10︰1(V/m),在此条件下的得油率为0.528%(m/m)。用GC-MS分析检测出水蒸气蒸馏法获得的精油含有81个成分,解析鉴定出占精油相对含量79.386%的43种物质,醇类化合物(24.789%)为主要成分;微波法获得的精油检测出78个成分,解析鉴定出占总精油82.226%的36种成分,酯类化合物(44.482%)为主要成分。2种提取方法获得的精油成分有很大的差别。  相似文献   

11.
Cinnamomum zeylanicum Blume is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. The steam-distilled volatile oil from cinnamon fruit stalks was analyzed with GC and GC-MS. It showed the presence of hydrocarbons (44.7%) and oxygenated compounds (52.6%). Twenty-seven compounds constituting ca. 95.98% of the volatile oil were characterized. (E)-Cinnamyl acetate (36.59%) and (E)-caryophyllene (22.36%) are found to be major compounds. The volatile oil was screened for its potential as an antioxidant by using in vitro models, such as the beta-carotene-linoleate and phosphomolybdenum complex method. The volatile oil showed 55.94% and 66.9% antioxidant activity at 100 and 200 ppm concentration, respectively. Also, the volatile oil showed good antioxidant capacity, using the formation of the phosphomolybdenum complex. A comparison of the chemical composition of the volatile oil was made with that of buds, flowers, and fruits. This is the first report on the chemical composition of volatile oil of the fruit stalks of this species and its antioxidant activity.  相似文献   

12.
The qualitative and quantitative composition of the essential oil from black, green, and white pepper was determined by using a simultaneous distillation and extraction micromethod for oil isolation and gas chromatography (GC)/flame ionization detection (FID) and GC/mass spectrometry (MS) analysis techniques. The most abundant compounds in pepper oils were (E)-beta-caryophyllene (1.4-70.4%), limonene (2.9-38.4%), beta-pinene (0.7-25.6%), Delta-3-carene (1.7-19.0%), sabinene (0-12.2%), alpha-pinene (0.3-10.4%), eugenol (0.1-41.0%), terpinen-4-ol (0-13.2%), hedycaryol (0-9.1%), beta-eudesmol (0-9.7%), and caryophyllene oxide (0.1-7.2%). Green pepper corn obtained by a sublimation drying method gave more oil (12.1 mg/g) and a much higher content of monoterpenes (84.2%) in the oil than air-dried green pepper corn (0.8 mg/g and 26.8%, respectively). The oil from ground black pepper contained more monoterpenes and less sesquiterprnes and oxygenated terpenoids as compared to green and white pepper oils. After 1 year of storage of pepper samples in a glass vessel at room temperature, the amount of the oils isolated decreased, the content of terpenes decreased, and the amount of oxygenated terpenoids increased. Differently from other pepper samples, 1 year storage of green pepper corn raised the oil amount more than twice of both drying methods.  相似文献   

13.
Headspace analyses of pollen, whole flowerheads, ligulate and tubular florets, flower buds, involucral bracts, and leaves have been performed on the food plant Chrysanthemum coronarium L. (Asteraceae). The analyses permitted differences in the pattern of volatiles emitted by the different floral parts to be observed and the site and phenological stage of emission of these chemicals to be verified. Camphor and cis-chrysanthenyl acetate were emitted mainly by ligulate and tubular florets; the production of myrcene and (Z)-ocimene was higher in the flower buds, whereas beta-caryophyllene, (E,E)-alpha-farnesene, and (E)-beta-farnesene seemed attributable mainly to the involucral bracts. The leaves showed a quite different volatile profile, with (Z)-ocimene as the main constituent. Pollen showed a completely different composition of its volatiles, with perilla aldehyde, cis-chrysanthenyl acetate, and camphor among the principal compounds; many carbonylic compounds and linear hydrocarbons have been detected exclusively in pollen. Furthermore, the essential oils obtained from flowerheads and leaves have been studied. These samples showed mainly quantitative differences. Camphor (22.1%) and cis-chrysanthenyl acetate (19.9%) were the main constituents of the oil from flowers, whereas the oil from the leaves contained mainly (Z)-ocimene (45.4%) and myrcene (28.2%).  相似文献   

14.
More than 50 compounds were identified in essential oils from stems and leaves of Salvia officinalis L. plants harvested in July, in Arouca, in northern Portugal. About 40 of those compounds were also present in flower essential oils, collected from the same plants. alpha-Thujone was the major compound, representing about 55, 30, and 18% of the essential oils from stems, leaves, and flowers, respectively. Significant percentage variations in the main compound classes of the essential oils from shoots sampled over the year were recorded at two different sites in northern Portugal. From December to April, oxygenated monoterpenes (MO) decreased from approximately 67-72% to values of 42-43% of the essential oils. During the same time interval, the percentage of monoterpene hydrocarbons (MH) rose from 8-11% to 17-22%. At both sites, sesquiterpene hydrocarbons (SH) rose from approximately 7% in February to 19-22% in April, decreasing thereafter to approximately 9% in July. Oxygenated sesquiterpenes (SO) increased from a minimum of approximately 5% in July to a maximum of 8-11% in February, decreasing thereafter. The compounds that mostly accounted for the essential oil composition variation were alpha-pinene, beta-pinene, and camphene, as MH; alpha-thujone and camphor, as MO; alpha-humulene and beta-caryophyllene, as SH; and viridiflorol, as SO.  相似文献   

15.
Essential oil (EO) from aerial parts (leaves, juvenile branches, and flowers when present) of Pistacia lentiscus L. growing wild in five localities of Sardinia (Italy) was extracted by steam-distillation (SD) and analyzed by gas chromatography (GC), FID, and GC-ion trap mass spectrometry (ITMS). Samples of P. lentiscus L. were harvested between April and October to study the seasonal chemical variability of the EO. A total of 45 compounds accounting for 97.5-98.4% of the total EO were identified, and the major compounds were alpha-pinene (14.8-22.6%), beta-myrcene (1-19.4%), p-cymene (1.6-16.2%), and terpinen-4-ol (14.2-28.3%). The yields of EO (v/dry w) ranged between 0.09 and 0.32%. Similar content of the major compounds was found in samples from different origins and seasonal variability was also observed. The EOs were tested for their antifungal activity against Aspergillus flavus, Rhizoctonia solani, Penicillium commune, Fusarium oxysporum. Two samples were weakly effective against Aspergillus flavus. Furthermore, terpinenol and alpha-terpineol, two of the major components of EO of Pistacia lentiscus L., totally inhibited the mycelian growth of A. flavus. Quite good antioxidant activity of the EO was also found.  相似文献   

16.
杜康  张尉  顾丽莉  张花  黄智华  姚雯 《核农学报》2021,35(6):1394-1401
为探究云南烟油的成分以及烟碱和新植二烯的提取工艺,本试验以云南典型初烤烟叶为原料,通过超临界CO2萃取、超声辅助萃取、索式回流萃取和溶剂萃取4种方法提取初烤烟叶中烟碱和新植二烯,采用气相色谱-质谱(GC-MS)分析萃取物组成,比较不同萃取方法和萃取溶剂下,烟叶萃取物得率及所得萃取物中烟碱和新植二烯的相对含量。结果表明,当以纯乙醇作为萃取剂时,4种萃取工艺烟油得率从高到低依次为索式回流萃取>超声辅助萃取>溶剂萃取>超临界CO2萃取。不同提取工艺得到的烟油均检测出烟碱、新植二烯、正十六烷酸、(Z,Z,Z)-9,12,15-十八碳三烯酸、1,5,9-三甲基-12-(1-甲基乙基)-4,8,13-环四十三碳三烯-1,3-二醇、维生素E等主要成分,其中烟碱和新植二烯的相对含量依次为索式回流萃取(75.58%、2.85%)>超临界CO2萃取(35.01%、26.80%)>超声辅助萃取(32.28%、28.24%)>溶剂萃取(9.56%、45.20%)。本研究结果为云南烟油中的成分以及烟碱和新植二烯的纯化工艺研究提供了一定的理论依据。  相似文献   

17.
Plants display a diverse array of inducible changes in secondary metabolites following insect herbivory. Herbivores differ in their feeding behavior, physiology, and mode of attachment to the leaf surface, and such variations might be reflected in the induced responses of damaged plants. Induced changes were analyzed for Minthostachys mollis, a Lamiaceae with medicinal and aromatic uses, and four species of folivore insects with different feeding habits (chewing, scraping, sap-sucking, and puncturing). In M. mollis leaves experimentally exposed to the insects, levels of the two dominant monoterpenes pulegone and menthone were assessed 24 and 48 h after wounding. Menthone content generally decreased in the essential oil of damaged leaves, whereas pulegone concentration increased in all treatments. These changes occurred also in the adjacent undamaged leaves, suggesting a systemic response. The relatively uniform response to different kinds of damage could be attributable to the presence of such a strongly active compound as pulegone in the essential oil of M. mollis. The effects of wounding on essential oil concentration may be significant from a commercial point of view.  相似文献   

18.
The volatiles of fresh leaves, buds, flowers, and fruits from bay (Laurus nolilis L.) were isolated by solvent extraction and analyzed by capillary gas chromatography-mass spectrometry. Their odor quality was characterized by gas chomatography-olfactometry-mass spectrometry (HRGC-O-MS) and aroma extract dilution analysis (AEDA). In fresh bay leaves 1,8-cineole was the major component, together with alpha-terpinyl acetate, sabinene, alpha-pinene, beta-pinene, beta-elemene, alpha-terpineol, linalool, and eugenol. Besides 1,8-cineole and the pinenes, the main components in flowers were alpha-eudesmol, beta-elemene, and beta-caryophyllene, in fruits (E)-beta-ocimene and biclyclogermacrene, and in buds (E)-beta-ocimene and germacrene D. The aliphatic ocimenes and farnesenes were absent in leaves. By using HRGC-O-MS 21 odor compounds were identified in fresh leaves. Application of AEDA revealed (Z)-3-hexenal (fresh green), 1,8-cineole (eucalyptus), linalool (flowery), eugenol (clove), (E)-isoeugenol (flowery), and an unidentified compound (black pepper) with the highest flavor dilution factors. Differences between buds, flowers, fruits, and leaves with regard to the identified odor compounds are presented.  相似文献   

19.
Changes in the volatility of selected flavor compounds in the presence of nonvolatile food matrix components were studied using headspace solid-phase microextraction (HS-SPME) combined with GC-MS quantification. Time-dependent adsorption profiles to the SPME fiber and the partition coefficients between different phases were obtained for several individual volatiles, showing that HS-SPME analysis with a short sampling time can be used to determine the "true" headspace concentration at equilibrium between the headspace and a sample matrix. Equilibrium dialysis followed by HS-SPME/GC-MS was carried out to confirm the ability of HS-SPME extraction for monitoring the free volatile compounds in the presence of proteins. In particular, a short sampling time (1 min) avoided additional extraction of volatiles bound to the protein. Interactions between several selected flavor compounds and nonvolatile food matrix components [beta-lactoglobulin or (+)-catechin] were also studied by means of HS-SPME/GC-MS analysis. The volatility of ethyl hexanoate, heptanone, and hexanal was significantly decreased by the addition of beta-lactoglobulin compared to that of isoamyl acetate. Catechin decreased the volatility of ethyl hexanoate and hexanal by 10-20% and increased that of 2-heptanone by approximately 15%. This study indicates that HS-SPME can be a useful tool for the study of the interactions between volatile compounds and nonvolatile matrix components provided the kinetic and thermodynamic behavior of the volatiles in relation to the fiber chosen for the studies is carefully considered.  相似文献   

20.
Supercritical carbon dioxide extraction and fractionation of fennel oil   总被引:3,自引:0,他引:3  
Ground fennel seeds were extracted with supercritical carbon dioxide. Small-scale subsequent extractions of the same sample showed that the composition of volatile compounds was changed with the extension of extraction time and only principal volatile components (limonene, fenchone, methylchavicol, and anethole) were present in the last-extracted sample. Fennel oil was successfully fractionated into the essential oil rich and fatty oil rich products in pilot-scale apparatus using two separators in series. Designed experiments were carried out to map the effects of pressure and temperature in the first separator on the yields and compositions of the products. The minimum level of the total undesired components in both essential oil rich and fatty oil rich products appeared at a pressure of 80-84 bar and a temperature of 31-35 degrees C in the first separator. Supercritical CO(2) extraction of fennel seeds resulted in higher yield (10.0%) than steam distillation (3.0%), almost the same yield as hexane extraction (10.6%), and lower yield than alcohol extraction (15.4%). Analysis of the volatile compounds revealed the significant difference of the composition in distilled oil and oleoresins prepared by CO(2) and solvent extractions. Sensory evaluation showed that the CO(2) extraction product and distilled oil were more intense in odor and taste than alcohol and hexane extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号