首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strigolactones are highly potent germination stimulants for seeds of the parasitic weeds Striga and Orobanche spp. 4-Hydroxy-GR24 and 4-acetoxy-GR24 were prepared and their abilities to induce seed germination of Striga gesnerioides evaluated. Optically active (8bR,2'R)-isomers induced germination, although the racemic diastereomers were inactive. In contrast, the stereoisomer of GR24 with the same configuration induced negligible germination. Some stereoisomers of GR24 and its analogues acted as effective antagonists for induction of seed germination by cowpea root exudates. These results suggest that both an oxygenated substituent at C-4 and the configuration of the tricyclic lactone and the D-ring are essential structural requirements for induction of germination in S. gesnerioides seeds.  相似文献   

2.
Striga gesnerioides is a root parasitic weed of economic significance to cowpea (Vigna unguiculata) crops in Western Africa. Seeds of the parasite germinate in response to cowpea root exudates. Germination stimulants for the seeds were isolated from the hydroponic culture filtrate of cowpea, and their structures were unambiguously determined as (-)-(3aR,4R,8bR,2'R)-ent-2'-epi-orobanchol and (+)-(3aR,4R,8bR,2'R)-ent-2'-epi-orobanchyl acetate, on the basis of mass, CD, and (1)H NMR spectra; optical rotatory power; and chromatographic behavior on HPLC. The alcohol was first isolated and identified from the cowpea root exudates, and the acetate may be the same compound that had been previously isolated from the exudates and designated as alectrol. Identity of the stimulants produced by cowpea to those produced by red clover (Trifolium pratense) was confirmed.  相似文献   

3.
Autotoxicity is one of the major factors that impede continuous cropping. It is defined as the toxic influence of chemicals released from one plant species on the germination and growth of individuals of the same species. Here, in order to exam the autotoxicity of tobacco root exudates, root exudates were collected from tobacco plants grown both in cultural solution and on natural soil. Using ultraperformance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry, main autotoxic chemical substances in the root exudates were identified. The autotoxic effects of suspected autotoxins on seed germination (including germination rate, germination potential, germination index, and vigor index) and seedling growth were analyzed. Dibutyl phthalate (or diisobutyl phthalate), dioctyl phthalate, and diisooctyl phthalate were identified in tobacco root exudates. It was observed that high concentrations (greater than 0.5 mmol L-1) of each identified phthalate ester caused significant (P < 0.05) inhibition of tobacco seed germination and seedling growth. It can be concluded that phthalate esters such as dibutyl phthalate, diisobutyl phthalate, and diisooctyl phthalate in tobacco root exudates may play an important role in tobacco autotoxicity.  相似文献   

4.
试验研究了从山豆根(Menispermum dauricum DC.)组培根中提取、分离独脚金属杂草[Striga hermonthica(Del)Benth]发芽刺激物质,其提纯、分离过程是首先将发芽剌激物质吸附在XAD-4树脂表面后采用甲醇脱洗,通过乙酸乙脂:水分配提取,活性物质在Sephadex LH20开口型人工填充柱上进行柱层析,活性组分合并后进一步采用商业提供的C18 Sep-Pak(10g)柱进行柱层析,之后采用分取和分析高效液相色谱提纯、分离,每一步提纯过程中均采用Striga种子发芽实验鉴定活性物质的存在。高效液相色谱分析表明有3种活性物质,其中主要活性物质与Strigol有十分相似的色谱特性,最后经质谱鉴定为Strigol或Strigol类似物质,并首次报道Strigol是植物的代谢产物。  相似文献   

5.
ABSTRACT

The effect of cadmium (Cd) on root exudates of sorghum and maize was investigated in order to get further insight into the mechanisms of plant tolerance to Cd. Plants were grown hydroponically and supplemented with: 0, 0.5, and 5.0 mg Cd L? 1. Hydroponic solutions containing exudates were analyzed by high performance liquid chromatography (HPLC). The results showed different exudation patterns by sorghum and maize with cadmium supply. While sorghum enhanced malate exudation over the entire range of applied Cd in the uptake solutions, maize increased mainly citrate. Moreover, malate concentration exuded in sorghum rhizosphere presented higher values than citrate (from maize). With the aid of the HYPERQUAD speciation program, a significant decrease in the bioavailable Cd (free Cd plus Cd chloro-complexes) was found due to the increase of Cd organic complexation in the hydroponic solution. Furthermore, similar metal organic complex concentrations were obtained for both plants, which turned the maize and sorghum overall detoxification process equivalent. Exudation of malate and citrate should contribute to tolerance mechanisms of these plants, reducing deleterious effects of free Cd on root growth. These findings support the idea that the metal-binding capabilities of root exudates may be an important mechanism for stabilizing metals in soil.  相似文献   

6.
连作对花生根系分泌物化感作用的影响   总被引:11,自引:2,他引:11  
采用连续收集法提取连作5 年、3 年和轮作处理的花生结荚期根系分泌物, 研究其对土壤微生物及花生种子发芽、幼苗生长发育和细胞膜过氧化的化感作用及连作对花生根系分泌物化感作用的影响。结果表明,花生结荚期根系分泌物对花生根腐镰刀菌36194 菌丝的生长、叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)含量存在促进作用, 对固氮菌14046 的生长, 花生种子胚根的伸长、幼苗的苗高、茎叶鲜重、根系鲜重、叶片叶绿素含量等有抑制作用, 促进和抑制作用均随根系分泌物添加浓度和连作年限的增加呈增强趋势。连作花生结荚期根系分泌物化感物质在土壤中的累积, 很可能是导致花生连作障碍的原因之一。  相似文献   

7.
蚕豆枯萎病是土传病害,其发生与蚕豆根系分泌物有密切关系。本文以3个枯萎病不同抗性蚕豆品种——‘89-147’(高抗)、‘8363’(中抗)和‘云豆324’(感病)为材料,通过水培试验收集根系分泌物,测定根系分泌物对镰刀菌孢子萌发和菌丝生长的影响,分析对枯萎病表现出不同抗性的蚕豆品种根系分泌物中糖、氨基酸和有机酸的含量,分离鉴定了根系分泌物中氨基酸和有机酸的组分。结果表明,抗病品种的根系分泌物抑制了尖孢镰刀菌的孢子萌发和菌丝生长,在加入5 mL中抗品种根系分泌物时,显著促进尖孢镰刀菌孢子萌发,但对菌丝生长无显著影响;而在加入1 mL感病品种根系分泌物时,就能显著促进尖孢镰刀菌孢子萌发和菌丝生长。不同抗性蚕豆品种根系分泌物中氨基酸总量和总糖含量随抗性的降低而升高,有机酸分泌总量则随蚕豆品种对枯萎病的抗性增加而升高。感病品种和中抗品种中检出15种氨基酸,而高抗品种中检出14种,组氨酸只存在于中抗品种中,脯氨酸仅在感病品种中检出,3个蚕豆品种根系分泌物中均未检出精氨酸。蚕豆根系分泌物中天门冬氨酸、谷氨酸、苯丙氨酸、酪氨酸和亮氨酸含量高,可能会促进枯萎病的发生,而蛋氨酸、赖氨酸和丝氨酸含量高可能抑制枯萎病发生。酒石酸仅在抗病品种中存在,根系分泌物中有机酸种类丰富,有助于提高蚕豆对枯萎病的抗性。蚕豆对枯萎病的抗性不同,根分泌物对镰刀菌孢子萌发和菌丝生长的影响也不同,而这种抗病性差异与蚕豆根系分泌物中糖、氨基酸、有机酸的含量和组分密切相关。  相似文献   

8.
为了研究NaCl胁迫下氮肥对甜高粱种子萌发及芽苗生长和生理特性的影响,探索提高甜高粱耐盐能力的措施,室内设置不同盐分浓度、不同氮源及浓度条件下甜高粱萌芽试验。结果表明:NaCl胁迫和不同氮源对甜高粱发芽和芽苗生长的影响各有不同。NaCl浓度对甜高粱种子萌发有显著影响,在甜高粱芽苗生长阶段,通过提高保护酶活性和渗透调节物质而增强耐盐伤害能力是有限的。100 mmol.L 1NaCl胁迫下,根系POD活性最低,而叶片MDA积累量、可溶性糖含量、POD活性最高,受盐害程度最大。没有盐胁迫情况下增加不同氮源及氮量对甜高粱根叶生理特性的影响差异显著,当氮浓度在20 mmol.L 1时,细胞受伤害程度最低,生长最好。不同形态氮源对甜高粱发芽和幼苗生长的影响差异明显,NH4Cl的促进效果优于KNO3。在100mmol.L 1的NaCl胁迫下,施加铵态氮或硝态氮源均可以增强甜高粱芽苗期的POD活性,减少MDA积累,从而缓解盐胁迫带来的伤害。研究表明采取适当的氮肥调控措施可以提高甜高粱的耐盐能力。  相似文献   

9.
38个粒用高粱品种芽期耐盐性的综合鉴定及评价   总被引:3,自引:0,他引:3  
为筛选适合盐碱地种植的粒用高粱品种,在150 mmol·L-1NaCl浓度下对38个粒用高粱品种进行芽期耐盐性的筛选和评价。结果表明,盐胁迫下,38个高粱品种除根冠比外,发芽势、发芽率、根长和叶长均受到不同程度的抑制;各性状的相对值以相对根冠比(CV=62.84%)和相对根长(CV=44.55%)的变异较大;各性状的盐害率则以发芽率的盐害率(CV=39.86%)变异最大。盐胁迫下,相对发芽势与相对发芽率呈显著正相关(R=0.341),而二者与相对根长(R=0.214;R=-0.041)和相对叶长(R=0.041;R=0.205)之间无显著相关性。通过主成分分析确定了2类主成分,分别反映根部生长状况和萌发状况;同时根据各因子的载荷矩阵确定相对根冠比、相对发芽势和相对发芽率可以作为高粱耐盐性的鉴定指标。主成分得分值和模糊隶属函数值间呈显著正相关,表明可以通过二者的综合得分进行高粱耐盐性评价和分类。同时,本研究筛选出了耐盐性品种通杂141、晋粱白2号、吉杂137、龙米粱1号和吉杂148。本研究结果为芽期高粱耐盐性品种的筛选提供了理论基础和鉴定方法。  相似文献   

10.
为了探究亚麻荠根系分泌物对胡麻和杂草藜的化感作用,采用水培法观察了亚麻荠根系分泌物对胡麻和藜种子萌发与幼苗生长的影响。结果表明,亚麻荠根系分泌物对胡麻和藜种子的萌发具有抑制作用,且抑制作用随着处理浓度的增加而增强。亚麻荠根系分泌物对胡麻根长、根鲜重、苗鲜重具有抑制作用,在低处理浓度时对胡麻苗高具有促进作用,在中、高处理浓度时抑制作用较小;对杂草藜幼苗生长具有抑制作用,但抑制作用较小。综合分析,亚麻荠根系分泌物在低处理浓度时对胡麻生长的抑制作用小于对藜的抑制作用,在中、高处理浓度时大于对藜的抑制作用。  相似文献   

11.
A critical account on the inception of Striga seed germination   总被引:2,自引:0,他引:2  
The seeds of the parasitic weed Striga germinate in response to stimulants exuded by the roots of host plants and some nonhost plants. Literature data are summarized that support the view that strigolactones induce germination of parasitic weed seeds via a receptor-mediated mechanism. The suggestion by Lynn et al. that the strigol D-ring is solely responsible for germinating Striga seeds via a redox reaction was based on hypothesized structural similarities between the natural compound dihydrosorgoleone (SXSg) and the strigol D-ring. Experiments have shown that the mechanistic connection between SXSg and the strigol D-ring is not valid, and therefore the proposed redox mechanism for the induction of Striga seed germination by strigolactones does not hold.  相似文献   

12.
Plants affect soil phosphorus (P) solubility through root exudates, but studies are lacking on species used as relay or cover crops in tropical environments. We evaluated the effect of cover crops on soil phosphorus (P) availability in an oxisol. Ruzigrass (Brachiaria ruziziensis), pearl millet (Pennisetum glaucum), peanut (Arachis hypogaea), crambe (Crambe abyssinica), and sorghum (Sorghum bicolor) were grown in pots with soil. Phosphorus uptake, soil inorganic and organic P, maximum P adsorption capacity, and plant root systems were assessed. When root length density is high, the efficiency of P uptake is low due to root competition. Crambe results in greater soil P availability, while peanut and sorghum decrease the soil maximum P adsorption capacity, probably by exuding or stimulating microbial production of organic acids and phenolic compounds. Hence, crambe, peanut, and sorghum are species that may be of interest to increase P use efficiency in cropping systems.  相似文献   

13.
大豆根分泌物活化难溶性铝磷的研究   总被引:11,自引:1,他引:11  
在酸性红壤上,土壤有效磷含量低,大部分磷以难溶性磷形式存在,这是影响作物生产的重要限制因素之一。作物根分泌物活化难溶性磷的能力对改善其磷素营养具有重要意义。本文系统研究了大豆根分泌物对难溶性铝磷的活化效果,同时运用阴、阳离子交换树脂将根分泌物分成阴离子组分、中性组分和阳离子组分,活化结果表明.阴离子组分对铝磷的活化量显著高于中性组分和阳离子组分。运用分子膜把根分泌物分成大于8K、8~3.5K、3.5~1K和小于1K组分.发现对铝磷活化量最大的组分为小于1K根分泌物组分。另外.小于1K阴离子组分对铝磷的活化量为缺磷13.2mg/pot,供磷可达9.3mg/pot,分别占总根分泌物活化量的71%和57%。运用离子色谱仪对小于1K阴离子组分根分泌物测定表明,供磷和缺磷处理.根系均能分泌少量的柠檬酸和苹果酸,约占铝处理的10%~20%,但处理之间差异不显著。上述研究表明.除有机酸影响难溶性铝磷活化之外,根分泌物中可能还存在其它物质对铝磷活化有促进作用,相关研究正在深入进行之中。  相似文献   

14.
We describe a simple technique for the germination of arbuscular mycorrhizal (AM)–fungal spores and their multiplication in pots. Glomus fasciculatum, G. mosseae, and Gigaspora margarita were used. A single wheat seedling was tied to a glass slide, previously covered with filter paper with the help of thread. One single surface‐sterilized AM‐fungal spore was placed on the middle portion of the root of the wheat seedling using a sterilized syringe. The slide was placed vertically in a 100 mL glass beaker filled with 25 mL of root exudates–water (1:4, v/v) solution, which was collected by growing twenty wheat seedlings in a 150 mL beaker filled with 100 mL sterilized distilled water for 7 d. The slide was observed daily using a compound microscope to follow the time course of germination. In this technique, the spore is directly in contact with the host root, and a visualization of spore germination, hyphal development, and appressorium formation is possible without disrupting fungal growth or the establishment of the symbiosis. The method allows to document the germination events and to assess hyphal‐elongation rates by photographing the same spore on consecutive days. The inoculated seedling was used to initiate single‐spore multiplication in a sterilized (autoclave on 3 alternate days at 120°C for 120 min at 1.05 kg cm–2 pressure) potted sandy soil (150 mL volume) into which the slide with the inoculated seedling was inserted carefully through a previously made slit. The wheat seedlings in all pots (4 treatments and 15 replications) became colonized by mycorrhiza, confirming that the establishment of the AM‐fungal symbiosis is highly reproducible. Our technique permits the relatively undisturbed growth of the symbiotic partners, the visualization of germinating AM‐fungal spores, and their multiplication in pots. This simple and low‐cost method facilitates the production of pure lines of AM fungi from single spores, allowing for the study of intraspecific variation and potentiality for cytological, biochemical, physiological, and taxonomical studies.  相似文献   

15.
Sufficient rhizobium population in the rhizosphere of legume seedlings is required for early and enough setting of root nodules. Potential of seed and seedling root exudates for proliferation of Bradyrhizobium japonicum PNT119 was evaluated in the soybean cvs. Enrei and Tachinagaha. In both cultivars, seed exudates showed a higher potential than root exudates. In the seed exudates, a low-molecular high-polarity fraction including sugars and amino acids showed a higher potential than both high-molecular fraction and low-molecular low-polarity fraction. The correlations between the sugar or amino acid contents of seed exudates and the number of root nodule primordia at 7 d after sowing were investigated among 12 soybean cultivars. When seeds were inoculated with a low rhizobium density, a high correlation coefficient was detected between them. However, there was no positive correlation in the plants inoculated with a high rhizobium density. These results suggest that the amount of low molecular substances in the seed exudates determines the number of root nodule primordia through rhizobium proliferation around seed and young roots when the rhizobium density is the limiting factor. The genetic trait relating to seed coat secretion should be considered as a possible key factor contributing to adequate root nodulation in soybean seedlings cultivated in fields with a low rhizobium density.  相似文献   

16.
为探讨马铃薯连作障碍的可能机理,在大田条件下,以轮作为对照(CK),收集连作5年(CP5)马铃薯植株在不同生育期的根系分泌物,采用GC-MS对根系分泌物的主要成分进行了鉴定,并通过生物检测验证了根系分泌物的自毒效应。结果表明:CK和CP5处理的马铃薯在不同生育期的根系分泌物均鉴定出糖类、酸类、胺类、脂类、醇类和嘧啶类等成分,以糖类和酸类物质居多;CP5处理根系分泌物的成分较CK复杂,酸类物质含量有升高的趋势。连作改变了马铃薯根系分泌物的化学组成和含量:CP5处理在苗期、现蕾期和开花期的根系分泌物中均鉴定出邻苯二甲酸二丁酯,相对含量分别为0.16%、0.21%和0.24%,CK处理未检测到;CP5处理在苗期、现蕾期和开花期的根系分泌物中均鉴定出棕榈酸,相对含量分别为0.34%、1.12%和0.47%,CK处理仅在现蕾期和开花期鉴定出棕榈酸的存在,但相对含量仅为0.56%和0.24%。生物检测试验结果表明,棕榈酸和邻苯二甲酸二丁酯显著抑制了马铃薯生长,1 mmol·L-1棕榈酸和邻苯二甲酸二丁酯对马铃薯生长的抑制作用远远大于0.5 mmol·L-1的抑制作用。棕榈酸和邻苯二甲酸二丁酯是马铃薯根系分泌的自毒物质,但二者未表现出物质的叠加效应。现蕾期马铃薯根系分泌物所含的物质最多,是马铃薯根系分泌物收集的适宜时期。  相似文献   

17.
Striga hermonthica, Striga asiatica and Striga gesneroides are obligate root parasites that cause severe yield losses in cereals and legumes in sub-Saharan Africa. Genetic control of Striga through resistance is widely considered to be the most practical and economically feasible method for long term control. The paper presents a comprehensive account of the Striga resistance mechanisms and environmental limitations to their usage in sub-Saharan Africa. Components of Striga resistance in cereals and legumes include low germination stimulant production, low haustorial initiation factor, mechanical barriers, incompatibility, antibiosis and Striga avoidance due to root growth habits. The successful exploitation of resistance has been limited by existence of specificity towards hosts, parasites that have evolved races specific host cultivars, Striga genetic variance which enables parasite to adapt to new resistance alleles and diverse hosts which support the parasite even in the absence of cereals together with low fertility due to nutrient mining in the smallholder sector. The results imply that different resistance mechanism may need to be present in genetically heterogeneous varieties or cereals with different resistance mechanisms may be rotated in the same field. Comprehensive Striga management systems should also address soil fertility in the small holder farmers of sub-Saharan Africa.  相似文献   

18.
The presence of plants induces strong accelerations in soil organic matter (SOM) mineralization by stimulating soil microbial activity – a phenomenon known as the rhizosphere priming effect (RPE). The RPE could be induced by several mechanisms including root exudates, arbuscular mycorrhizal fungi (AMF) and root litter. However the contribution of each of these to rhizosphere priming is unknown due to the complexity involved in studying rhizospheric processes. In order to determine the role of each of these mechanisms, we incubated soils enclosed in nylon meshes that were permeable to exudates, or exudates & AMF or exudates, AMF and roots under three grassland plant species grown on sand. Plants were continuously labeled with 13C depleted CO2 that allowed distinguishing plant-derived CO2 from soil-derived CO2. We show that root exudation was the main way by which plants induced RPE (58–96% of total RPE) followed by root litter. AMF did not contribute to rhizosphere priming under the two species that were significantly colonized by them i.e. Poa trivialis and Trifolium repens. Root exudates and root litter differed with respect to their mechanism of inducing RPE. Exudates induced RPE without increasing microbial biomass whereas root litter increased microbial biomass and raised the RPE mediating saprophytic fungi. The RPE efficiency (RPE/unit plant-C assimilated into microbes) was 3–7 times higher for exudates than for root litter. This efficiency of exudates is explained by a microbial allocation of fresh carbon to mineralization activity rather than to growth. These results suggest that root exudation is the main way by which plants stimulated mineralization of soil organic matter. Moreover, the plants through their exudates not only provide energy to soil microorganisms but also seem to control the way the energy is used in order to maximize soil organic matter mineralization and drive their own nutrient supply.  相似文献   

19.
《Soil biology & biochemistry》2001,33(12-13):1769-1776
Corn (Zea mays L.) root exudates were flushed from a hydrophobic system that allowed the aseptic separation of soluble exudates from the intact plant root. Plants were grown for 90 d, during which time root exudates flowed from the hydroponic setup directly onto columns containing soil previously contaminated with polycyclic aromatic hydrocarbons (PAHs). Mineralization of the PAH, pyrene, was then determined in soil removed from columns. In addition, exudated samples were directly taken from the hydroponic system for estimation of total organic carbon release and for use in microbial studies. In soil from columns that received root exudates from a planted (versus an unplanted) apparatus, there was a significant increase in 14C-pyrene mineralization. The extent of stimulation was comparable to that measured in rhizosphere soil isolated from plants growing in the same soil. Soil from columns that received solution from apparatuses that were not planted showed no stimulation of 14C-pyrene mineralization. Separate studies confirmed that some members of the soil microbial community were able to utilize these soluble plant compounds. This indicates that root exudates have the potential to increase the degradation of xenobiotics by the growth of soil microorganisms. Separating the chemical impact of the root exudates from any root surface phenomena is an important step in isolating a potential mechanism of phytoremediation. Many studies have speculated on the involvement of root exudates in rhizosphere degradation of organic contaminants, but very few studies go beyond adding simple carbon substrates in short pulses. This study employed a system that exposed the microbial community to real root exudates in the concentrations and over a time period that mimicked actual conditions.  相似文献   

20.
In the semi-arid areas of Tanzania, yield losses of sorghum [Sorghum biocolor (L.) Moench] due to Striga hermonthica (Sh) and S. asiatica (Sa) infestations are estimated to be 30–90%. The use of resistant sorghum varieties compatible with Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, may supress the weed and enhance the crop productivity. The objective of this study was to screen and select farmer-preferred sorghum genotypes for Sh and Sa resistance and FOS compatibility for resistance breeding under Tanzanian conditions. Sixty sorghum genotypes were evaluated under screen house conditions using Sh- and Sa-infested field soils with controlled seed infestation, with or without inoculation of the sorghum seeds with FOS. Inoculation of sorghum seeds with FOS significantly enhanced sorghum growth and productivity, and supressed Sh and Sa growth and development. There were reductions of 1–4 Sh and Sa plants when sorghum seeds were inoculated with FOS. Overall, we selected 25 promising sorghum lines resistant to Sh and/or Sa, and with FOS compatibility. The selected sorghum lines are valuable genetic resources for the development of Striga management in sorghum through the integrated use of host resistance and FOS inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号