首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of tolazoline (4.0 mg/kg iv) antagonism of detomidine (0.02 mg/kg iv) were evaluated in isoflurane-anaesthetised, ventilated ponies. Each of 6 ponies received both tolazoline and saline treatment during separate anaesthetic episodes only (no surgery was performed). Detomidine administration produced an increase in blood pressure, decrease in heart rate and decrease in PaO2 Tolazoline treatment transiently increased heart rate while blood pressure returned to baseline after both treatments. Arterial oxygenation decreased further after tolazoline treatment while oxgenation recovered towards baseline with saline treatment. No other cardiopulmonary effects were detected. Recovery from anaesthesia tended to be more rapid when detomidine was antagonized. The potential benefit of antagonizing detomidine-induced bradycardia with tolazoline, during isoflurane anaesthesia should be weighed against the potential to produce a decrease in arterial oxygenation. The mechanism for this effect is not clear.  相似文献   

3.
4.
The reversal of detomidine-induced sedation with iv atipamezole was studied in 6 horses. All horses were injected iv with 10 μg and 20 μg/kg bwt detomidine and 15 min later this was followed by 6-, 8- and 10-fold doses of iv atipamezole. Atipamezole caused a quick arousal in all horses with minor side effects. Bradycardia, rhythm disturbances and head ptosis caused by detomidine were not abolished completely at the end of the 15 min observation period, even with the highest atipamezole doses. All horses remained slightly sedated but without ataxia. There were no significant differences in head height, heart rate and sedation score between the different doses of atipamezole for either dose of detomidine. According to the degree of sedation, doses of 100 μg to 160 μg/kg bwt atipamezole are adequate to antagonise detomidine-induced sedation in the horse.  相似文献   

5.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

6.
This study was designed to assess the effects of 5 anesthetic drug combinations in ponies: (1) ketamine 2.75 mg/kg, xylazine 1.0 mg/kg (KX), (2) Telazol 1.65 mg/kg, xylazine 1.0 mg/kg (TX), (3) Telazol 2 mg/kg, detomidine 20 micrograms/kg (TD-20), (4) Telazol 2 mg/kg, detomidine 40 micrograms/kg (TD-40), (5) Telazol 3 mg/kg, detomidine 60 micrograms/kg (TD-60). All drugs were given iv with xylazine or detomidine preceding ketamine or Telazol by 5 min. Heart rate was decreased significantly from 5 min to arousal after TD-20 but only at 60 and 90 min after TD-40 and TD-60 respectively. Respiratory rate was decreased significantly for all ponies. Induction time did not differ between treatments. Duration of analgesia was 10 min for KX, 22.2 min for TX, 27.5 min for TD-20, 32.5 min for TD-40, and 70 min for TD-60. Arousal time was significantly longer with detomidine and Telazol. Smoothness of recovery was judged best in ponies receiving KX and TD-40. All ponies stood unassisted 30 min after signs of arousal.  相似文献   

7.
8.
9.
A double blind trial was performed in order to investigate the effects of some sedatives in the dog. One hundred and forty-two dogs undergoing radiography for the BVA/KC hip dysplasia scheme were sedated with combinations of acepromazine with pethidine or buprenorphine, or with acepromazine alone. The degree of sedation, resistance to manipulation, sensitivity to noise and response to pain were assessed, and arterial blood samples taken for blood gas analysis. In all respects the combinations of acepromazine with buprenorphine or pethidine produced significantly better sedation than acepromazine alone. Pa02 and pH were lower and PaCO2 higher in dogs receiving the combinations compared with those receiving acepromazine alone, but all values were within normal limits. It was concluded that combinations of pethidine or buprenorphine with acpromazine provide extremely effective and safe sedation in the dog.  相似文献   

10.
11.
OBJECTIVE: To evaluate by echo- and electrocardiography the cardiac effects of sedation with detomidine hydrochloride, romifidine hydrochloride or acepromazine maleate in horses. STUDY DESIGN: An experimental study using a cross-over design without randomization. ANIMALS: Eight clinically normal Standardbred trotters. MATERIALS AND METHODS: Echocardiographic examinations (two-dimensional, guided M-mode and colour Doppler) were recorded on five different days. Heart rate (HR) and standard limb lead electrocardiograms were also obtained. Subsequently, horses were sedated with detomidine (0.01 mg kg(-1)), romifidine (0.04 mg kg(-1)) or acepromazine (0.1 mg kg(-1)) administered intravenously and all examinations repeated. RESULTS: Heart rate before treatment with the three drugs did not differ significantly (p = 0.98). Both detomidine and romifidine induced a significant decrease (p < 0.001) in HR during the first 25 minutes after sedation; while acepromazine had a varying effect on HR. For detomidine, there was a significant increase in LVIDd (left ventricular internal diameter in diastole; p = 0.034) and LVIDs (left ventricular internal diameter in systole; p < 0.001). In addition, a significant decrease was found in IVSs (the interventricular septum in systole; p < 0.001), LVFWs (the left ventricular free wall in systole; p = 0.002) and FS% (fractional shortening; p < 0.001). The frequency of pulmonary regurgitation was increased significantly (p < 0.001). Romifidine induced a significant increase in LVIDs (p < 0.001) and a significant decrease in IVSs (p < 0.001) and FS% (p = 0.002). Acepromazine had no significant effect upon any of the measured values. CONCLUSIONS: and clinical relevance The results indicate that sedation of horses with detomidine and to a lesser extent romifidine at the doses given in this study has a significant effect on heart function, echocardiographic measurements of heart dimensions and the occurrence of valvular regurgitation. Although the clinical significance of these results may be minimal, the potential effects of sedative drugs should be taken into account when echocardiographic variables are interpreted in clinical cases.  相似文献   

12.
REASON FOR PERFORMING STUDY: Endoscopy of the upper airways of horses is used as a diagnostic tool and at purchase examinations. On some occasions it is necessary to use sedation during the procedure and it is often speculated that the result of the examination might be influenced due to the muscle-relaxing properties of the most commonly used sedatives. OBJECTIVES: To evaluate the effect of detomidine (0.01 mg/kg bwt) and acepromazine (0.05 mg/kg bwt) on the appearance of symmetry of rima glottidis, ability to abduct maximally the arytenoid cartilages and the effect on recurrent laryngeal neuropathy (RLN) grade. METHODS: Forty-two apparently normal horses underwent endoscopic examination of the upper airways on 3 different occasions, under the influence of 3 different treatments: no sedation (control), sedation with detomidine and sedation with acepromazine. All examinations were performed with a minimum of one week apart. The study was performed as an observer-blind cross-over study. RESULTS: Sedation with detomidine had a significant effect on the RLN grading (OR = 2.91) and ability maximally to abduct the left arytenoid cartilages (OR = 2.91). Sedation with acepromazine resulted in OR = 2.43 for the RLN grading and OR = 2.22 for the ability to abduct maximally. The ability to abduct maximally the right arytenoid cartilage was not altered. CONCLUSIONS: Sedating apparently healthy horses with detomidine or acepromazine significantly impairs these horses' ability to abduct fully the left but not the right arytenoid cartilage. This resulted in different diagnosis with respect to RLN when comparing sedation to no sedation. POTENTIAL RELEVANCE: Since the ability to abduct the right arytenoid cartilage fully is not altered by sedation, it is speculated that horses changing from normal to abnormal laryngeal function when sedated, might be horses in an early stage of the disease. To confirm or reject these speculations, further studies are needed. Until then sedation during endoscopy should be used with care.  相似文献   

13.
The cardiovascular changes induced by several sedatives were investigated in five ponies with a subcutaneously transposed carotid artery by means of cardiac output determinations (thermodilution technique), systemic and pulmonary artery pressure measurements (direct intravascular method) and arterial blood analysis (blood gases and packed cell volume). The cardiovascular depression (decrease in systemic blood pressure and cardiac output) was long lasting (greater than 90 min) after administration of propionylpromazine (0.08 mg/kg intravenous (i.v.)) together with promethazine (0.08 mg/kg i.v.). The phenothiazine-induced sedation was not optimal. alpha 2-Agonists (xylazine (0.60 mg/kg i.v.) and detomidine (20 micrograms/kg i.v.)) induced initial but transient cardiovascular effects with an increase in systemic blood pressure and a decrease in cardiac output for about 15 min. Second degree atrioventricular blocks and bradycardia were seen during this period. The cardiovascular depression was more pronounced during detomidine sedation. Atropine (0.01 mg/kg i.v.) induced a tachycardia with a decrease in stroke volume but did not alter the cardiac output or other cardiovascular parameters. It prevented the occurrence of the bradycardia and heart blocks normally induced by xylazine or detomidine. Atropine potentiated the initial hypertension induced by the alpha 2-agonistic sedatives (especially detomidine). The decrease in cardiac output induced by xylazine, and to a lesser extent by detomidine, was partially counteracted when atropine was given in advance. The atropine-xylazine combination seemed the best premedication protocol before general anaesthesia as it only resulted in minor and transient cardiovascular changes.  相似文献   

14.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

15.
ObjectiveTo evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study designRandomized cross-over design.AnimalsSix adult healthy mixed-breed dogs weighing 13.5 ± 4.9 kg.MethodsDogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg−1) or acepromazine (0.1 mg kg−1) or xylazine (1.0 mg kg−1), or acepromazine (0.05 mg kg−1) plus methadone (0.5 mg kg−1) or xylazine (0.5 mg kg−1) plus methadone (0.5 mg kg−1) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.ResultsSedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions and clinical relevanceMethadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine–methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.  相似文献   

16.
17.

Objective

To compare intraocular pressure (IOP) and pupillary diameter (PD) following intravenous (IV) administration of dexmedetomidine and acepromazine in dogs.

Study design

Prospective, randomized experimental trial.

Animals

A group of 16 healthy adult dogs aged (mean ± standard deviation) 4.9 ± 3.3 years and weighing 15.7 ± 9.6 kg, without pre-existing ophthalmic disease.

Methods

IV dexmedetomidine hydrochloride (0.002 mg kg–1; DEX) or acepromazine maleate (0.015 mg kg–1; ACE) was administered randomly to 16 dogs (eight per group). The IOP and PD, measured using applanation tonometry and Schirmer's strips mm scale, respectively, and the heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures and respiratory rate (fR) were recorded at baseline, at time of injection, and then 5, 10, 15, 20 and 25 minutes after injection. A single ophthalmologist, unaware of treatment, performed all measurements under consistent light conditions. Values were compared with baseline and among treatments using a multivariate mixed-effects model (p ≤ 0.05).

Results

The IOP was significantly lower in the DEX group compared with the ACE group at 10 (p < 0.01) and 15 minutes (p < 0.01) after drug injection. PD was significantly smaller compared to baseline for the entire duration of the study (p < 0.01) in both groups. Dogs in the DEX group had significant lower HR (p < 0.01) and fR (p < 0.01), higher SAP (p < 0.01) and DAP (p < 0.01) at all time points, and higher MAP (p < 0.01) during the first 15 minutes following drug injection in comparison with the ACE group.

Conclusions and clinical relevance

Our results suggest that premedication with IV dexmedetomidine temporarily decreases IOP when compared with IV acepromazine. Both drugs cause miosis.  相似文献   

18.
Six ponies were anaesthetised for two hours with intermittent injections of a combination of guaiphenesin (72 mg/kg/hr), ketamine (1.4 mg/kg/hr) and detomidine (0.015 mg/kg/hr) after premedication with detomidine 0.01 mg/kg and induction of anaesthesia with guaiphenesin 50 mg/kg and ketamine 2 mg/kg. Induction of anaesthesia was smooth, the ponies were easily intubated and after intubation breathed 100% oxygen spontaneously. During anaesthesia mean pulse rate ranged between 31–44 beats per minute and mean respiratory rate between 12–23 breaths per minute. Mean arterial blood pressure remained between 110–130 mm Hg, mean arterial carbon dioxide tension between 6.1–6.9 kPa and pH between 737–7.42. Arterial oxygen tension was over 23 kPa throughout anaesthesia. Plasma glucose increased to more than 25 mmol per litre during anaesthesia; there was no change in lactate or ACTH concentration and plasma cortisol concentration decreased. Recovery was rapid and smooth. A guaiphenesin, ketamine and detomidine combination appeared to offer potential as a total intravenous technique for maintenance of anaesthesia in horses.  相似文献   

19.
The effects of two intravenous doses of romifidine (80 and 120 microg/kg) and one dose of detomidine (20 microg/kg) were compared in a blinded study in 30 horses requiring to be sedated for routine dental treatment. Several physiological parameters were assessed before and for two hours after the administration of the drugs, and the horses' teeth were rasped 30 minutes after they were administered. Romifidine produced a dose-dependent effect on most parameters. Detomidine at 20 microg/kg was similar to romifidine at 120 microg/kg in the magnitude of its sedative effects, but was similar to romifidine at 80 pg/kg in its duration. There were no significant differences between the three treatments in terms of the clinical procedure score.  相似文献   

20.
The effects of xylazine (an alpha 2-adrenoceptor agonist) and acepromazine (an alpha-adrenoceptor antagonist) on bronchomotor tone were investigated in seven anaesthetised, apnoeic ponies using a computer aided forced oscillation technique, which separates changes in bronchial calibre from changes in lung volume. Both agents produced bronchodilatation and a decrease in lung volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号