首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plastic film mulching is an effective practice to improve water harvest and crop productivity in semiarid areas. The grain yield of maize (Zea mayis) as affected by various mulching practices was studied in the field in 2006 and 2007 to determine a mulching pattern that would increase rainwater harvest and crop yield. In 2006, three treatments were used: (1) flat plot without mulch (CK); (2) two ridges and furrows mulched by one plastic film and maize planted in the furrow between the two ridges (DRM); (3) two rows of maize planted in a ridged bed mulched with plastic (RM). Two additional treatments were tested in 2007: (4) two rows of maize mulched with a 70-cm wide plastic film and then 30 cm of bare soil alternated (NM); (5) maize planted without ridges in double rows 80 cm apart and the whole plot mulched with plastic film (WM). Maize yield was highest in the DRM treatment: 1150 kg ha−1 in 2006 and 6130 kg ha−1 in 2007. This was associated with better topsoil moisture in the planting zone and higher soil temperature in the DRM treatment compared with the other treatments. The soil moisture in DRM reached 10.5% and 22.6%, in 2006 and 2007, respectively, the highest of all the treatments. The mean temperature in DRM was higher than in CK and RM by 1.2 °C and 0.4 °C, respectively in 2006, while in 2007, it was higher than that in CK by 3.1 °C, in RM by 0.6 °C, in NM by1.7 °C and in WM by 0.6 °C in 2007. The higher temperatures in the DRM treatments resulted in the maize maturing earlier than in the other mulched treatments, 15 days earlier than in RM in 2006 and 11 days, 3 days, and 14 days earlier than in RM, WM, and NM, respectively in 2007. The highest water-use efficiency (WUE) was found in DRM in both years. In 2006, the WUE in DRM was six times greater than that in CK and 9.96% greater than in RM. In 2007, the WUE for grain in the DRM treatment was 16.6 kg ha−1 mm−1, 11 times greater than that in CK and greater than RM, NM and WM by 67.7%, 26.7% and 9.2%, respectively. It is concluded that the double ridges and furrow mulching treatment could serve as a model for maize production for small-holder farmers in semiarid regions.  相似文献   

2.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

3.
Under semiarid Mediterranean conditions irrigated maize has been associated to diffuse nitrate pollution of surface and groundwater. Cover crops grown during winter combined with reduced N fertilization to maize could reduce N leaching risks while maintaining maize productivity. A field experiment was conducted testing two different cover crop planting methods (direct seeding versus seeding after conventional tillage operations) and four different cover crops species (barley, oilseed rape, winter rape, and common vetch), and a control (bare soil). The experiment started in November 2006 after a maize crop fertilized with 300 kg N ha−1 and included two complete cover crop-maize rotations. Maize was fertilized with 300 kg N ha−1 at the control treatment, and this amount was reduced to 250 kg N ha−1 in maize after a cover crop. Direct seeding of the cover crops allowed earlier planting dates than seeding after conventional tillage, producing greater cover crop biomass and N uptake of all species in the first year. In the following year, direct seeding did not increase cover crop biomass due to a poorer plant establishment. Barley produced more biomass than the other species but its N concentration was much lower than in the other cover crops, resulting in higher C:N ratio (>26). Cover crops reduced the N leaching risks as soil N content in spring and at maize harvest was reduced compared to the control treatment. Maize yield was reduced by 4 Mg ha−1 after barley in 2007 and by 1 Mg ha−1 after barley and oilseed rape in 2008. The maize yield reduction was due to an N deficiency caused by insufficient N mineralization from the cover crops due to a high C:N ratio (barley) or low biomass N content (oilseed rape) and/or lack of synchronization with maize N uptake. Indirect chlorophyll measurements in maize leaves were useful to detect N deficiency in maize after cover crops. The use of vetch, winter rape and oilseed rape cover crops combined with a reduced N fertilization to maize was efficient for reducing N leaching risks while maintaining maize productivity. However, the reduction of maize yield after barley makes difficult its use as cover crop.  相似文献   

4.
Under dryland conditions of the Texas High Plains, maize (Zea mays) production is limited by sparse and erratic precipitation that results in severe water stress particularly during grain formation. When plant populations are reduced to 2.0–3.0 plants m−2 to conserve soil water for use during grain filling, tillers often form during the vegetative growth and negate the expected economic benefit. We hypothesized that growing maize in clumps spaced 1.0 m apart would reduce tiller formation, increase mutual shading among the plants, and conserve soil water for grain filling that would result in higher grain yield. Studies were conducted during 2006 and 2007 at Bushland, TX. with two planting geometries (clump vs. equidistant), two irrigation methods (low-energy precision applicator, LEPA, and low-elevation spray applicator, LESA) at three irrigation levels (dryland, 75 mm and 125 mm in 2006; and dryland, 50 mm and 100 mm in 2007). For dryland plots in 2007, clump plants had only 0.17 tillers (0.66 tillers m−2) compared with 1.56 tillers per plant (6.08 tillers m−2) for equidistant spacing. Tillers accounted for 10% of the stover for the equidistant plants, but less than 3% of the grain. Clump planting produced significantly greater grain yields (321 g m−2 vs. 225 g m−2 and 454 g m−2 vs. 292 g m−2 during 2006 and 2007, respectively) and Harvest Indexes (0.54 vs. 0.49 and 0.52 vs. 0.39 during 2006 and 2007, respectively) compared with equidistant plants in dryland conditions. Water use efficiency (WUE) measurements in 2007 indicated that clumps had a lower evapotranspiration (ET) threshold for initiating grain production, but the production function slopes were 2.5 kg m−3 for equidistant treatments compared to 2.0 kg m−3 for clump treatments. There was no yield difference for method of irrigation on water use efficiency. Our results suggest that growing maize in clumps compared with equidistant spacing reduced the number of tillers, early vegetative growth, and Leaf Area Index (LAI) so that more soil water was available during the grain filling stage. This may be a useful strategy for growing maize with low plant populations in dryland areas where severe water stress is common.  相似文献   

5.
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming Experimental Station in northern China during 2003–2008. The experiment was set-up using a split-plot design with 3 tillage/crop residue methods as main treatments: conventional, reduced (till with crop residue incorporated in fall but no-till in spring), and no-till (with crop residue mulching in fall). Sub-treatments were 3 NP fertilizer rates: 105–46, 179–78 and 210–92 kg N and P ha−1. Maize grain yields were greatly influenced by the growing season rainfall and soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage/crop residue treatments were 5604, 5347 and 5185 kg ha−1, under reduced, no-till and conventional tillage, respectively. Grain yields under no-till, were generally higher (+19%) in dry years but lower (−7%) in wet years. Mean WUE was 13.7, 13.6 and 12.6 kg ha−1 mm−1 under reduced, no-till, and conventional tillage, respectively. The no-till treatment had 8–12% more water in the soil profiles than the conventional and reduced tillage treatments at sowing and harvest time. Grain yields, WUE and NAE were highest with the lowest NP fertilizer application rates (at 105 kg N and 46 kg P ha−1) under reduced tillage, while yields and WUE tended to be higher with additional NP fertilizer rates under conventional tillage, however, there was no significant yield increase above the optimum fertilizer rate. In conclusion, maize grain yields, WUE and NAE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P ha−1. No-till increased soil water storage by 8–12% and improved WUE compared to conventional tillage, thus showing potentials for drought mitigation and economic use of fertilizers in drought-prone rainfed conditions in northern China.  相似文献   

6.
研究了不同栽培方式对夏玉米根系及叶片生长发育和主要产量性状的影响。结果表明:垄作栽培夏玉米与传统平作栽培相比,根系发达,0~50 cm土层各层次根系干重均增加;各叶位叶片宽度增加,长度基部1~5叶位缩短、中上部增加;各期叶面积系数都较大。垄作栽培比传统平作增产12.1%。  相似文献   

7.
We conducted experiments in 2006 and 2007 in south-western Kenya to reduce labour and input cost of soybean production through different planting systems (point-placement was compared to planting in trenches and broadcasting), weeding frequencies (once or twice), and the use of local inputs (at 20 kg P ha−1). Di-ammonium phosphate (DAP) was compared to manure, ashes, combinations of those, 1/2 Tithonia 1/2 DAP (TD) and no input. 1/3rd of the labour was saved when placing seeds in trenches as compared to individual holes without losing significant grain yield. Broadcasting requires 1/9th of the planting time while losing only 15% grain. 5% grain was lost by weeding once instead of twice, while saving 36% of the time. The time saved at planting can be more productively invested in collecting inputs. Plots without input yielded 537 kg ha−1 grain and 642 kg ha−1 biomass in 2006. Inputs increased both grain and biomass yields significantly with 27–51%, without significant difference between local and mineral inputs (with exception of TD). Using local input is thus a reasonable decision for farmers. Farmers concluded that the experiments had led to options for different types of farmers, with different access to resources, to increase their soybean production.  相似文献   

8.
Quantifying the exploitable gap between average farmer yields and yield potential (YP) is essential to prioritize research and formulate policies for food security at national and international levels. While irrigated maize accounts for 58% of total annual maize production in the Western U.S. Corn Belt, current yield gap in these systems has not been quantified. Our objectives were to quantify YP, yield gaps, and the impact of agronomic practices on both parameters in irrigated maize systems of central Nebraska. The analysis was based on a 3-y database with field-specific values for yield, applied irrigation, and N fertilizer rate (n = 777). YP was estimated using a maize simulation model in combination with actual and interpolated weather records and detailed data on crop management collected from a subset of fields (n = 123). Yield gaps were estimated as the difference between actual yields and simulated YP for each field-year observation. Long-term simulation analysis was performed to evaluate the sensitivity of YP to changes in selected management practices. Results showed that current irrigated maize systems are operating near the YP ceiling. Average actual yield ranged from 12.5 to 13.6 Mg ha−1 across years. Mean N fertilizer efficiency (kg grain per kg applied N) was 23% greater than average efficiency in the USA. Rotation, tillage system, sowing date, and plant population density were the most sensitive factors affecting actual yields. Average yield gap was 11% of simulated YP (14.9 Mg ha−1). Time trends in average farm yields from 1970 to 2008 show that yields have not increased during the past 8 years. Average yield during this period represented ∼80% of YP ceiling estimated for this region based on current crop management practices. Simulation analysis showed that YP can be increased by higher plant population densities and by hybrids with longer maturity. Adoption of these practices, however, may be constrained by other factors such as difficulty in planting and harvest operations due to wet weather and snow, additional seed and grain drying costs, and greater risk of frost and lodging. Two key points can be made: (i) irrigated maize producers in this region are operating close to the YP ceiling and achieve high levels of N use efficiency and (ii) small increases in yield (<13%) can be achieved through fine tuning current management practices that require increased production costs and higher risk.  相似文献   

9.
Farmers are interested to produce sweet maize under organic production systems and propane flaming could be a potential alternative tool for weed control in organic sweet maize production. Therefore, the objective of this study was to investigate the response of sweet maize to broadcast flaming as influenced by propane dose and crop growth stage. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska, Concord, NE in 2008 and 2009 using five propane doses applied at three different growth stages of V2 (2-leaf), V5 (5-leaf) and V7 (7-leaf). The propane doses were 0, 13, 24, 44 and 85 kg ha−1. The response of sweet maize to propane flaming was evaluated in terms of visual crop injury, effects on plant height, yield components (plants m−2, tillers plant−1, number of ears plant−1, cob length and number of seeds cob−1) and fresh marketable yield. The response of different growth stages of sweet maize to propane doses was described by log-logistic models. Based on most parameters tested, V7 was the most tolerant while V2 was the least tolerant stage for broadcast flaming. The maximum yield reductions with the highest propane dose of 85 kg ha−1 were 22%, 12% and 6% for V2, V5 and V7 stages, respectively. Furthermore, a 5% yield reduction was evident with 23, 25 and 36 kg ha−1 of propane for V2, V5 and V7 growth stages, respectively, suggesting that plants flamed at V7 stage can tolerate higher dose of propane for the same yield reduction compared to the other growth stages. We believe that flaming has a potential to be used effectively in organic sweet maize production if properly used.  相似文献   

10.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

11.
Retention and/or reincorporation of plant residues increases soil organic nitrogen (N) levels over the long-term is associated with increased crop yields. There is still uncertainty, however, about the interaction between crop residue (straw) retention and N fertilizer rates and sources. The objective of the study was to assess the influence of straw management (straw removed [SRem] and straw retained [SRet]), N fertilizer rate (0, 25, 50 and 75 kg N ha−1) and N source (urea and polymer-coated urea [called ESN]) under conventional tillage on seed yield, straw yield, total N uptake in seed + straw and N balance sheet. Field experiments with barley monoculture (1983-1996), and wheat/barley-canola-triticale-pea rotation (1997-2009) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Argicryoll] silty clay loam at Ellerslie) in north-central Alberta, Canada. On the average, SRet produced greater seed yield (by 205-220 kg ha−1), straw yield (by 154-160 kg ha−1) and total N uptake in seed + straw (by 5.2 kg N ha−1) than SRem in almost all cases in both periods at Ellerslie, and only in the 1997-2009 period at Breton (by 102 kg seed ha−1, 196 kg straw ha−1 and by 3.7 kg N ha−1) for both N sources. There was generally a considerable increase in seed yield, straw yield and total N uptake in seed + straw from applied N up to 75 kg N ha−1 rate for both N sources at both sites and more so at Breton, but the response to applied N decreased with increasing N rate. The ESN was superior to urea in increasing seed yield (by 109 kg ha−1), straw yield (by 80 kg ha−1) and total N uptake in seed + straw (by 2.4 kg N ha−1) in the 1983-1996 period at Breton (mainly at the 25 and 50 kg N ha−1 rates). But, urea produced greater straw yield (by 95 kg ha−1) and total N uptake in seed + straw (by 3.3 kg N ha−1) than ESN in the 1983-1996 period at Ellerslie. The N balance sheets over the 1983-2009 study duration indicated large amounts of applied N unaccounted for (ranged from 740 to 1518 kg N ha−1 at Breton and from 696 to 1334 kg N ha−1 at Ellerslie), suggesting a great potential for N loss from the soil-plant system through denitrification and/or nitrate leaching, and from the soil mineral N pool by N immobilization. In conclusion, the findings suggest that long-term retention of crop residue may gradually improve soil productivity. The effectiveness of N source varied with soil type.  相似文献   

12.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

13.
The CERES-sorghum module of the Decision Support System for Agro-Technological Transfer (DSSAT) model was calibrated for sorghum (Sorghum bicolor (L.) Moench) using data from sorghum grown with adequate water and nitrogen and evaluated with data from several N rates trials in Navrongo, Ghana with an overall modified internal efficiency of 0.63. The use of mineral N fertilizer was found to be profitable with economically optimal rates of 40 and 80 kg N ha−1 for more intensively managed homestead fields and less intensively managed bush fields respectively. Agronomic N use efficiency varied from 21 to 37 kg grain kg−1 N for the homestead fields and from 15 to 49 kg grain kg−1 N in the bush fields. Simulated grain yield for homestead fields at 40 kg N ha−1 application was equal to yield for bush fields at 80 kg N ha−1. Water use efficiency generally increased with increased mineral N rate and was greater for the homestead fields compared with the bush fields. Grain yield per unit of cumulative evapo-transpiration (simulated) was consistently higher compared with yield per unit of cumulative precipitation for the season, probably because of runoff and deep percolation. In the simulation experiment, grain yield variability was less with mineral N application and under higher soil fertility (organic matter) condition. Application of mineral N reduced variability in yield from a CV of 37 to 11% in the bush farm and from 17 to 7% in the homestead fields. The use of mineral fertilizer and encouraging practices that retain organic matter to the soil provide a more sustainable system for ensuring crop production and hence food security.  相似文献   

14.
Efficiency of fertilizer N is becoming increasingly important in modern agricultural production owing to increasing food requirement and growing concern about environments. However, there is almost no study regarding its long-term efficiency in wheat and maize cropping systems. Long-term (15 years) experiments involving wheat (Triticum aestivum L.) and maize (Zea mays L.) rotations at five field sites with various soil and climate characteristics in China were used to determine the nitrogen (N) efficiency, including the physiological efficiency, recovery efficiency and N mass balance of soil–plant systems in response to different fertilization treatments. The present study consisted of nine treatments: unfertilized, N, phosphorus, potassium, straw and manure or their combinations. The contribution of N fertilizers to wheat yield was higher than to maize and suggested that wheat could be given priority over maize when determining N application rates. Uptake of 1 kg N produced 35.6 kg of wheat grain and 39.5 kg of maize grain. The deficit of N in soils without applied N ranged from 40 to 103 kg N ha−1 year−1, while N surpluses in soils with applied N fertilizers ranged from 35 to 350 kg N ha−1 year−1. The apparent accumulated N recovery efficiency (NREac) varied widely from 4% to 90%: unbalanced fertilization and other soil limiting factors (such as aluminium toxicity) were associated with low NREac. In the treatments of combination of N, phosphorus and potassium with normal application rates, the average of NREac in four out of five sites reached 80%, which suggested that best management of N fertilizers could recover most of N fertilizers applied to soils. The results will be helpful to understand the long-term fate of N fertilizers and to optimize the N fertilization for agricultural practices and environment protection.  相似文献   

15.
Artemisia annua L. is an annual aromatic antibacterial herb, with effective antimalarial properties due to the presence of artemisinin. The intention of the present study was to establish plant survival, growth attributes, yield attributes and artemisinin yield of A. annua cv CIM - Arogya with different transplanting months in two cropping seasons (March 2005-February 2006 and March 2006-February 2007) under temperate climatic conditions of Himalaya, India. Artemisinin yield in the dried leaves was found maximum amongst the plants that were transplanted in March (24.39 kg ha−1) and minimum in those transplanted in November (3.39 kg ha−1).  相似文献   

16.
Nitrogen uptake,fixation and response to fertilizer N in soybeans: A review   总被引:2,自引:0,他引:2  
Although relationships among soybean (Glycine max [L.] Merr) seed yield, nitrogen (N) uptake, biological N2 fixation (BNF), and response to N fertilization have received considerable coverage in the scientific literature, a comprehensive summary and interpretation of these interactions with specific emphasis on high yield environments is lacking. Six hundred and thirty-seven data sets (site–year–treatment combinations) were analyzed from field studies that had examined these variables and had been published in refereed journals from 1966 to 2006. A mean linear increase of 0.013 Mg soybean seed yield per kg increase in N accumulation in aboveground biomass was evident in these data. The lower (maximum N accumulation) and upper (maximum N dilution) boundaries for this relationship had slopes of 0.0064 and 0.0188 Mg grain kg−1 N, respectively. On an average, 50–60% of soybean N demand was met by biological N2 fixation. In most situations the amount of N fixed was not sufficient to replace N export from the field in harvested seed. The partial N balance (fixed N in aboveground biomass − N in seeds) was negative in 80% of all data sets, with a mean net soil N mining of −40 kg N ha−1. However, when an average estimated belowground N contribution of 24% of total plant N was included, the average N balance was close to neutral (−4 kg N ha−1). The gap between crop N uptake and N supplied by BNF tended to increase at higher seed yields for which the associated crop N demand is higher. Soybean yield was more likely to respond to N fertilization in high-yield (>4.5 Mg ha−1) environments. A negative exponential relationship was observed between N fertilizer rate and N2 fixation when N was applied on the surface or incorporated in the topmost soil layers. Deep placement of slow-release fertilizer below the nodulation zone, or late N applications during reproductive stages, may be promising alternatives for achieving a yield response to N fertilization in high-yielding environments. The results from many N fertilization studies are often confounded by insufficiently optimized BNF or other management factors that may have precluded achieving BNF-mediated yields near the yield potential ceiling. More studies will be needed to fully understand the extent to which the N requirements of soybean grown at potential yields levels can be met by optimizing BNF alone as opposed to supplementing BNF with applied N. Such optimization will require evaluating new inoculant technologies, greater temporal precision in crop and soil management, and most importantly, detailed measurements of the contributions of soil N, BNF, and the efficiency of fertilizer N uptake throughout the crop cycle. Such information is required to develop more reliable guidelines for managing both BNF and fertilizer N in high-yielding environments, and also to improve soybean simulation models.  相似文献   

17.
Sunflower (Helianthus annuus L.) is a potential cash crop for the southeastern United States for production of cooking oil or biodiesel. Two years (2006 and 2007) of experiments were conducted at each of five locations in Mississippi to evaluate the effect of planting date (April 20, May 20, and June 20), and hybrid (DKF3875, DKF2990, DKF3510, DKF3901, PR63M80, PR62A91, PR63A21, PR63M91, and PR64H41) on seed yield, oil content, and oil composition of sunflower. Seed oil concentration varied from 25 to 47%. The oleic acid concentration in the oil was greater than 85% for DKF3510 and PR64H41, above 65% for PR63M80 and PR63M91, and intermediate for the other hybrids. Total saturated fatty acids (TSFA) concentration in the oil (the sum of palmitic, stearic, arachidic, behenic, and lignoceric acids) ranged from 6.3 to 13.0%, with DKF3510, PR63M91, and PR64H41 having lower concentration of TSFA than the other hybrids. Mean seed yields ranged from 997 to 2096 kg ha−1 depending on location. Mean oil yields at the five locations ranged from 380 to 687 kg ha−1, and calculated biodiesel production ranged from 304 to 550 kg ha−1. Seed and oil yields in this study suggest sunflower in Mississippi should be planted by the last week of May. Later planting (20 June) may significantly decrease both seed and oil yields in the non-irrigated system in Mississippi and in other areas of the southeastern United States with similar environmental conditions.  相似文献   

18.
The crop-soil simulation model CropSyst was used to simulate growth, water- and N-uptakes of irrigated winter wheat (Triticum aestivum L. cv. Kupava) in Khorezm, in the dry lands of northwest Uzbekistan, Central Asia. CropSyst was calibrated using the findings of field experiments of 2005/06 and 2006/07 and validated for the 2007/08 season. A relative root mean squared error of 11% proved the accuracy between simulated and observed aboveground biomass and grain yield in 2007/08. Scenario analyses showed that N-leaching was high and ranged from 63 to 106 kg ha−1 when irrigated between 749 and 869 mm during the first two cropping seasons. The simulated N-leaching was lowest and ranged from 7 to 15 kg ha−1 when irrigation was only 148–395 mm during 2007/08. The considerable N losses during leaching and high N-uptakes by wheat together resulted in a negative N-balance even during applications of 180 and 240 kg ha−1 of N-fertilizer. N scarcity in the N-balance was reduced with increasing N-fertilizer amounts and ranged from −29 to −153 kg N ha−1 in 2005/06 and 2006/07. Despite a common shallow groundwater table in the region during some time of the year, scenario analysis revealed that only full irrigation water (580 mm) and N supply according to crop demand (180 kg ha−1) guaranteed high grain yields, unless the water table is permanently shallow to overcome irrigation deficits. Limited irrigation and N application (40% and 55% of ‘optimal’, respectively) in combination with a groundwater table below 3 m resulted in a 55% yield decline. The CropSyst wheat model proved a robust tool for assessing the influence of water and N dynamics under conditions of varying irrigation and shallow groundwater tables. It thus has potential as a decision support not only in northwest Uzbekistan, but also in comparable regions of Central Asia.  相似文献   

19.
Artemisinin isolated from the aerial parts of Artemisia annua L. is a promising and potent antimalarial drug. It posses remarkable activity against both chloroquinine resistant as well as chloroquinine sensitive strains of Plasmodium falciparum. It is also useful in the treatment of cerebral malaria. The relatively low content of artemisinin in A. annua and unavailability of cost effective and viable synthetic protocol however, are major obstacles to the commercial production of the drug. The enhanced production of artemisinin is hence, highly desirable, which can be achieved by adequate and judicious supply of plant nutrients. The present experiment was therefore, designed to study the effect of organic manure (15 tonnes ha−1) and chemical fertilizers (N40+40, P40, K40, S15+15 kg ha−1; nitrogen, phosphorus, potassium and sulphur) on the accumulation of artemisinin and biomass in various plant parts through the developmental stages of A. annua L. Artemisinin yield (kg ha−1) was also determined through the developmental stages of A. annua L. Artemisinin content and artemisinin yield of dried leaves were increased significantly at pre-flowering stage in the plants treated with NPKS (27.3% and 53.6%) and NPK (18.2% and 33.5%), respectively, when compared with control. Maximum dry yield of leaf ranging from 2596 to 3141 kg ha−1 was observed at pre-flowering stage with various treatments.  相似文献   

20.
In regions with shallow water tables, ground water may have a positive (water supply) or negative (waterlogging or salinization) impact on crops. Reciprocally, crops can influence ground water, altering water table depth and chemical composition. We quantified these reciprocal influences along natural gradients of groundwater depth in flat sedimentary landscapes of the Inland Pampas occupied by wheat, soybean, and maize during two growing seasons (2006/2007 and 2007/2008). We correlated crop yield and groundwater depth maps at the field level and made direct plant, soil and groundwater observations at the stand level across topographic gradients. Water table level largely accounted for spatial crop yield variation, explaining 20–75% of their variance. An optimum groundwater depth range, where crop yields were highest, was observed for all three crop species analyzed (1.40–2.45 m for maize, 1.20–2.20 m for soybean, and 0.70–1.65 m for wheat). The areas within these optimum bands had yields that were 3.7, 3 and 1.8 times larger than those where the water table was below 4 m for wheat, maize, and soybean, respectively. As groundwater levels become shallower than these depth bands, crop yields declined sharply (∼0.05 kg m−2 on average for every 10 cm increase in water table level), suggesting negative effects of waterlogging, root anoxia and/or salinity. Groundwater levels below these depth bands were associated with gradually declining yields, likely driven by poorer groundwater supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号