首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water shortage in the Huai River Basin prompts farmers to adopt water-saving technologies such as direct-seeded nonflooded or aerobic rice. Different cultivation practices impact on tiller growth and development. Improved insight into tiller dynamics is needed to increase yield in these production systems. We conducted field experiments with four direct-seeded rice varieties under flooded and nonflooded conditions in Mengcheng county, Anhui province, in 2005–2006. The soil water content in the nonflooded treatment varied between saturation and field capacity. Yields in nonflooded soil ranged from 3.6 to 4.7 t ha−1, and did not differ significantly from yields in flooded soil that ranged from 3.6 to 5.1 t ha−1. Variety had a significant effect on biomass, yield, panicle number, spikelet number, grain weight, and grain filling percentage. Panicle number was the main factor limiting yield, resulting from a low tiller emergence frequency and a low fraction of productive tillers in both the flooded and the nonflooded soils. On average, the panicle number was 159–232 m−2, including 34–167 productive tillers per m2 for all the varieties under the two water regimes. The contribution of productive tillers to yield varied between 7% and 47%. There were two peaks of tillers that contributed to yield, one at the low (4th or 5th) and one at the high (10th or 11th) phytomer orders. Frequencies of tiller emergence at most phytomer orders were higher in the flooded soil than in the nonflooded soil. There were no significant differences in frequencies of productive tiller emergence and contributions to yield from tillers between the soil water regimes for three of the four tested varieties. To increase yield in direct-seeded nonflooded rice production systems, both the tiller emergence frequency and the fraction of productive tillers should increase through breeding, improved crop management, or a combination.  相似文献   

2.
Resource-poor farmers in India cultivate upland rice as a subsistence crop in poor soil with minimum inputs, often applying little or no fertilizer and controlling weeds by hand. Consequently, upland rice yields are very low. In our study, the response to management intensification of fertilizer application at rates of 40 N ha−1, 13 P ha−1, and 16.7 K ha−1 and two weed control treatments as compared with no fertilizer, and one hand weeding practice commonly followed by farmers in rainfed upland areas was examined with a large set of advanced breeding lines and adapted upland varieties tested over 3 years in multi-location trials. Highly significant genotype × environment interaction was observed in combined analyses across environments, leading to sub-grouping of sites into the high-yielding or favorable and low-yielding or unfavorable upland environment groups. A significant effect of management regime was observed. Averaged over 15 environments, the moderate-input treatment out-yielded the low-input treatment by nearly 65% or 0.8 t ha−1 under favorable environments and by nearly 48% (0.3 t ha−1) in unfavorable environments. A significant genotype effect and genotype × input management interaction for yield at favorable sites was observed. However, the same was not significant at unfavorable sites. Varietal differences were relatively small at unfavorable sites across input levels. The heritability estimates for grain yield were moderately high in both moderate- and low-input conditions in favorable environments. The genetic correlation between yields in moderate- and low-input conditions was high in both favorable and unfavorable environments. The study indicated that improved varieties performed well relative to landraces under low-input management. Improved varieties along with modestly intensified management offer an attractive option to increase the productivity of rainfed upland environments. For both favorable and unfavorable environments, indirect selection under moderate-input conditions was less efficient than direct selection for grain yield in low-input conditions, indicating upland breeding programs to adopt selection for grain yield under both moderate- and low-input conditions.  相似文献   

3.
Weedy rice is a great threat to rice production in Sri Lanka. Selective herbicides to manage weedy rice in conventional rice cultivars are not available in Sri Lanka. In the absence of appropriate chemical control measures, cultural approaches may help to achieve effective control of weedy rice. A study was conducted in two consecutive seasons in farmers' fields at three sites (Atalla, Samanthurai, and Girithale villages) in Sri Lanka to evaluate the effect of different establishment methods (farmers' practice, random broadcast, row seeding, seedling broadcast, and transplanted rice) on weedy rice infestation and rice yield. The farmers' practice had a higher number of weedy rice panicles (60–80 m−2) than the random broadcast (39–48 panicles m−2), seedling broadcast (3–15 panicles m−2), and transplanted rice (1.3–3.0 panicles m−2) methods. The use of clean rice seeds in the random broadcast method reduced weedy rice seed production by 29–41% compared with the farmers' practice (0.6–2.0 t ha−1). Compared with the farmers' practice, the seedling broadcast method reduced weedy rice seed production by 71–87% and transplanted rice by 95–98%; and increased rice yield by 27–49% (7.5–9.1 t ha−1). At all three sites, the farmers' practice resulted in the lowest grain yield (5.1–6.7 t ha−1). Compared with the farmers' practice, the random broadcast and row seeding methods increased rice yield by up to 21% and 31%, respectively. The findings suggest that the use of clean rice seeds, the use of a row-seeded crop, and the adoption of different rice planting methods may help to suppress the spread of weedy rice.  相似文献   

4.
The implications of adopting alternative seeding methods for rice and wheat establishment were examined at three geographically separate sites in the rice-wheat system of the Indo-Gangetic plains, across northern India. Rice yields in cultivated plots, established by either wet or dry seeding methods, were evaluated in comparison to yields from zero-tillage plots and under conventional transplanting methods. In the same trials, the effects of crop establishment methods in wheat were assessed both on wheat yields and rice yields. Rice crop establishment methods markedly influenced the emerging weed flora and attainable yields were measured in relation to intensity of weed management. Over four years, average rice grain yields in the absence of weed competition were greatest (6.56 t ha−1) under wet seeding (sowing pre-germinated rice seed on puddled soil), and similar to those from transplanted rice (6.17 t ha−1) into puddled soil, and dry seeded rice after dry soil tillage (6.15 t ha−1). Lowest yields were observed from dry seeded rice sown without tillage (5.44 t ha−1). Rice yield losses due to uncontrolled weed growth were least in transplanted rice (12%) but otherwise large (c. 85%) where rice had been sown to dry cultivated fields or to puddled soil, rising to 98% in dry seeded rice sown without soil tillage. Weed competition reduced multiple rice yield components, and weed biomass in wet seeded rice was six-fold greater that in rice transplanted into puddled soil and twice as much again in dry seeded rice sown either after dry tillage or without tillage. Wheat grain yields were significantly higher from crops sown into tilled soil (3.89 t ha−1) than those sown without tillage (3.51 t ha−1), and also were elevated (5% on average) where the soil had been dry cultivated in preparation for the previous rice crops rather than puddled. The method of wheat cultivation did not influence rice yield. Soil infiltration rates in the wheat season were least where the land had been puddled for rice (1.52 mm h−1), and greater where the soil had been dry-tilled (2.63 mm h−1) and greatest after zero-tillage (3.54 mm h−1).These studies demonstrated at research managed sites across a wide geographic area, and on farmers’ fields, that yields of dry seeded rice sown after dry cultivation of soil were broadly comparable with those of transplanted rice, providing weed competition was absent. These results support the proposition that direct seeding of rice could provide an alternative to the conventional practice of transplanting, and help address rising costs and threats to sustainability in the rice-wheat rotation. Further, analysis of patterns of long-term rainfall data indicated that farmers reliant on monsoon rainfall could prepare fields for dry direct seeded rice some 30 days before they could prepare fields for either transplanting or seeding with pre-germinated seed. Dry, direct seeding of rice contributes a valuable component of an adaptive strategy to address monsoonal variability that also may advance the time of wheat establishment and yield. Whilst the results illustrate the robustness, feasibility and significant potential of direct seeded rice, they also highlight the critical nature of effective weed control in successful implementation of direct seeding systems for rice.  相似文献   

5.
The rice–wheat rotation covering 13.5 million ha in the Indo-Gangetic Plains is vital for food security. Its sustainability is at risk as the current production practices are inadequate resulting in high cost of cultivation and inefficient use of inputs (i.e. water, labor and energy). In a field study, we evaluated resource conserving and cost-saving alternative tillage and crop establishment options with an aim to improve system productivity and efficiency. Treatments included transplanting and direct-seeding of rice after reduced and no-tillage, followed by wheat after no-tillage. Conventional-tilled (puddled) transplanted rice followed by conventional-tilled wheat was included as a current practice. Rice yields of transplanted rice were similar irrespective of tillage/puddling. However, both dry and wet direct-seeded rice yielded 0.45–0.61 Mg ha−1 lower than puddled transplanted rice. Wheat yield after no-tillage was either higher or equivalent to conventional practice. Wheat provided more economic return (US $35 ha−1) than rice. No-till wheat was 6% more profitable than the conventional practice (T1). Rice transplanting with or without puddling had similar water application but dry direct-seeded rice had 10–12% lower and wet direct-seeded rice 20–24% higher. Machine labor without tillage was lower by maximum of 51 and 43% in rice and wheat, respectively. Similarly, human labor was also 9–16% lower in no-till rice compared to other practices. Two years results consistently showed $35 more net income when rice was transplanted without puddling than that of conventional practice. Direct-seeded/un-tilled rice had variable response in 2 years; US $16 more in year 1 and similar in year 2 to the puddled transplanted rice. Direct-seeded or transplanted rice after no-tillage can be more efficient and profitable alternatives to current practice (puddled transplanted rice), however, require further refinement in areas of cultivar development for no-till direct-seeding condition, nutrient, water and weed management to harness maximal potential.  相似文献   

6.
Rotations are important practices for managing soil fertility on smallholder farms. Six cropping sequences (cassava, pigeonpea, mucuna–maize–mucuna, cowpea–maize–cowpea, maize–maize–maize, and speargrass fallow) were evaluated during 2003–2004 in Wenchi district of Ghana for their effects on the profitability of the different rotations and the productivity of subsequent maize. Soil chemical properties were not significantly affected by cropping sequence. On the researcher-managed and farmer-managed plots maize grain yields were significantly influenced by cropping sequence. On the researcher-managed plots maize grain yield ranged from 1.0 t ha−1 after speargrass fallow to 3.0 t ha−1 with cassava cropping when N fertiliser was not applied to maize and from 2.1 t ha−1 with continuous maize to 4.2 t ha−1 with mucuna–maize–mucuna when 60 kg N ha−1 was applied to maize. On the farmer-managed plots where N fertiliser was not applied to maize, maize grain yields ranged from 0.4 t ha−1 on speargrass fallow to 2.2 t ha−1 on plots previously cropped to pigeonpea. High maize grain yields associated with the cropping sequences involving cassava, mucuna and pigeonpea were related to the faster decomposition and N release of the biomass compared with the slower release of N by the poorer quality materials like maize stover and speargrass. Return on investment of the different rotational sequences ranged from −22% with speargrass/maize to 235% with cassava/maize when no N application was made to maize, and from 29% with continuous maize to 196% with cassava/maize when N fertiliser was applied to maize. Cassava/maize rotation was ranked by native farmers as the most preferred rotation whereas migrant farmers ranked cowpea–maize–cowpea–maize as the most preferred rotation. Among natives, male farmers ranked rotation involving cowpea as the next most preferred rotation after cassava/maize. In contrast, female farmers ranked pigeonpea/maize rotation as the second most preferred rotation, due to low labour and external input requirements of pigeonpea compared with cowpea. The choice of a particular rotational sequence is related to access to resources and the needs of the farmer. The study therefore suggests that, in a heterogeneous farming community like Wenchi, technology development should be targeted to suit the needs and resources available to each particular group of farmers.  相似文献   

7.
Cassava yields in Africa are small and it remains unclear which factors most limit yields. Using a series of farm surveys and on-farm and on-station trials in Uganda and western Kenya, we evaluated the importance of abiotic, biotic and associated crop management constraints for cassava production in a range of socio-economic settings as found in smallholder farms in the region. Average yields under farmer management were 8.6 t ha−1, but these were more than doubled to 20.8 t ha−1 by using improved crop establishment, improved genotypes and 100–22–83 kg ha−1 of single-nutrient N–P–K fertilizers. A farm survey revealed large yield differences between farms. Less endowed farmers harvested less cassava per unit area than better endowed farmers (difference of 5.9 and 9.7 t ha−1 in Kenya and Uganda, respectively); differences were associated with less access to labour, poorer soils, and premature harvesting by less endowed farmers. Analysis of 99 on-farm and 6 on-station trials showed that constraints for cassava production varied strongly between sites and years. Poor soil fertility, early water stress and sub-optimal weed management limited cassava production by 6.7, 5.4 and 5.0 t ha−1, respectively, when improved crop establishment and genotypes were used. Pests and diseases were relatively unimportant, while weed management was particularly important in farmer fields during a dry year in Kenya (yield gap of 11.6 t ha−1). The use of complementary analytical tools such as multiple regression and boundary line analysis revealed that many fields were affected by multiple and interacting production constraints. These should be addressed simultaneously if significant productivity improvements are to be achieved. This will be more difficult for less endowed than for better endowed farm households, since the former lack social and financial capital to improve management.  相似文献   

8.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

9.
Banana is the primary food crop in Uganda, but yields are low due to a complex of abiotic and biotic constraints. However, quantitative information on the importance, interactions, and geographic distribution of yields and constraints is scanty. We monitored yields, biotic and abiotic constraints in 159 plots in Central, South and Southwest Uganda in 2006–2007. About half the plots were on-farm demonstrations that received fertilizer (average 71N, 8P, 32 K kg ha−1 year−1) through a development project, the rest were ordinary farmer fields (i.e. controls). Fresh banana yields in controls were significantly (P ≤ 0.05) higher in Southwest (20 t ha−1 year−1) compared with Central (12 t ha−1 year−1) and South (10 t ha−1 year−1). Demonstrations yielded 3–10 t ha−1 year−1 more than controls. Yield losses were calculated using the boundary line approach. In Central, yield losses, expressed as percentage of attainable yield, were mainly attributed to pests (nematodes 10% loss, weevils – 6%) and suboptimal crop management (mulch 25%). In South, poor soil quality (pH – 21%, SOM – 13%, N-total – 13%, and Clay – 11%) and suboptimal crop management (weeds – 20%) were the main constraints. In Southwest, suboptimal crop management (mulch 16%), poor soil quality (K/(Ca + Mg) − 11%) and low rainfall (5%) were the primary constraints. The study revealed that biotic stresses (i.e. pests, weeds) are particularly important in Central, whereas abiotic stresses (i.e. nutrient deficiencies, drought) dominate in South and Southwest. This study concludes that (i) technologies currently available allow farmers to double yields and (ii) past research efforts have mistakenly neglected abiotic constraints.  相似文献   

10.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

11.
Wheat in Haryana (NW India) is grown as a winter crop in an annual sequence with rice, cotton, pearl millet or cluster bean as the main monsoon crops. Higher wheat yields in Haryana are associated with the use of modern varieties, increase in fertiliser use, improved irrigation practice and conservation tillage, and the recommendation to farmers for N fertiliser rates and timing and irrigation practice have an emphasis on optimising yield and input efficiencies. In India the importance to consumers of product quality does exist and, although the market place presently does not actively reward farmers for better quality wheat, the need for creating suitable and targeted marketing opportunities is now recognised. This paper examines aspects of input efficiencies and focuses on combinations of N-fertiliser and irrigation input in wheat crops grown with these four rotations (rice-wheat, cotton-wheat, pearl millet-wheat and cluster bean-wheat). Management practices that optimise grain production as well targeting grain that achieves best chapatti (Indian flat bread) quality are evaluated within a split-plot experiment where 4 irrigation schedule treatments were split with nitrogen management treatments involving a 2-way or 3-way split of N fertiliser. With the rice-wheat system, there were no differences between different split timings of N with grain yield, however with the 3 other wheat systems the 3 way split of N-fertiliser application, with N applied equally at N-fertiliser applied at seeding, early tillering and first node stage, always gave the highest yield. With all 4 rotations the highest protein level was achieved (range 11.8-12.5%) with this 3-way N application split. Grain yield increased in a step-wise manner as additional irrigation was implemented with all rotations and the highest protein outcomes were achieved with the least irrigations. The apparent recovery of N fertiliser applied was similar and highest with the 3-way split, and the 2-way split that did not include a basal N fertiliser application. Different rates of N fertiliser were included in separate experiments using the 3-way split of N application, and with the rice-wheat rotation the GreenSeeker instrument was used to establish the rate for the third application of N. The application of extra N-fertiliser with the non rice-wheat rotations produced no additional grain yield with an increase in the N-fertiliser input beyond 150 kg N ha−1, although protein and N-content increased incrementally. Grain hardness and chapatti score trended higher with increases in N-fertiliser input but the increases were relatively small. The use of the GreenSeeker instrument with the rice-wheat rotation resulted in N saving of 21-25 kg N ha−1 with similar grain yield, protein and grain hardness to that provided by using the recommended 150 kg N ha−1. Where the GreenSeeker was used the apparent recovery was 70-75% compared with 60% with the wheat receiving the recommended 150 kg N ha−1, suggesting farmers are likely to be over-fertilising their wheat crop. The best yields obtained in these experiments were about 5.5-6.0 t ha−1 and these yields are consistent with a decade-long attainable yield identified for wheat in rice-wheat rotation for Haryana. If farmers can achieve market recognition for chapatti quality, and with the use of appropriate varieties, then farmers can assume that the best practice outlined here for optimising grain yield with integrated nutrient and soil management will be the same practice that optimises chapatti quality.  相似文献   

12.
Aerobic rice describes a management adaptation to reduced irrigation water supplies but, due to reduced intervals of flooding in this system, this requires revised weed management approaches to reduce costs and provide effective weed control. One approach is to make the crop more competitive and reduce the effects of weeds on the crop by using higher rice seeding rates. A study was conducted in the Philippines and India in 2008 and 2009 to assess the relations of seeding rates (15-125 kg ha−1) of hybrid and inbred varieties to crop and weed growth in aerobic rice. Plant densities, tillers, and biomass of rice increased linearly with increased in seeding rates under both weedy and weed free environments. Weed biomass decreased linearly with increasing seeding rates from 15 to 125 kg ha−1. Panicles and grain yields of rice in competition with weeds increased in a quadratic relation with increased seeding rates at both locations; however, the response was flat in the weed free plots. A quadratic model predicted that seeding rates of 48-80 kg ha−1 for the inbred varieties and 47-67 kg ha−1 for the hybrid varieties were needed to achieve maximum grain yield when grown in the absence of weeds, while rates of 95-125 kg seed ha−1 for the inbred varieties and 83-92 kg seed ha−1 for the hybrid varieties were needed to achieve maximum yields in competition with weeds. On the basis of these results, seeding rates greater than 80 kg ha−1 are advisable where there are risks of severe weed competition. Such high seeding rates may be prohibitive when using expensive seed, and maximum yields are not the only consideration for developing recommendations for optimizing economic returns for farmers. Results of the present study do suggest however that increasing seeding rates of aerobic rice does suppress weed growth and reduce grain yield losses from weed competition. This information could be incorporated in integrated crop management packages to manage weeds more effectively.  相似文献   

13.
Aerobic rice is a water-saving rice production system for water-short environments with favorable soils and adapted, potentially high-yielding varieties that are direct dry seeded. Soils remain aerobic but supplementary irrigation is applied as necessary. In the dry season of 2004 and 2005, a water by N experiment was set up at the location “Dapdap” in central Central Luzon, Philippines, to explore water and N management strategies in aerobic rice. The experiment was laid out as a split-plot design on a loamy sand soil with three water treatments (irrigation twice per week, once per week, and once in two weeks with modifications) and 5 N levels (0–200 kg ha−1). Average seasonal soil moisture tension ranged from 9.2 to 20 kPa but yield hardly responded to the treatment combinations and ranged from 0 to 2 t ha−1. In addition to trial-specific parameters, root knot nematodes and micronutrients (2005) were monitored. Galling of roots due to nematodes was assessed through a rating scale of 0–5, with 0 = no galling and 5 = >75% of the root system galled. The degree of galling reached a level of 5 at flowering and harvest in 2004, and 3 at tillering and 4 at harvest in 2005. Results of a plant tissue analysis at mid-tillering for Fe, Mn, and Zn showed on average values above critical levels; individual replicates, however, indicated deficiencies for Mn. In addition to actual field observations, we used simulation modeling (ORYZA2000) as a tool to estimate attainable yield under actual water conditions and N inputs to explore how yield failure set in. Simulation results matched observed values for total above-ground biomass and leaf area index quite well when no N was applied. When high rates of N (200 and 165 kg ha−1) were applied, simulated values matched actual field data only until about the panicle initiation stage; afterward, observed values remained below the simulation. We interpreted this as evidence that growth-limiting factors other than water or N affected the crop from this growth stage on. Observations made in the field on root knot nematodes and micronutrients suggested that these two factors, especially root knot nematodes, may have been major constraints to crop development in this experiment.  相似文献   

14.
Success in “super” rice breeding has been considered a great progress in rice production in China. This study aimed to test the hypothesis that an improved root system may contribute to better shoot growth and consequently to higher grain yield in “super” rice. Two “super” rice varieties Liangyoupeijiu (an indica hybrid) and Huaidao 9 (a japonica inbred) and two elite check varieties Yangdao 6 (an indica inbred) and Yangfujiang 8 (a japonica inbred) were field-grown at Yangzhou, China in 2006 and 2007. Root and shoot dry weight (DW) was significantly greater in “super” rice varieties than in check ones throughout the growth season in both years, so was the root length density. Root oxidation activity (ROA) and root zeatin (Z) zeatin riboside (ZR) content, in per plant basis, were significantly greater in “super” rice than check varieties before and at heading time. However, both ROA and root Z + ZR content, either in per plant basis or per unit root DW basis, were significantly lower in ‘super’ rice than in check varieties at the mid- and late grain filling stages. Grain yield of the two ‘super’ rice varieties, on average, was 10.2 t ha−1 in 2006 and 11.4 t ha−1 in 2007, and was 13% and 21% higher than that of check varieties, respectively. The high grain yield was mainly due to a larger sink size (total number of spikelets) as a result of a larger panicle. The percentage of filled grains of the two “super” rice varieties, on average, was 72.9% in 2006 and 79.0% in 2007, and was 19.4% and 12.9%, respectively, lower than that of the check varieties. The mean ROA and root Z + ZR content during the grain filling period significantly correlated with the percentage of filled grains. Collectively, the data suggest that an improved root and shoot growth, as showing a larger root and shoot biomass and greater root length density during the whole growing season and higher ROA and root Z + ZR content per plant at early and mid-growth stages, contributes to the large sink size and high grain yield in the “super” rice varieties. The data also suggest the yield of “super” rice varieties can be further increased by an increase in filled grains through enhancing root activity during grain filling.  相似文献   

15.
In the moderate climate of Poland it is recommended that milk thistle (Silybum marianum L. Gaertn.) be grown on fertile soils. The plant, however, develops a strong root system, so a working hypothesis has developed that cultivation can be extended to light soils with periodic water deficits. The aim of the present research was to determine the effects of sowing milk thistle on light soil at different dates and rates on the achene yield and flavonolignan content. This experiment was carried out during 2004-2006 at the Mochelek Experiment Station of the University of Technology and Life Sciences in Bydgoszcz (53°13′ N; 17°51′ E). The average fruit yields were 1.23 t ha−1; those of silymarin were 26.5 kg ha−1. The moisture and thermal conditions during the research years caused the fruit yields to range from 0.55 to 1.68 t ha−1 and silymarin yields from 13.3 to 35.4 kg ha−1. Delaying sowing from early to mid-April increased the plant density and decreased numbers of inflorescences and fruits per inflorescence; as a result, no effect of sowing date on fruit yield was found. Delaying the sowing date increased silymarin content by about 0.4% and its yield by 5.3 kg ha−1. Increasing the sowing rate from 12 to 24 kg ha−1 resulted in a slight (40 kg ha−1) but significant increase in achene yield; however, it did not affect the silymarin content. The average silymarin content in fruits was 2.18%. The ratio of silydianin to silychristin was 1:2.2, and the ratio of silydianin to the sum of silybinin and isosilybinin was 1:3.3.  相似文献   

16.
Soil fertility varies markedly within and between African smallholder farms, both as a consequence of inherent factors and differential management. Fields closest to homesteads (homefields) typically receive most nutrients and are more fertile than outlying fields (outfields), with implications for crop production and nutrient use efficiencies. Maize yields following application of 100 kg N ha−1 and different rates and sources of P were assessed on homefields and outfields of smallholder farms in Zimbabwe. Soil organic carbon, available P and exchangeable bases were greater on the homefields than outfields. In each of three experimental seasons, maize yields in homefield control plots were greater than in the outfields of farms on a granitic sandy and a red-clay soil. Application of mineral N significantly increased maize yields on homefields in the first season (2.1–3.0 t ha−1 on the clay soil and 1.0–1.5 t ha−1 on the sandy soil) but the effects of N alone were not significant on the outfields due to other yield-limiting factors. Greatest yields of about 6 t ha−1 were achieved on the clayey homefield with 100 kg N ha−1 and 30 kg P ha−1 applied as single super phosphate (SSP). Manure application gave greater yields (3–4 t ha−1) than SSP (2–3 t ha−1) in the sandy homefield and in the clayey outfield. Maize did not respond significantly to N, dolomitic lime, manure and P on the sandy outfield in the first and second seasons. In the third season, manure application (∼17 t manure ha−1 year−1) on the sandy outfield did result in a significant response in grain yields. Apparent P recovery in the first season was 55–65% when P was applied at 10 kg ha−1 on the clayey homefield (SSP), clayey outfield (SSP and manure) and sandy homefield (manure) with apparent P recovery less than 40% when P was applied at 30 kg ha−1. On the sandy outfield, P recovery was initially poor (<20%), but increased in the successive seasons with manure application. In a second experiment, less than 60 kg N ha−1 was required to attain at least 90% of the maximum yields of 2–3 t ha−1 on the sandy homefield and clayey outfield. N use efficiency varied from >50 kg grain kg−1 N on the infields, to less than 5 kg grain kg−1 N on the sandy outfields. Apparent N recovery efficiency by maize was greatest at small N application rates with P applied. We conclude that blanket fertilizer recommendations are of limited relevance for heterogeneous smallholder farms. Targeted application of mineral fertilizers and manure according to soil type and past management of fields is imperative for improving crop yields and nutrient use efficiencies.  相似文献   

17.
Aerobic rice is a new production system for water-short environments. Adapted varieties are usually direct dry seeded and the crop grown under aerobic soil conditions with supplementary irrigation as necessary. Occasionally, yield failures occur which may be related to soil health problems. In the dry season of 2006 and 2007, we conducted a field experiment in the Philippines, to identify the major causes of such yield failure. Four treatments were implemented: (i) Control of direct dry-seeded rice (improved upland variety Apo), (ii) Biocide application, (iii) transplanting into aerobic soil, and (iv) 1 year fallow. Yield in the Biocide treatment was 2 t ha−1 in both years. In all other treatments, yield was 0–0.3 t ha−1. Plants grown in the Biocide treatment showed a reduced degree of galling of roots caused by root-knot nematodes (RKN) and better general root health than the Control treatment. Potentially pathogenic fungi were isolated from root samples (Pythium sp., Fusarium sp., and a Rhizoctonia-like species). Abiotic effects of the Biocide treatment were an increase in KCl-extractable N (initial season 2007) and a decrease in initial soil pH. In the Control treatment, soil pH increased from 6.5 to 8.0 over the two seasons. In 2007, plant tissue analysis indicated Mn deficiency in the Control treatment. Plants that were subjected to foliar micronutrient sprays reacted positively to Fe and Mn sprays in the Control treatment, and Mn spray in the Biocide treatment. We concluded that the Biocide application led to favorable soil conditions by reducing biotic stresses such as RKN and improving nutrient availability. In the other treatments, an interaction of RKN and micronutrient deficiencies with increasing soil pH led to yield failure.  相似文献   

18.
Pigmentation of rice grain is controlled by Ra, Rc and Rd genes, and the expressions of these genes differ among red-, purple- and white-pericarp varieties. The present study examined the grain yield and the expression of Ra, Rc and Rd genes in non-waxy white-pericarp rice SA418 and waxy white-pericarp rice SA419 and their respective red-pericarp and purple-pericarp mutants with waxy or non-waxy endosperm. Significant variations in 100-grains weight and grain yield were observed among the tested mutants. The Ra was expressed in purple-pericarp mutants, while the Rc was expressed in red-pericarp mutants. The total phenolics, total flavonoids, total anthocyanins and total proanthocyanidins contents and antioxidant activities in the bran part also differed among the mutants. Non-waxy red-pericarp mutant M-69 had heavier 100-grains weight (2.86 g), contained more total phenolics (49.37 mg g−1 bran dry weight) and produced higher grain yield (6.93 t ha−1) than white-pericarp rices SA418 (2.43 g, 2.89 mg g−1 bran dry weight and 2.80 t ha−1, respectively) and SA419 (2.62 g, 2.20 mg g−1 bran dry weight and 6.73 t ha−1, respectively). Thus, the polished rice grain of M-69 can be used for staple food consumption, and its bran parts are useful for producing health-promoting by-product.  相似文献   

19.
Wheat-maize double cropping is the most important cropping system on the Hebei Plain and is one of the most important cropping systems in China. In a scenario of greater food demand, and increasing water and rural labour scarcity, it is critical that the annual productivity of the system is improved in water-energy-cost efficient and low carbon ways. Based on farm surveys, this paper benchmarked the performance of wheat-maize double crops on the Hebei Plain during the 2004-2005 season. These farm yields were assessed both against experimental yields collected from on-farm maximum yield trials conducted during the same 2004-2005 season and relative to simulated estimates of the climate-driven potential productivity of the region.The survey of 362 farms in six counties of the Hebei Plain during the 2004-2005 season found wheat yields ranging from 3375 kg ha−1 to 9000 kg ha−1 with an overall average yield of 6556 kg ha−1. Maize yields averaged 7549 kg ha−1 and ranged from 3375 kg ha−1 to 11,250 kg ha−1. The aggregate production for the wheat-maize double crops grown in the 2004-2005 season averaged 14,105 kg ha−1 across the six counties. This was 72% of the average production (19,586 kg ha−1) recorded from on-farm trials conducted in each of the six counties and 60% of the simulated average production potential (24,147 kg ha−1) for the Hebei Plain in the 2004-2005 season. Thus, the annual productivity of the current cropping system could be increased with currently available technologies by 28%, while a yield increase of 42% is possible if farm yields approach the simulated yield potential.Based on farmer interviews and field observations, a number of real and perceived reasons for the current yield gaps in farmers’ fields were recognised. For instance, irrigation at stem-elongation of wheat is a current recommendation, yet only a proportion of the surveyed farmers were able to follow this strategy due to lack of access to shared irrigation facilities. Improving the region's infrastructure to enable more timely irrigation of crops will be a necessary prerequisite to improved productivity.The results from the farm surveys and on-farm trials indicate that, with current recommended practices, farmers can improve their annual farm productivity and close the current yield gaps. However, the survey identified that increasing system performance and efficiency will require a focus on both agronomic and socio-economic issues.  相似文献   

20.
Row spacing and weed control timing affect yield of aerobic rice   总被引:2,自引:0,他引:2  
Field experiments were conducted during the wet season of 2009 and dry season of 2010 to determine the effects of row spacing and timing of weed control on weed growth and yield of aerobic rice. Ten weed management treatments were used to identify critical periods of weed competition with aerobic rice grown in three different row spacings (15-cm, 30-cm, and as paired rows 10-20-10-cm). Dominant weed species during both growing seasons were Rottboellia cochinchinensis, Digitaria ciliaris, Echinochloa colona, and Eleusine indica. Rice grown in 30-cm rows had greater weed biomass and less grain yield than in 15-cm and 10-20-10-cm rows; weed growth and grain yields were similar between 15-cm and 10-20-10-cm rows. Rice yields in the wet season ranged from 170 kg ha−1 where weeds were not controlled throughout the crop duration to 2940 kg ha−1 in weed-free treatment, indicating a 94% yield loss with uncontrolled weed growth. Similarly in the dry season, plots with no weed control (140 kg ha−1) compared to weed-free plots (3640 kg ha−1) indicate a 96% yield loss with no weed control. Gompertz and logistic equations were fitted to yield data resulting from increasing durations of weed control and weed interference, respectively. Critical periods for weed control in the wet season, to obtain 95% of a weed-free yield, were estimated as between 18 and 52 days after sowing (DAS) for crops in rows at 15-cm, 20-51 DAS at 10-20-10-cm, and 15-58 DAS at 30-cm. These intervals in the dry season were 17-56 DAS for crops in rows at 15-cm and 17-60 DAS at 10-20-10-cm and 15-64 DAS at 30-cm. Durations of the critical periods in the wet season were 31 days at 10-20-10-cm, 34 days at 15-cm and 43 days at 30-cm, while in the dry season, these were 43 days at 10-20-10-cm, 39 days at 15-cm and 49 days at 30-cm. In both seasons, crops in the wider spacing (30-cm) were vulnerable to weed competition for the longest period. The information gained from this study suggests that the aerobic rice yields better in 15-cm rows and 10-20-10-cm arrangements than in 30-cm rows and there is very little benefit of weed control beyond 8 weeks after sowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号