首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effects of crop rotation on oilseed flax growth and yield, three season experiments were carried out in semi-arid area of Dingxi, Gansu from 2017 to 2019. The designed 6 rotational systems were FFF (flax-flax-flax), PFF (potato-flax-flax), WPF (wheat-potato-flax), FPF (flax-potato-flax), PWF (potato-wheat-flax) and FWF (flax-wheat-flax). Flax growth and yield investigation results showed that crop rotation increased leaf area duration, dry matter accumulation, seed nitrogen accumulation, water and nitrogen used efficiency, compared with continuous cropping of flax. Flaxseed yields in rotation systems were 22.23%–44.11% greater than those of continuous cropping system. Those in wheat and potato stubbles had higher tiller number (21.43% and 29.46%), more branches (14.24% and 6.97%), effective capsules (26.35% and 28.79%), higher water use efficiency (40.26% and 33.5%), higher nitrogen partial factor productivity (33.85% and 31.46%) and dry matter (41.98% and 25.47%) than those in oilseed flax stubble. It concluded that crop rotation system was an effective measure for oilseed flax productivity in semi-arid area by improving yield components and promoting biomass.  相似文献   

2.
Crop rotation and tillage systems have important implications for weed infestation and crop productivity. In this study, five tillage systems viz. zero tillage (ZT), conventional tillage (CT), deep tillage (DT), bed sowing (60/30 cm with four rows; BS1) and bed sowing (90/45 cm with six rows; BS2) were evaluated in five different crop rotations viz. fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW) for their effect on weed infestation and productivity of bread wheat. Interaction between different tillage practices and cropping systems had significant effect on density and dry biomass of total, broadleaved and grass weeds, agronomic and yield-related traits, and grain yield of bread wheat. The un-disturbed soils (ZT) under fallow-wheat or mungbean-wheat rotations favoured the weed prevalence (a total weed dry biomass of 72.4–109.6 and 105.6–112.1 g m−2 in first and second year, respectively). Contrary to this, the disturbed soils (CT, DT, BS1 and BS2) had less weed infestation with either of the rotations (a total weed biomass of 0.4–7.1 and 1.1–5.4 g m−2 in first and second year, respectively). Sorghum-wheat rotation had strong suppressive effect on weed infestation in all tillage systems. The impact of crop rotation was more visible during second year of experimentation. Bed sown wheat (BS1 and BS2) in mungbean-wheat rotation had the highest wheat grain yield (6.30–6.47 t ha−1) compared to other tillage systems in different crop rotation combinations.  相似文献   

3.
《Field Crops Research》2004,89(1):27-37
In water-limited environments soil water content at sowing is important in determining durum wheat germination, emergence and plant establishment. Soil water content interacts greatly with soil nitrogen content, affecting nitrogen uptake and crop productivity. Simulation models can be used to confirm the optimal strategy by testing several crop management scenarios.The CERES-Wheat model, previously calibrated and validated in southern Italy, has been used in a seasonal analysis to optimise nitrogen fertilisation of durum wheat at different levels of crop available water (CAW) at planting date in southern Italy. The simulation was carried out for a 48-year period with measured daily climatic data. The 99 simulated scenarios derived from the combinations of different CAW levels at sowing, nitrogen fertiliser rates and application times.The results obtained from the simulation indicated that the effect of CAW at sowing was relevant for durum wheat production at lowest and highest values, while the optimal sowing time to maximise yield and profit can be considered when CAW is 40–60%. In the case study optimal N fertiliser amount was estimated to be 100±20 kg ha−1, from a productive, environmental and economic point of view. The nitrogen split application—half at sowing and half at stem extension stage—resulted in the best management practice.This application of the CERES-Wheat model confirmed the capability of the model to compare several crop management strategies in a typical durum wheat cropping area.  相似文献   

4.
Durum wheat is a crop of great economic relevance for Mediterranean regions, especially in developing countries. A decreasing trend in durum production is expected in the near future because of several factors, in particular environmental constraints due to climate change and variability. The aim of this work was to test the predictive performance of CERES-Wheat model, implemented in DSSAT software systems, under Mediterranean climate condition and soil types of Southern Sardinia, Italy. CERES-Wheat model was calibrated for three durum wheat Italian varieties (Creso, Duilio, and Simeto) using a 30-year data set (1974–2004) and a trial and error iterative procedure. Then, the model was validated and evaluated using several statistics. The model showed a quite good performance in predicting grain yield and anthesis date, with errors comparable with those reported by other studies conducted on bread and durum wheat. Predictions of grain weight and grain number did not match very well observations, confirming the difficulties of CERES-Wheat in estimating grain yield components. The results of this study suggest the need of specific field experiments and further model evaluations and improvements to better understand model simulation results of grain yield components of durum wheat.  相似文献   

5.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

6.
Oilseed and pulse crops have been increasingly used to diversify cereal-based cropping systems in semiarid environments, but little is known about the root characteristics of these broadleaf crops. This study was to characterize the temporal growth patterns of the roots of selected oilseed and pulse crops, and determine the response of root growth patterns to water availability in semiarid environments. Canola (Brassica napus L.), flax (Linum usitatissimum L.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), field pea (Pisum sativum L.), lentil (Lens culinaris), and spring wheat (Triticum aestivum L.) were tested under high- (rainfall + irrigation) and low- (rainfall only) water availability conditions in southwest Saskatchewan, in 2006 and 2007. Crops were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length that were installed in the field prior to seeding. Roots were sampled at the crop stages of seedling, early-flower, late-flower, late-pod, and physiological maturity. On average, root length density, surface area, diameter, and the number of tips at the seedling stage were, respectively, 41, 25, 14, and 110% greater in the drier 2007 than the corresponding values in 2006. Root growth in all crops progressed rapidly from seedling, reached a maximum at late-flower or late-pod stages, and then declined to maturity; this pattern was consistent under both high- and low-water conditions. At the late-flower stage, root growth was most sensitive to water availability, and the magnitude of the response differed between crop species. Increased water availability increased canola root length density by 70%, root surface area by 67%, and root tips by 79% compared with canola grown under low-water conditions. Water availability had a marginal influence on the root growth of flax and mustard, and had no effect on pulse crops. Wheat and two Brassica oilseeds had greater root length density, surface area and root tips throughout the entire growth period than flax and three pulses, while pulse crops had thicker roots with larger diameters than the other species. Sampling roots at the late-flower stage will allow researchers to capture best information on root morphology in oilseed and pulse crops. The different root morphological characteristics of oilseeds, pulses, and wheat may serve as a science basis upon which diversified cropping systems are developed for semiarid environments.  相似文献   

7.
Greenhouse gas (GHG) emissions and reactive nitrogen (Nr) releases are central environmental problems, which are closely linked to climate change, environmental ecology and crop production. Sustainable development of agriculture plays an important role in GHG emissions and Nr loss. The life cycle assessment (LCA) method was used to calculate the product and farm carbon footprints (CFs) and nitrogen footprints (NFs) in rice, wheat and maize production in China based on farm survey data. The results pinpointed that the CFs of rice, wheat and maize were 0.87, 0.30 and 0.24 kg/kg. Meanwhile, the computed NFs were 17.11, 14.26 and 6.83 g/kg, respectively. Synthetic nitrogen fertilizer applications and methane (CH4) emissions were dominant CF sources, while ammonia (NH3) volatilization was the main NF contributor. Moreover, significant decreases in CF and NF by 20%–54% and 33%–61%, respectively, were found in large-size farms (> 20 hm2) when compared to small-size farms (< 0.7 hm2). Furthermore, the significantly positive relationships between CF and NF indicated the potential for simultaneous mitigation in the regions with high agricultural inputs, like amounts of fertilizer. Based on our results, some effective solutions would be favorable toward mitigating climate change and eutrophication of the major cereal crop production in China, especially optimizing fertilizer use and farm machinery operation efficiencies, as well as developing large-size farms with intensive farming.  相似文献   

8.
Samples of Canadian amber durum wheat varieties, of various protein content and a composite of export cargo samples, were milled to yield straight-grade and patent flours by reducing semolina and processed into yellow alkaline noodles (YAN). Samples of Canada Hard White Spring (CWHWS) and Canada Western Red Spring (CWRS) were included for comparative purposes. YAN from durum wheat displayed a colour advantage over CWRS and CWHWS YAN. The durum YAN displayed an approximate 9–20 unit greater b* (yellowness) value than CWRS and CWHWS at 2 and 24 h after preparation. This relates to greater yellow pigment and flavonoid contents in the durum flours. All durum wheat YAN exhibited excellent noodle brightness, which was retained over time due to lower levels of the enzymes polyphenol oxidase (PPO) and peroxidase (POD). Durum noodles displayed significantly fewer specks than CWRS and were comparable to CWHWS. Durum wheat YAN cooking quality was equal to or slightly superior to CWRS and CWHWS. Durum wheat flour refinement imparted no significant effects on cooked noodle texture (maximum cutting stress, recovery, resistance to compression). However, the various texture parameters improved with durum wheat protein content and gluten strength.  相似文献   

9.
Soil acidity and Al toxicity are highly extended in agricultural lands of Chile, especially where wheat is widely sown. To evaluate quantitatively the response of wheat biomass and its physiological determinants (intercepted radiation and radiation use efficiency) to Al toxicity, two field experiments were conducted in an Andisol in Valdivia (39°47′S, 73°14′W), Chile, during the 2005–2006 and 2006–2007 growing seasons. Treatments consisted of a factorial arrangement of: (i) two spring wheat cultivars with different sensitivity to Al toxicity (the sensitive cultivar: Domo.INIA and the tolerant cultivar: Dalcahue.INIA) and (ii) five exchangeable Al levels (from 0 to 2.7 cmol(+) kg−1) with three replicates. Crop phenology and intercepted radiation (IR) were registered during the entire crop cycle, while 10 samples of above-ground biomass were taken at different stages between double ridge and maturity. Both biomass and leaf area index (LAI) were recorded in these 10 stages. Radiation use efficiency (RUE) was calculated as the slope of the relationship between accumulated above-ground biomass and accumulated photosynthetically active radiation intercepted by the canopy (IPARa). Crop phenology was little affected by soil Al treatments, showing only up to 17 days delay in the Al-sensitive cultivar under extreme Al treatments. Above-ground biomass at harvest was closely associated (R2 = 0.92) with the crop growth rate but no relationship (R2 = 0.14) was found between the crop cycle length. IPARa explained almost completely (R2 = 0.93) the above-ground biomass reached by the crop at harvest under the wide range of soil Al concentrations explored in both experiments. On the other hand, a weaker relationship was found between above-ground biomass and RUE. The effect of soil Al concentration on IPARa was mainly explained by LAI as a single relationship (R2 = 0.93) between IR (%) and LAI at maximum radiation interception showing a common light attenuation coefficient (k = 0.33).  相似文献   

10.
A bright yellow color of pasta is an important qualitative trait for the durum wheat industry. Final color is the result of the balance between yellow and brown components in semolina. Polyphenoloxidase (PPO) is implicated as playing a significant role in darkening. This study aimed to characterize PPO activity of durum wheats. PPO was extracted and partially purified by ion-exchange chromatography on a column packed with diethyaminoethyl cellulose (DEAE). This procedure led to 26.33-fold purification with 24.7% recovery. The optimum temperature and pH of PPO were found to be 40 °C and 6.5, respectively. Heat stability of durum wheat PPO decreased as the temperatures increased from 30 to 80 °C. The z-value was calculated as 23.4 °C. It increased to 26.3 and 48.4 °C in the presence of 40% sucrose and 1 M NaCl, respectively. Durum wheat PPO was shown to use several phenolic compounds as substrate. Among the substrates used, the greatest substrate specificity was observed with catechol. Durum wheat PPO was sensitive to inhibitors such as ascorbic acid, cysteine, oxalic acid and citric acid. Ascorbic acid was the most effective inhibitor.  相似文献   

11.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

12.
Samples of Canadian amber durum wheat varieties, of various protein content and a composite of export cargo samples, were milled to yield straight-grade and patent flours by reducing semolina and processed into yellow alkaline noodles (YAN). Samples of Canada Hard White Spring (CWHWS) and Canada Western Red Spring (CWRS) were included for comparative purposes. YAN from durum wheat displayed a colour advantage over CWRS and CWHWS YAN. The durum YAN displayed an approximate 9–20 unit greater b* (yellowness) value than CWRS and CWHWS at 2 and 24 h after preparation. This relates to greater yellow pigment and flavonoid contents in the durum flours. All durum wheat YAN exhibited excellent noodle brightness, which was retained over time due to lower levels of the enzymes polyphenol oxidase (PPO) and peroxidase (POD). Durum noodles displayed significantly fewer specks than CWRS and were comparable to CWHWS. Durum wheat YAN cooking quality was equal to or slightly superior to CWRS and CWHWS. Durum wheat flour refinement imparted no significant effects on cooked noodle texture (maximum cutting stress, recovery, resistance to compression). However, the various texture parameters improved with durum wheat protein content and gluten strength.  相似文献   

13.
Forages could be used to diversify reduced and no-till dryland cropping systems from the traditional wheat (Triticum aestivum L.)-fallow system in the semiarid central Great Plains. Forages present an attractive alternative to grain and seed crops because of greater water use efficiency and less susceptibility to potentially devastating yield reductions due to severe water stress during critical growth stages. However, farmers need a simple tool to evaluate forage productivity under widely varying precipitation conditions. The objectives of this study were to (1) quantify the relationship between crop water use and dry matter (DM) yield for soybean (Glycine max L. Merrill), (2) evaluate changes in forage quality that occur as harvest date is delayed, and (3) determine the range and distribution of expected DM yields in the central Great Plains based on historical precipitation records. Forage soybean was grown under a line-source gradient irrigation system to impose a range of water availability conditions at Akron, CO. Dry matter production was linearly correlated with water use resulting in a production function slope of 21.2 kg ha−1 mm−1. The slope was much lower than previously reported for forage production functions for triticale (X Triticosecale Wittmack) and millet (Setaria italic L. Beauv.), and only slightly lower than slopes previously reported for corn (Zea mays L.) and pea (Pisum sativa L.) forage. Forage quality was relatively stable during the last four weeks of growth, with small declines in crude protein (CP) concentration. Values of CP concentration and relative feed value indicated that forage soybean was of sufficient quality to be used for dairy feed. A standard seed variety of maturity group VII was found to be similar (in both productivity and quality) to a variety designated as a forage type. The probability of obtaining a break-even yield of at least 4256 kg ha−1 was 90% as determined from long-term precipitation records used with the production function. The average estimated DM yield was 5890 kg ha−1 and ranged from 2437 to 9432 kg ha−1. Regional estimates of mean forage soybean DM yield ranged from 4770 kg ha−1 at Fort Morgan, CO to 6911 kg ha−1 at Colby, KS. Forage soybean should be considered a viable alternative crop for dryland cropping systems in the central Great Plains.  相似文献   

14.
Root distribution patterns in the soil profile are the important determinant of the ability of a crop to acquire water and nutrients for growth. This study was to determine the root distribution patterns of selected oilseeds and pulses that are widely adapted in semiarid northern Great Plains. We hypothesized that root distribution patterns differed between oilseed, pulse, and cereal crops, and that the magnitude of the difference was influenced by water availability. A field experiment was conducted in 2006 and 2007 near Swift Current (50°15′N, 107°44′W), Saskatchewan, Canada. Three oilseeds [canola (Brassica napus L.), flax (Linum usitatissimum L.), mustard (Brassica juncea L.)], three pulses [chickpea (Cicer arietinum L.), field pea (Pisum sativum L.), lentil (Lens culinaris)], and spring wheat (Triticum aestivum L.) were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length which were pushed into soil with a hydraulic system. Crops were evaluated under low- (natural rainfall) and high- (rainfall + irrigation) water conditions. Vertical distribution of root systems was determined at the late-flowering stage. A large portion (>90%) of crop roots was mainly distributed in the 0-60 cm soil profile and the largest amount of crop rooting took place in the top 20 cm soil increment. Pulses had larger diameter roots across the entire soil profile than oilseeds and wheat. Canola had 28% greater root length and 110% more root tips in the top 10 cm soil and 101% larger root surface area in the 40 cm soil under high-water than under low-water conditions. In 2007, drier weather stimulated greater root growth for oilseeds in the 20-40 cm soil and for wheat in the 0-20 cm soil, but reduced root growth of pulses in the 0-50 cm soil profile. In semiarid environments, water availability did not affect the vertical distribution patterns of crop roots with a few exceptions. Pulses are excellent “digging” crops with a strong “tillage” function to the soil due to their larger diameter roots, whereas canola is more suitable to the environment with high availability of soil water that promotes canola root development.  相似文献   

15.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

16.
Efficiency of fertilizer N is becoming increasingly important in modern agricultural production owing to increasing food requirement and growing concern about environments. However, there is almost no study regarding its long-term efficiency in wheat and maize cropping systems. Long-term (15 years) experiments involving wheat (Triticum aestivum L.) and maize (Zea mays L.) rotations at five field sites with various soil and climate characteristics in China were used to determine the nitrogen (N) efficiency, including the physiological efficiency, recovery efficiency and N mass balance of soil–plant systems in response to different fertilization treatments. The present study consisted of nine treatments: unfertilized, N, phosphorus, potassium, straw and manure or their combinations. The contribution of N fertilizers to wheat yield was higher than to maize and suggested that wheat could be given priority over maize when determining N application rates. Uptake of 1 kg N produced 35.6 kg of wheat grain and 39.5 kg of maize grain. The deficit of N in soils without applied N ranged from 40 to 103 kg N ha−1 year−1, while N surpluses in soils with applied N fertilizers ranged from 35 to 350 kg N ha−1 year−1. The apparent accumulated N recovery efficiency (NREac) varied widely from 4% to 90%: unbalanced fertilization and other soil limiting factors (such as aluminium toxicity) were associated with low NREac. In the treatments of combination of N, phosphorus and potassium with normal application rates, the average of NREac in four out of five sites reached 80%, which suggested that best management of N fertilizers could recover most of N fertilizers applied to soils. The results will be helpful to understand the long-term fate of N fertilizers and to optimize the N fertilization for agricultural practices and environment protection.  相似文献   

17.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

18.
Faba bean in cropping systems   总被引:1,自引:0,他引:1  
The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended to focus on the effect of faba bean as a pre-crop in mainly cereal intensive rotations, whereas similar information on the effect of preceding crops on faba bean is lacking. Faba bean has the highest average reliance on N2 fixation for growth of the major cool season grain legumes. As a consequence the N benefit for following crops is often high, and several studies have demonstrated substantial savings (up to 100–200 kg N ha−1) in the amount of N fertilizer required to maximize the yield of crops grown after faba bean. There is, however, a requirement to evaluate the potential risks of losses of N from the plant–soil system associated with faba bean cropping via nitrate leaching or emissions of N2O to the atmosphere as a consequence of the rapid mineralization of N from its N-rich residues. It is important to develop improved preventive measures, such as catch crops, intercropping, or no-till technologies, in order to provide farmers with strategies to minimize any possible undesirable effects on the environment that might result from their inclusion of faba bean in cropping system. This needs to be combined with research that can lead to a reduction in the current extent of yield variability, so that faba bean may prove to be a key component of future arable cropping systems where declining supplies and high prices of fossil energy are likely to constrain the affordability and use of fertilizers. This will help address the increasing demand by consumers and governments for agriculture to reduce its impact on the environment and climate through new, more sustainable approaches to food production. The aims of this paper are to review the role of faba bean in global plant production systems, the requirements for optimal faba bean production and to highlight the beneficial effects of faba bean in cropping systems.  相似文献   

19.
《Field Crops Research》2001,71(3):159-171
The burgeoning poultry industry in the southeastern US is presenting a major environmental problem of safe disposal of poultry litter (PL). In a comprehensive study, we explored ways of PL use in conservation tillage-based cotton (Gossypium hirsutum L.) production systems on a Decatur silt loam soil in north Alabama, from 1996 to 1999. The study reported here-in presents the residual effects of PL applied to cotton in mulch-till (MT) and no-till (NT) conservation tillage systems in 1997 and 1998 cropping seasons on N uptake, growth, and yield of rye (Secale cereale, L.) cover crop and rotational corn (Zea mays L.) in 1999. Rye was grown without additional N, whereas corn was grown at three inorganic N levels (0, 100, and 200 kg N ha−1). Poultry litter was applied to cotton in 1997 and 1998 at 0, 100, and 200 kg N ha−1. Residual N from PL applied to cotton in 1997 and 1998 produced up to 2.0 and 17.3 Mg ha−1, respectively, of rye cover crop and corn biomass (includes 7.1 Mg ha−1 of corn grain yield) without additional fertilizer. Therefore, in addition to supplying crop residues which reduce soil erosion, increase soil organic matter, and conserve soil moisture, the rye cover crop was able to scavenge residual N left by the cotton crop, which would otherwise, be at risk of being leached and pollute groundwater resources. Poultry litter applied to cotton also increased corn grain quality as shown by up to 100% increase in grain N content compared to the 0N treatment. Using PL with a slower rate of N release compared to inorganic fertilizer to meet some of the N requirements of corn, will not only reduce N fertilizer costs for corn, but will also reduce the risk of nitrate N leaching into groundwater. The maximum amount of crop residues added to the cotton based cropping system by residual N from PL and inorganic N was 21.3 Mg ha−1. This will lead to an increase in soil organic carbon and soil structure in the long term and a reduction in soil erosion, thereby further improving soil productivity, while at the same time, protecting the environment from nitrate pollution and soil degradation. Our study demonstrates that cotton under conservation tillage system in combination with rye cover crop and rotational corn cropping could use large quantities of PL thereby avoiding serious potential environmental hazards.  相似文献   

20.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号