首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
温带高油玉米自交系与热带玉米自交系配合力分析   总被引:1,自引:0,他引:1  
采用Griffing Ⅵ 对6个国内温带高油系和4个热带系进行组配,将组配的45个杂交组合在云南省昆明、德宏两种不同的生态环境下进行农艺性状配合力分析和遗传参数估算。结果表明:热带系YML146、CML166、CML161、CML171是综合性状配合力表现较优良的种质材料,在高油玉米生产及育种上具有较大的利用潜力,是拓宽温带高油玉米种质遗传基础较好的种质资源;产量特殊配合力(SCA)效应值为正值的组合多数为温带高油系×热带系和热带系×温带高油系,说明温带高油玉米种质与热带种质具有较大的遗传差异,该组合模式具有较大利用价值。主要农艺性状的加性方差均大于非加性方差,说明这些性状主要表现加性遗传效应,可在早期世代进行选择。  相似文献   

2.
Genetically improved crops with higher water productivity help maintaining and increasing agricultural production in drought-prone areas. Their development involves, as in the case of maize, selection for high grain yield and improved secondary traits. With the objective of better understanding the role and regulation of the morphology of drought adaptation, a recombinant inbred line (RIL) population of tropical maize (Zea mays L.) was evaluated in six field experiments under intermediate (IS) and severe (SS) drought stress at flowering and under well-watered (WW) conditions in Mexico. The analyses per water regime revealed 32 quantitative trait loci (QTLs) for the five measurements of relative content of leaf chlorophyll (CL), 25 for the five visual ratings of plant senescence (SEN), and 11 for the three measurements of electric root capacitance (RCT). Impressive clusters of QTLs were observed on chromosomes 2 (bins 2.03-05), 4 (bin 4.09), and 10 (bins 10.04-05), suggesting that a small number of genes control chlorophyll metabolism and plant senescence. The high CL and low SEN of the drought resistant parent are aspects of its high water productivity resulting from improved constitutive traits. Co-locations of QTLs for CL, SEN and RCT with QTLs for plant height (PHT), the anthesis-silking interval (ASI), and grain yield (GY) were observed in bins 1.06-07, 8.06, and 4.09 but not for the large QTL clusters on chromosomes 2 and 10, suggesting independent genetic control of reproductive traits. Still, the phenotypic data showed that high CL and low SEN were favorable for grain yield production under drought, while delayed SEN was associated with higher grain yield under WW conditions. CL and SEN are suitable to complement selection for drought tolerance in order to sustain future breeding progress.  相似文献   

3.
不同基因型玉米自交系的抗旱性研究与评价   总被引:17,自引:1,他引:17  
通过田间直接鉴定,采用模糊函数法,以抗旱隶属度、产量抗旱系数和抗旱指数为评价参数,分析各性状与参数间的关系,并运用主成分分析选择出有效的评价参数和指标,对各自交系进行抗旱性综合评价和聚类分析。结果表明,干旱导致玉米自交系的散粉至吐丝期间隔增加,光合叶面积减少,株高和穗位高降低,茎秆变细,穗短小,秃尖多,穗粒数少,粒重轻,最终导致产量下降。不同基因型间因抗旱性差异而所受影响明显不同,各自交系抗旱性强弱与干旱条件下的性状表现有较大关系,其中79-1E、交51、苏1-1和18599的抗旱性较好。各评价参数中,以产量抗旱指数和抗旱隶属度与干旱条件下各性状之间呈极显著或显著相关。抗旱指数、抗旱隶属度、产量和叶面积是抗旱性综合评价最有效的参数和指标。  相似文献   

4.
Drought is a major abiotic constraint to rice production in rainfed lowland and insufficiently irrigated areas.The improvement of drought tolerant varieties is one of the strategies to reduce the negative effects of drought.Quantitative trait loci(QTLs) for primary and secondary traits related to drought tolerance(DT) on chromosomes 1,3,4,8 and 9 that determined from double haploid lines derived from a cross between CT9993 and IR62266 were introgressed and dissected into small pieces in the genetic background of Khao Dawk Mali 105(KDML105) to develop chromosome segment substitution line(CSSL) population.The CSSLs were evaluated at the reproductive stage for their agronomic performance and yield components under drought stress,and results were compared with irrigated condition.The flowering of CSSL lines was 6 to 7 d earlier than KDML105.The mean values of grain yields in the CSSLs were higher than KDML105 under drought and irrigated conditions.At irrigated condition,the grain yields of introgression lines carrying DT-QTLs from chromosomes 4 and 8 were higher than that of KDML105,whereas other traits showed little difference with KDML105.Analysis indicated that grain yield has positive correlation with plant height,tiller and panicle number per plant,and total grain weight per plant under drought stress while negatively correlated with days to flowering.As mentioned above,CSSLs showing good adaptation under drought stress can be used as genetic materials to improve drought tolerance in Thai rainfed lowland rice breeding program,and as materials to dissect genes underlying drought tolerance.  相似文献   

5.
The association of specific target traits for drought resistance (early flowering, high accumulation of stem water soluble carbohydrate (WSC) reserves, presence of awns and high green flag-leaf area persistence) with yield performance under late-season drought was analyzed utilizing two doubled-haploid (DH) populations derived from crosses between Beaver × Soissons and Rialto × Spark in two seasons 2000/2001 and 2001/2002. The aim was to quantify associations between target traits and yield responses to drought, and to prioritize traits for drought resistance. Flowering time variation had a neutral effect on the absolute yield loss under drought, suggesting there may be a trade-off between water-saving behaviour in the shorter pre-flowering period with early flowering and a reduced capacity to access water associated with a smaller rooting system. The presence of awns also had a neutral effect on yield loss under drought amongst lines of the Beaver × Soissons population. The potential advantages of awns for increasing water-use efficiency and sensible heat transfer responsible for a cooler canopy appeared to be of less significance under moderate droughts in the UK than under severe droughts in other regions worldwide. The value of large stem soluble carbohydrate reserves for drought environments alone could not be confirmed in the UK environment. Stem WSC was positively associated with grain yield under both irrigation and drought. The genetic trait which showed the clearest correlation with the ability to maintain yield under drought was green flag-leaf area persistence. Averaged across years, the positive phenotypic correlation of this trait with yield under drought amongst DH lines of the Beaver × Soissons population (r = 0.49; p ≤ 0.001) indicated the potential use of this trait as a selection criterion for yield under drought. It is suggested that screens for this trait including marker-assisted selection would have value in future breeding programmes aimed at improving yields in high yielding, rainfed environments, but where drought can also be a problem, such as the UK.  相似文献   

6.
玉米开花期耐旱相关性状的遗传及育种策略   总被引:22,自引:4,他引:22       下载免费PDF全文
玉米对干旱的反应取决于新陈代谢能力、形态结构和生育阶段.开花期逢遇干旱使玉米产量下降幅度最大.随着产量下降,环境方差所占比例增大,遗传力降低,直接选择效率不高.在干旱条件下,寻找遗传力高且与产量高度相关的第二类性状,构建选择指标,可提高耐旱选择效率.雌雄开花间隔天数(ASI)和单株穗数是可供利用的第二类性状,对其选择所获得的产量增益,在干旱和正常水分条件下均可表现出来.耐旱育种目的在于改变基因型对干旱环境的反应,实现耐旱丰产目标.根据目标环境特征,设计适宜的耐旱选择程序,结合分子标记辅助选择技术,鉴定和利用现有优良耐旱种质和CIMMYT耐旱群体,是我国进行耐旱育种和种质改良的可选途径。  相似文献   

7.
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes.  相似文献   

8.
《Field Crops Research》1996,48(1):65-80
Selection for improved performance under drought based on grain yield alone has often been considered inefficient, but the use of secondary traits of adaptive value whose genetic variability increases under drought can increase selection efficiency. In the course of recurrent selection for drought tolerance in six tropical maize (Zea mays L.) populations, a total of 3509 inbred progenies (S1 to S3 level) were evaluated in 50 separate yield trials under two or three water regimes during the dry winter seasons of 1986–1990 at Tlaltizapán, México. In over 90% of the trials, ears plant−1, kernels plant−1, weight kernel−1, anthesis-silking interval (ASI), tassel branch number and visual scores for leaf angle, leaf rolling and leaf senescence were determined. Low scores indicated erect, unrolled or green leaves. Canopy temperature, leaf chlorophyll concentration and stem-leaf extension rate were measured in 20–50% of the trials. Across all trials, linear phenotypic correlations (P < 0.01) between grain yield under drought and these traits, in order listed, were 0.77, 0.90, 0.46, −0.53, −0.16, 0.06NS, −0.18, −0.11, −0.27, 0.17 and 0.10. Genetic correlations were generally similar in size and sign. None of physiological or morphological traits indicative of improved water status correlated with grain yield under drought, although some had relatively high heritabilities. Genetic variances for grain yield, kernels ear−1, kernels plant−1 and weight kernel−1 decreased with increasing drought, but those for ASI and ears plant−1 increased. Broad-sense heritability for grain yield averaged around 0.6, but fell to values near 0.4 at very low grain yield levels. Genetic correlations between grain yield and ASI or ears plant−1 were weak under well-watered conditions, but approached −0.6 and 0.9, respectively, under severe moisture stress. These results show that secondary traits are not lacking genetic variability within elite maize populations. Their low correlation with grain yield may indicate that variation in grain yield under moisture stress is dominated by variation in ear-setting processes related to biomass partitioning at flowering, and much less by factors putatively linked to crop water status. Field-based selection programs for drought tolerance should consider these results.  相似文献   

9.
干旱胁迫下热带和温带玉米种质的生理及转录组分析   总被引:1,自引:0,他引:1  
通过分析热带和温带玉米自交系干旱胁迫下的苗期生理和转录组数据,阐明不同玉米种质对干旱胁迫的生理和分子响应机制.结果表明,干旱胁迫下4个自交系的过氧化物酶(POD)、超氧化物歧化酶(SOD)活性以及丙二醛(MDA)、可溶性糖和可溶性蛋白质含量上升,叶绿素含量和4个叶绿素荧光参数值(Fv/Fo、Fv/m、ΦPSII和QP)...  相似文献   

10.
我国常用玉米自交系的耐旱性评价   总被引:5,自引:2,他引:3  
2007年冬季和2008年春季分别在海南三亚和新疆乌鲁木齐对196份玉米自交系采用两种不同干旱胁迫处理,依据形态性状及产量相关性状评价其耐旱性。通过典型相关分析发现,株高、雌雄开花间隔天数(ASI)、单穗粒重和结实株数百分率4个性状可以作为玉米自交系耐旱性评价指标。采用因子分析方法,计算株高、雌雄开花间隔天数、单穗粒重和结实株数百分率4个性状的综合耐旱系数,对196份玉米自交系进行耐旱性评价,将试验材料分为耐旱、中度耐旱、中度干旱敏感和干旱敏感4种类型。两点试验耐旱级别完全一致的材料有58份,其中耐旱自交系有7份(H201、Mo113、英64、H21、早49、丹598、吉842);中度耐旱自交系有14份(丹黄02、8902、中106、郑22、中黄68、K22等),这些材料为耐旱育种提供了种质基础。  相似文献   

11.
Drought is the most important constraint reducing rice yield in rainfed areas. Earlier efforts to improve rice yield under drought mainly focused on improving secondary traits because the broad-sense heritability (H) of grain yield under drought stress was assumed to be low, however gains in yield by selecting for secondary traits have not been clearly demonstrated in rice. In present study, the effectiveness of direct selection for grain yield was assessed under lowland reproductive stage stress at Raipur in eastern India and under upland reproductive stage drought stress at IRRI. The selection under severe stress (in both upland and lowland trials) resulted in greater gains under similar stress levels (yield reduction of 65% or greater under stress) in evaluation experiments than did selection under non-stress conditions, with no yield reduction under non-stress conditions. We observed similar H of grain yield under stress and non-stress conditions, indicating direct selection for yield under drought will be effective under both lowland and upland drought stresses. None of the secondary traits (panicle exsertion, harvest index, leaf rolling, leaf drying) included in our study showed a higher estimate for H than grain yield under stress. Secondary traits as well as indirect selection for grain yield under non-stress situation were predicted to be less effective in improving yield under drought in both lowland and upland ecosystem than direct selection for grain yield under the respective stress situations. The low, but positive values observed for genetic correlation (rG) between yield under stress and non-stress indicated that it is possible to combine drought tolerance with high-yield potential but low values also indicated that selection for grain yield needs to be carried under stress environments. The study also indicated that under lowland drought stress, the use of highly drought-tolerant donors, as parents in crosses to high yielding but susceptible varieties resulted in a much higher frequency of genotypes combining high-yield potential with tolerance than did crosses among elite lines with high-yield potential but poor tolerance. Breeding strategies that use drought-tolerant donors and that combine screening for yield under managed drought stress with screening for yield potential are likely to result in the development of improved cultivars for drought-prone rainfed rice producing areas.  相似文献   

12.
The identification of markers linked to genes contributing to drought resistance promises opportunities to breed high yielding rice varieties for drought prone areas. Several studies using different mapping populations have previously identified quantitative trait loci (QTLs) for traits theoretically related to drought resistance. A mapping population of 176 F6 recombinant inbred lines (RILs) derived from two upland rice varieties with contrasting aboveground drought avoidance traits (Bala and Azucena) with a linkage map of 157 markers was used to map QTLs for aboveground leaf morphological and physiological traits related to drought avoidance. Plants were grown for 6 weeks under controlled environmental conditions with three replications. Leaves were excised and placed on a balance. The rate of leaf rolling and water loss was recorded, after which leaf area, dry weight and specific leaf area were characterized. A simple method of estimating time to stomatal closure was employed. A total of 13 QTLs were detected for leaf morphological traits, three for initial transpiration and four for the proportion of water loss required to reach a specific advanced state of leaf rolling. No QTLs were detected for time of stomatal closure or speed of leaf rolling, nor for either water loss or transpiration at stomatal closure despite clear parental differences and moderate heritabilities in most of these traits. The co-location of QTLs for traits measured here and for drought avoidance previously reported from field experiments on chromosome 1, 3 and 5 link the genetics of drought resistance to leaf dimensions and physiology. However, a physiological explanation for a QTL for drought avoidance on chromosome 7 remains elusive.  相似文献   

13.
《Plant Production Science》2013,16(3):334-337
Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the staple cereal of the hottest, driest areas of the tropics and subtropics. Drought stress is a regular occurrence in these regions, making stress tolerance an essential attribute of new pearl millet cultivars. Recent breeding research has mapped several quantitative trait loci (QTLs) for components of grain and stover yield per se, as well as yield maintenance, under terminal drought stress conditions. We report here the evaluation of these QTLs as possible selection criteria for improving stress tolerance of an elite hybrid cultivar. Initial evaluations, based on hybrids made with topcross pollinators bred from lines selected directly from the mapping population, indicated an advantage to the QTL-based topcross hybrids. This advantage seemed to be related to a particular plant phenotype that was similar to that of the drought tolerant parent of the mapping population. Subsequent evaluations were based on testcross hybrids of drought tolerance QTL introgression lines in the background of the drought-sensitive parent of the mapping population, H 77/833-2. These introgression lines were bred by limited marker-assisted backcrossing of a putative major drought tolerance QTL into H 77/833-2 from the mapping population’s drought tolerant parent. Several of these QTL introgression lines had a significant positive general combining ability for grain yield under terminal stress and significantly out-yielded testcross hybrids made with the original recurrent parent both in unrelieved terminal drought stress and in gradient stress evaluations.  相似文献   

14.
Summary

Nitrogen use efficiency (NUE) is defined as dry matter yield produced per unit of N supplied and available in the soil. NUE is approximately 33% for cereal production worldwide. Increased cereal NUE must accompany increased yield needed to feed the growing world population. Consequently, continued efforts are needed to include plant selection under low N input which is not often considered a priority by plant breeders. Molecular markers have accelerated plant breeding in a number of areas including biotic (disease and insect) resistance and abiotic (drought, low nitrogen fertilization and frost) tolerance. Marker-based technology has already provided scientists with a powerful approach for identifying and mapping quantitative trait loci (QTL) and would lead to the development of a better understanding of genetic phenomena. Two main NUE studies have been discussed. The first study identified QTL for NUE in maize involved the grain yield and secondary morphological traits of interest, such as plant height, ear leaf area, ears per plant and kernels per ear. This was compared with second study of QTL for yield and its components with genes encoding cytolistic gult-amine synthestase and leaf N03 - content. These secondary traits were correlated with yield and demonstrated segregation with high heritability under low nitrogen conditions. Marker assisted selection (MAS) should be able to offer significant advantages in cases where phenotypic screening is particularly expensive or difficult, including breeding projects involving multiple genes, recessive genes, late expression of the trait of interest, seasonal considerations, or geographical considerations. In addition to reducing costs of conventional breeding, MAS also has the potential to generate time savings. Possibly, the greatest contribution of QTL mapping to plant breeding will be the basic understanding of the genetic architecture of quantitative traits, thereby relating specific genetic loci with the biological mechanisms associated with desirable phenotypes.  相似文献   

15.
A mapping population of 114 lines from Bala × Azucena was grown under drought stress at two field sites with contrasting soil physical properties. Drought was imposed between 35 and 65 days after sowing (DAS) and root density at 35 cm depth was measured 70 DAS. Leaf rolling, leaf drying and relative water content were recorded as indicators of drought avoidance. Root density correlated with indicators of drought avoidance. Two significant and two putative quantitative trait loci (QTLs) for root density and 28 QTLs for drought avoidance were identified. Most QTLs did not agree between sites. There was also reasonable agreement between leaf-drying QTLs and previously reported root-growth QTLs detected under controlled conditions (in contrast to a previous screen on soil with a higher penetration resistance). These data also reveal QTL × environment interaction, which will need to be understood more clearly if progress towards breeding for drought resistance via alterations of root morphology is to be achieved.  相似文献   

16.
陕A群、陕B群选育的玉米自交系抗旱性鉴定   总被引:1,自引:1,他引:0  
以陕A群、陕B群在多环境、少施肥和少灌溉条件下选育的33份玉米自交系和4份骨干玉米自交系为材料,通过大田控水试验,调查玉米自交系的穗位叶SPAD值、干物质积累量和茎秆强度等生理指标,采用逐步回归分析方法建立最优回归方程,筛选抗旱性的评价指标。结果表明,穗位叶SPAD、茎秆强度和花后干物质积累量可作为玉米自交系抗旱性的第2性状筛选指标。以子粒产量作为第1性状指标,可将37份玉米自交系划分4种类型,高产抗旱型12份,低产不抗旱型13份,低产抗旱型7份和5份高产不抗旱型。以抗旱指数和抗旱隶属度为指标,将37份玉米自交系可分成3种类型,其中,抗旱性较强的玉米自交系2份,抗旱性中等的玉米自交系15份,抗旱性较差的材料20份。综合分析,2013KB-47、2013KB-37、KA225、KB081、L123098-2和KA105共6份玉米自交系具有穗位叶SPAD高、茎秆强度大、花后干物质积累量高和子粒产量高、抗旱指数高和抗旱能力强的特点。  相似文献   

17.
选用我国常用的82个不同基因型自交系为研究材料, 在两种氮肥处理下对其子粒产量、耐低氮指数、保绿性相关性状进行测定, 探究不同玉米自交系保绿性及其与氮效率的关系。结果表明, 以高氮下保绿度为指标筛选出了23个保绿型自交系, 27个早衰型自交系, 其余32个为中间型自交系。两种氮水平间保绿度及其相关性状差异均达极显著水平(P<0.01), 子粒产量与保绿度及其相关性状间的相关性均达极显著水平。研究表明, 保绿性不仅与子粒产量密切相关, 同时还显著影响氮效率。因此, 保绿性可作为筛选氮高效玉米自交系的一个重要农艺性状。  相似文献   

18.
旅大红骨种质的利用潜力评价及改良分析   总被引:1,自引:1,他引:0  
以7个旅系与2个外杂选系组配的14个组合和对照种郑单958为材料,采用随机区组设计,3次重复试验,分析由旅系组配的组合产量、抗性、农艺性状和考种性状与对照间的差异。结果表明,旅系的产量一般配合力较高,抗性、穗粗和穗长等方面优于对照,但耐密性、抗倒性、封顶性、子粒深度、含水量和出籽率等方面与对照还有差距,且生育期长于对照。  相似文献   

19.
玉米抗旱育种的研究进展   总被引:11,自引:0,他引:11  
干旱已经对粮食安全构成了巨大的威胁。玉米抗旱育种是减少干旱造成产量损失的重要途径。本文介绍了一些抗旱的玉米种质资源和选育抗旱玉米品种的方法。轮回选择法是玉米抗旱育种经济有效的方法,在进行轮回选择的过程中运用数学方法评价产量性状,通过第二性状进行玉米抗旱辅助选择,引入权重法构建合理的抗旱模型。回顾和展望了生物技术在玉米抗旱育种中的应用及前景。  相似文献   

20.
玉米花期不同种质资源耐热性鉴定与分析   总被引:1,自引:0,他引:1  
在大田自然环境下,调查花期常温对照与高温逆境下64份不同玉米种质资源的子粒产量、百粒重、结实率、结实粒数等产量性状。结果表明,高温胁迫导致玉米结实粒数减少,结实率降低,最终导致子粒产量下降,而且种质间的耐热性存在显著差异,且年份对耐热性也有显著影响。利用主成分分析和模糊隶属函数法对所有种质的耐热性进行综合评价,结果表明,子粒产量、结实粒数、结实率及百粒重可作为评价玉米自交系花期耐热性的主要指标。通过聚类分析筛选出5个耐热型自交系NL001、PHPR5、CR14、CLWN240和PF5411-1,可为培育耐热玉米新品种提供新的种质资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号