首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Argentina, delayed sowing causes a decrease in seed yield and in radiation use efficiency (RUE) of peanut crops (Arachis hypogaea L.), but it is not known if RUE reduction is mainly due to reduced temperature during late reproductive stages or to a sink limitation promoted by decreased seed number in these conditions. We analyzed seed yield determination and RUE dynamics of two cultivars (Florman and ASEM) in four irrigated field experiments (Expn) grown at three sites and five contrasting sowing dates (between 17 October and 21 December) in three growing seasons. An additional field experiment was performed with widely spaced plants (i.e. with no interference among them) to evaluate the effect of peg removal on RUE and leaf carbon exchange rate (CER). Seasonal dynamics of mean air temperature and irradiance, biomass production (total and pods), and intercepted photosynthetically active radiation (IPAR) were followed. Seed yield and seed yield components (pod number, seeds per pod, seed number and seed weight) were determined at final harvest. Crop growth rate (CGR) and pod growth rate (PGR) were computed for growth phases of interest. RUE values for crops sown until 14 November were 1.89–1.98 g MJ−1 IPAR, within the usual range. RUE decreased significantly for cv. Florman in the late sowing of Exp1 (29 November) and for both cultivars in Exp3 (21 December sowing). Across experiments, seed yield (4.5-fold variation relative to minimum) was strongly associated (r2 = 0.87, P < 0.0001) with variations in seed number (3.5-fold variation relative to minimum), and to a lesser extent (r2 ≤ 0.54, P ≤ 0.001) to variations in seed weight (1.9-fold variation relative to minimum). Seed number was positively related (P < 0.01) to CGR (r2 = 0.66) and to PGR (r2 = 0.72) during the R3–R6.5 phase (seed number determination window), while crop growth during the grain-filling phase (i.e. between R6.5 and final harvest) was positively associated with grain number (r2 = 0.80, P < 0.001). No association was found between RUE and mean air temperature, neither for the whole cycle nor for the phase between R6.5 and final harvest, which showed the largest temperature variation (16.4–22.4 °C) across experiments. Use of mean minimum temperature records (range between 13.8 and 18.5 °C) did no improve the relationship. However, grain-filling phase RUE showed a positive (r2 = 0.69, P = 0.003) linear response to seed number across experiments. This apparent sink limitation of source activity was consistent with the reduced RUE (from 2.73 to 1.42 g MJ−1 IPAR) and reduced leaf CER at high irradiance (from ca. 30 to 15 μmol m−2 s−1) for plants subjected to 75% peg removal.  相似文献   

2.
Growing cotton during the tropical dry season avoids many insect pests endemic in the wet season. The impact of low mid-season radiation and night temperature that characterise the dry season, on the conversion of radiation to biomass (RUE) and the partitioning of this biomass were measured as these were largely unknown. Over three seasons, two Gossypium hirsutum (upland) cultivars and a Gossypium barbadense cultivar were sown from March to June at the Ord River (15.5°S), Western Australia. For the highest yielding March and April sowings, final biomass was similar to high yielding temperate grown cotton (∼30° latitude) and was generally greater than May or June sowings. However, biomass was accumulated differently: maximum growth rate was 6–12 g/m2/day for 78–134 days compared with 15–25 g/m2/day for 25–60 days reported for temperate grown cotton. RUE changed significantly with ontogeny, peaking between squaring and early flowering. The range in RUE of 1.2–2.0 g/MJ throughout the crop lifecycle for the upland cultivars was similar to temperate climates where biomass was corrected to a glucose equivalent. The RUE of 1.2–2.3 g/MJ measured over the lifecycle of G. barbadense cultivar was the first reported for this species. From first square to first flower the variation in RUE could be explained by a linear decline (p < 0.05) with temperature, which may limit vegetative biomass in May and June sowings and in cooler than average seasons for March and April sowings. Due to favourable temperatures and water supply, sowing in March would have the greatest risk of rank growth. It was concluded the low temperature and radiation during flowering and boll growth combined to reduce crop growth rate but high yields were achieved when the crop boll filling phase was extended. Management must be tailored to ensure a high proportion of boll growth (60–80%) can occur after vegetative growth has terminated.  相似文献   

3.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

4.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

5.
The increases in crop yield that played an important role in maintaining adequate food supplies in the past may not continue in the future. Soybean (Glycine max L. Merrill) county yield trends (1972–2003) were examined for evidence of plateaus using data (National Agricultural Statistics Service) for 162 counties (215 data sets) in six production systems [Iowa, Nebraska (irrigated and non-irrigated), Kentucky and Arkansas (irrigated and non-irrigated)] representing a range in yield potential. Average yield (1999–2003) was highest in irrigated production in Nebraska (3403 kg ha−1) and lowest in non-irrigated areas in Arkansas (1482 kg ha−1). Average yield in the highest yielding county in each system was 31–88% higher than the lowest. Linear regression of yield versus time was significant (P = 0.05) in 169 data sets and a linear-plateau model reached convergence (with the intersection point in the mid-1990s) in 35 of these data sets, but it was significantly (P = 0.10) better in only three data sets (<2% of the total). Absolute (kg ha−1 year−1) growth rates were associated with productivity, but relative rates were not with the mean relative rates ranging from 1.0 to 1.3% over the six systems. There was, however, a two- to threefold range in relative rate among counties within systems in Nebraska, Iowa, Kentucky and Arkansas (irrigated). Yield did not change (linear regression not significant, P = 0.05) between 1972 and 2003 in 41 counties in non-irrigated areas of Arkansas and Nebraska and in six Kentucky counties of which four had high levels of double-cropping soybean after wheat (Triticum aestivum L.). I found no convincing evidence that soybean yields are reaching plateaus but the technology responsible for this yield growth was apparently completely ineffective in low-yield, high-stress environments.  相似文献   

6.
A number of field trials on rice productivity have demonstrated very high yield, but reported limited information on environmental factors. The objective of this study was to reveal the environmental factors associated with high rice productivity in the subtropical environment of Yunnan, China. We conducted cross-locational field experiments using widely different rice varieties in Yunnan and in temperate environments of Kyoto, Japan in 2002 and 2003. The average daily radiation throughout the growing season was greater at Yunnan (17.1 MJ m−2 day−1 average over 2 years) relative to Kyoto (13.2 MJ m−2 day−1). The average daily temperature throughout the growing season was 24.7 °C at Yunnan, and 23.8 °C at Kyoto. The highest yield (16.5 tonnes ha−1) was achieved by the F1 variety Liangyoupeijiu at Yunnan in 2003, and average yield of all varieties was 33% and 39% higher at Yunnan relative to Kyoto in 2002 and 2003, respectively. There was a close correlation between grain yield and aboveground biomass at maturity, while there was little variation in the harvest index among environments. Large biomass accumulation was mainly caused by intense incident radiation at Yunnan, as there was little difference in crop radiation use efficiency (RUE) between locations. Large leaf area index (LAI) was also suggested to be an important factor. Average nitrogen (N) accumulation over 2 years was 49% higher at Yunnan than at Kyoto, and also contributed to the large biomass accumulation at Yunnan. The treatments of varied N application for Takanari revealed that the ratio of N accumulated at maturity to the amount of fertilized N was significantly higher at Yunnan than at Kyoto, even though there was no great difference in soil fertility. The Takanari plot with high N application showed a N saturation in plant growth at Kyoto, which might be related to low radiation and relatively high temperatures during the mid-growth stage. These results indicate that the high potential yield of irrigated rice in Yunnan is achieved mainly by intense incident solar radiation, which caused the large biomass and the N accumulation. The low nighttime temperature during the mid-growth stage was also suggested to be an important factor for large biomass accumulation and high grain yield at Yunnan.  相似文献   

7.
Maize-soybean and sunflower-soybean intercrops have the potential for increasing yield per unit land area and time in fully mechanized farming systems. The objectives of this work were to measure the land equivalent ratio index of maize and sunflower intercropped to soybean, to assess the effects of plant density of its components, and to gain insight into ecophysiological processes affecting their yield determination. Maize-soybean and sunflower-soybean intercrops and their respective sole crops were grown at Balcarce, Argentina during two growing seasons. Treatments included a wide range of plant densities for sole and intercropped sunflower (2-9 plants m−2) and maize (4-12 plants m−2). Plants were harvested to determine shoot dry matter and grain yield per plot and at the individual plant level. Land equivalent ratio index (LER) increased 11% (mean of the two years) when plant density of sunflower was reduced from 6 to 3 plants m−2; and LER increased 5% (year 1) or it was maintained (year 2) when maize plant density was reduced from 8 to 4 plants m−2. Yield response to plant density of sunflower and maize influenced LER. The response to plant density of intercropped sunflower and maize grain yield followed the same pattern than that in a sole crop, and grain yield of intercropped sunflower or maize were lower than those for the sole crops at each plant density except at the lowest sunflower plant density. Yield reductions from sole crop to intercrop at each plant density averaged 20% and were associated (i) with lower intra-row spacing in the intercrop and (ii) with a lower shoot production rather than to a change in the dry matter partitioning to reproductive structures; in addition, detrimental effects of soybean over maize or sunflower yield were undetectable.  相似文献   

8.
The holoparasitic weed Orobanche cumana (sunflower broomrape) constrains sunflower (Helianthus annuus) production in many countries. The development of efficient control strategies requires an understanding of the processes underlying the complex environment–host–parasite interrelations. Growth and development of O. cumana and sunflower were quantified under field conditions in southeastern Romania. Sunflower hybrid Florom 350 was sown at two dates, in plots infested with 0, 50, 200 and 1600 viable O. cumana seeds kg−1 dry soil, under low-input (rainfed, low nitrogen supply) and high-input (irrigated, high nitrogen supply) conditions. Sunflower shoot biomass reached peak values of 760–1287 g m−2 between the end of anthesis and physiological maturity. Seed yield varied from 221 to 446 g m−2. Sunflower biomass and yield were affected by all experimental factors. Seed yield responded positively to delaying sowing from early April to late May as well as to irrigation and fertilisation, and negatively to O. cumana infestation. Yield reductions, which were a product of reduced seed number and size, amounted to 13%, 25% and 37% at parasite seed densities of 50, 200 and 1600 viable seeds kg−1 soil, respectively. Maximum O. cumana attachment numbers, recorded in late-sown high-input crops in 2004, ranged from 11 m−2 in plots with 50 parasite seeds kg−1 soil to 188 m−2 with 1600 seeds kg−1 soil. Parasite attachment number was a function of crop sowing date, water and nutrient supply, seedbank density, and sunflower biomass and root length density, via mechanisms of parasite seed stimulation, host carrying capacity and intraspecific competition. Delayed sowing and improved water and nitrogen supply were associated with increases in parasite number that neutralised yield-boosting effects of irrigation and fertilisation at the highest infestation level. Sunflower shoot biomass was significantly reduced by O. cumana infection, with reductions affecting organs in the order head > stem > leaves. Most of the discrepancy between infected and non-infected plants was accounted for by O. cumana biomass. Parasites mainly acted as an extra sink for assimilates during sunflower generative growth and impaired host photosynthesis to a much lesser degree. Results suggest that similar mechanisms govern infection level and host–parasite biomass partitioning across different Orobanche–host systems.  相似文献   

9.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

10.
Soil acidity and Al toxicity are highly extended in agricultural lands of Chile, especially where wheat is widely sown. To evaluate quantitatively the response of wheat biomass and its physiological determinants (intercepted radiation and radiation use efficiency) to Al toxicity, two field experiments were conducted in an Andisol in Valdivia (39°47′S, 73°14′W), Chile, during the 2005–2006 and 2006–2007 growing seasons. Treatments consisted of a factorial arrangement of: (i) two spring wheat cultivars with different sensitivity to Al toxicity (the sensitive cultivar: Domo.INIA and the tolerant cultivar: Dalcahue.INIA) and (ii) five exchangeable Al levels (from 0 to 2.7 cmol(+) kg−1) with three replicates. Crop phenology and intercepted radiation (IR) were registered during the entire crop cycle, while 10 samples of above-ground biomass were taken at different stages between double ridge and maturity. Both biomass and leaf area index (LAI) were recorded in these 10 stages. Radiation use efficiency (RUE) was calculated as the slope of the relationship between accumulated above-ground biomass and accumulated photosynthetically active radiation intercepted by the canopy (IPARa). Crop phenology was little affected by soil Al treatments, showing only up to 17 days delay in the Al-sensitive cultivar under extreme Al treatments. Above-ground biomass at harvest was closely associated (R2 = 0.92) with the crop growth rate but no relationship (R2 = 0.14) was found between the crop cycle length. IPARa explained almost completely (R2 = 0.93) the above-ground biomass reached by the crop at harvest under the wide range of soil Al concentrations explored in both experiments. On the other hand, a weaker relationship was found between above-ground biomass and RUE. The effect of soil Al concentration on IPARa was mainly explained by LAI as a single relationship (R2 = 0.93) between IR (%) and LAI at maximum radiation interception showing a common light attenuation coefficient (k = 0.33).  相似文献   

11.
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (−9.44 ± 0.80 g and −23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.  相似文献   

12.
Under semiarid Mediterranean conditions irrigated maize has been associated to diffuse nitrate pollution of surface and groundwater. Cover crops grown during winter combined with reduced N fertilization to maize could reduce N leaching risks while maintaining maize productivity. A field experiment was conducted testing two different cover crop planting methods (direct seeding versus seeding after conventional tillage operations) and four different cover crops species (barley, oilseed rape, winter rape, and common vetch), and a control (bare soil). The experiment started in November 2006 after a maize crop fertilized with 300 kg N ha−1 and included two complete cover crop-maize rotations. Maize was fertilized with 300 kg N ha−1 at the control treatment, and this amount was reduced to 250 kg N ha−1 in maize after a cover crop. Direct seeding of the cover crops allowed earlier planting dates than seeding after conventional tillage, producing greater cover crop biomass and N uptake of all species in the first year. In the following year, direct seeding did not increase cover crop biomass due to a poorer plant establishment. Barley produced more biomass than the other species but its N concentration was much lower than in the other cover crops, resulting in higher C:N ratio (>26). Cover crops reduced the N leaching risks as soil N content in spring and at maize harvest was reduced compared to the control treatment. Maize yield was reduced by 4 Mg ha−1 after barley in 2007 and by 1 Mg ha−1 after barley and oilseed rape in 2008. The maize yield reduction was due to an N deficiency caused by insufficient N mineralization from the cover crops due to a high C:N ratio (barley) or low biomass N content (oilseed rape) and/or lack of synchronization with maize N uptake. Indirect chlorophyll measurements in maize leaves were useful to detect N deficiency in maize after cover crops. The use of vetch, winter rape and oilseed rape cover crops combined with a reduced N fertilization to maize was efficient for reducing N leaching risks while maintaining maize productivity. However, the reduction of maize yield after barley makes difficult its use as cover crop.  相似文献   

13.
Maize (Zea mays L.) breeding based primarily on final grain yield has been successful in improving this trait since the introduction of hybrids. Contrarily, understanding of the variation in ecophysiological processes responsible of this improvement is limited, especially between parental inbred lines and their hybrids. This limitation may hinder future progress in genetic gain, especially in environments where heritability estimation is reduced because grain yield is severely affected by abiotic stresses. The objective of this study was to analyze the genotypic variation between inbred lines and derived hybrids in the physiological determinants of maize grain yield at the crop level, and how differences among hybrids and parental inbreds may effect contrasting responses to N stress. Special emphasis was given to biomass production and partitioning during the critical period for kernel number determination. Phenotyping included the evaluation of 26 morpho-physiological attributes for 6 maize inbred lines and 12 derived hybrids, cropped in the field at contrasting N supply levels (N0: no N added; N400: 400 kg N ha−1 applied as urea) during three growing seasons. Tested genotypes differed in the response to reduce N supply for most measured traits. Grain yield was always larger for hybrids than for inbreds, but N deficiency affected the former more than the latter (average reduction in grain yield of 40% for hybrids and of 24% for inbreds). We also found (i) a common pattern across genotypes and N levels for the response of kernel number per plant to plant growth rate during the critical period, (ii) a reduced apical ear reproductive capacity (i.e., kernel set per unit of ear growth rate) of inbreds as compared to hybrids, (iii) similar RUE during the critical period and N absorption at maturity at low N levels for both groups of genotypes, but enhanced RUE and N absorption of hybrids at high N supply levels, and (iv) an improved N utilization efficiency of hybrids across all levels of N supply. Results are indicative of a more efficient use of absorbed N by hybrids than by parental inbreds. Larger grain yield of hybrids than of inbreds at N0 was associated to (i) enhanced dry matter accumulation due to improved light interception during the life cycle and (ii) enhanced biomass partitioning to the grain.  相似文献   

14.
Heterogeneous crop stands require locally adapted nitrogen fertilizer application based on rapid and precise measurements of the local crop nitrogen status. In the present study, we validated a promising technique for the latter, namely a tractor-mounted field spectrometer with an oblique quadrilateral-view measuring optic, measuring solar radiation and canopy reflectance in four directions simultaneously. Dry matter yield (kg ha−1), total N content (g N g−1 dry matter) and total aerial N (aboveground N-uptake) (kg N ha−1) in maize were determined in 10 m2 calibration areas in 60 plots differing in their N treatment and seeding density three times in each of three years under field conditions. Results show that the sensor used can reliably determine total aerial N ranging from as little as 5 kg N to 150 kg N ha−1 with R2-values ≥0.81 in 2002 and 2004, and with R2-values ranging from ≥0.57 to 0.84 in 2003. Dry matter yields from as low as 0.3–4.2 t ha−1 could be determined with R2-values ranging from 0.67 to 0.91 in 2002 to 2004. The capacity to ascertain DM yield spectrally was drastically reduced in the higher yield range (>6 t ha−1) probably due to decreased sensitivity of the spectral signal. N-contents were generally not well determined. Taken together there is a good potential to determine reliably differences in total aerial N or DM yield from the five leaf stages unfolded to the five node stage where typically nitrogen applications are carried out.  相似文献   

15.
Soil fertility varies markedly within and between African smallholder farms, both as a consequence of inherent factors and differential management. Fields closest to homesteads (homefields) typically receive most nutrients and are more fertile than outlying fields (outfields), with implications for crop production and nutrient use efficiencies. Maize yields following application of 100 kg N ha−1 and different rates and sources of P were assessed on homefields and outfields of smallholder farms in Zimbabwe. Soil organic carbon, available P and exchangeable bases were greater on the homefields than outfields. In each of three experimental seasons, maize yields in homefield control plots were greater than in the outfields of farms on a granitic sandy and a red-clay soil. Application of mineral N significantly increased maize yields on homefields in the first season (2.1–3.0 t ha−1 on the clay soil and 1.0–1.5 t ha−1 on the sandy soil) but the effects of N alone were not significant on the outfields due to other yield-limiting factors. Greatest yields of about 6 t ha−1 were achieved on the clayey homefield with 100 kg N ha−1 and 30 kg P ha−1 applied as single super phosphate (SSP). Manure application gave greater yields (3–4 t ha−1) than SSP (2–3 t ha−1) in the sandy homefield and in the clayey outfield. Maize did not respond significantly to N, dolomitic lime, manure and P on the sandy outfield in the first and second seasons. In the third season, manure application (∼17 t manure ha−1 year−1) on the sandy outfield did result in a significant response in grain yields. Apparent P recovery in the first season was 55–65% when P was applied at 10 kg ha−1 on the clayey homefield (SSP), clayey outfield (SSP and manure) and sandy homefield (manure) with apparent P recovery less than 40% when P was applied at 30 kg ha−1. On the sandy outfield, P recovery was initially poor (<20%), but increased in the successive seasons with manure application. In a second experiment, less than 60 kg N ha−1 was required to attain at least 90% of the maximum yields of 2–3 t ha−1 on the sandy homefield and clayey outfield. N use efficiency varied from >50 kg grain kg−1 N on the infields, to less than 5 kg grain kg−1 N on the sandy outfields. Apparent N recovery efficiency by maize was greatest at small N application rates with P applied. We conclude that blanket fertilizer recommendations are of limited relevance for heterogeneous smallholder farms. Targeted application of mineral fertilizers and manure according to soil type and past management of fields is imperative for improving crop yields and nutrient use efficiencies.  相似文献   

16.
In maize, the effects of nitrogen (N) deficiencies on the determination of kernel number per plant (KNP) have been described only by changes in plant growth rate during the critical period for kernel set (PGRcp). We hypothesize that N availability affects KNP also through variations in biomass allocation to the ear, which determines a stable N concentration in this organ. Six maize hybrids of different breeding origin were evaluated in field experiments at two N levels (0 and 400 kg N ha−1 applied). Traits included were KNP and per apical ear (KNE1), and the allometric estimation of PGRcp, ear growth rate during the critical period (EGRcp), and N content and N concentration in different plant organs. We demonstrated that (i) N availability promoted differences among genotypes (G) in the response of EGRcp and KNP to PGRcp, (ii) variations in KNE1 were explained by EGRcp (r2 = 0.64) and by ear N content at silking + 12 d (r2 = 0.64), and (iii) ear N concentration was a highly conservative trait (range between 10.47 and 15.98 mg N g biomass−1) as compared to N concentration in vegetative tissues (range between 4.94 and 18.04 mg N g biomass−1). Three response patterns were detected among hybrids, one for which the relationship between EGRcp and PGRcp did not vary between N levels and experiments, a second one for which N availability affected this relationship, and a third one for which the response was affected by the year (Y) effect. These results, together with the high correlation between EGRcp and ear N content (r2 = 0.88), evidenced the importance of both photo-assimilate and N availability on EGRcp and KNP determination. Values of 1.5–2.3 g ear−1 d−1 during the critical period and 0.49–0.70 g of N ear−1 at silking + 12 d were determined as thresholds for maximizing KNE1, and both could be easily estimated by means of allometric models.  相似文献   

17.
An active crop canopy reflectance sensor could be used to increase N-use efficiency in maize (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season N application. Our objective was to evaluate the success of using an active canopy sensor for developing maize N recommendations. This study was conducted in 21 farmers’ fields from 2007 to 2009, representing the maize production regions of east central and southeastern Pennsylvania, USA. Four blocks at each site included seven sidedress N rates (0–280 kg N ha−1) and one at-planting N rate of 280 kg N ha−1. Canopy reflectance in the 590 nm and 880 nm wavelengths, soil samples, chlorophyll meter (SPAD) measurements and above-ground biomass were collected at the 6th–7th-leaf growth stage (V6–V7). Relative amber normalized difference vegetative index (ANDVIrelative) and relative SPAD (SPADrelative) were determined based on the relative measurements from the zero sidedress treatment to the 280 kg N ha−1 at-planting treatment. Observations from the current study were compared to relationships between economic optimum N rate (EONR) and ANDVIrelative, presidedress NO3 test (PSNT), or SPADrelative that were developed from a previous study. These comparisons were based on an absolute mean difference (AMD) between observed EONR and the previously determined predicted relationships. The AMD for the relationship between EONR and ANDVIrelative in the current study was 46 kg N ha−1. Neither the PSNT (AMD = 66 kg N ha−1) nor the SPADrelative (AMD = 72 kg N ha−1) provided as good an indicator of EONR. When using all the observations from the two studies for the relationships between EONR and the various measurements, ANDVIrelative (R2 = 0.65) provided a better estimate of EONR than PSNT (R2 = 0.49) or SPADrelative (not significant). Crop reflectance captured similar information as the PSNT and SPADrelative, as reflected in strong relationships (R2 > 0.60) among these variables. Crop canopy reflectance using an active sensor (i.e. ANDVIrelative) provided as good or better an indicator of EONR than PSNT or SPADrelative, and provides an opportunity to easily adjust in-season N applications spatially.  相似文献   

18.
The present investigation was conducted at Vittal, Karnataka, India during 2004-2007 to study the feasibility of intercropping of medicinal and aromatic plants (MAPs) in arecanut plantation. The results revealed that MAPs can be successfully grown as intercrops in arecanut plantation with increased productivity and net income per unit area. Kernel equivalent yield of MAPs varied between 272 kg ha−1 in case of Piper longum to 1218 kg ha−1 in Cymbopogon flexuosus. Pooled data indicated that Asparagus racemosus produced fresh root yield of 10,666 kg ha−1 of arecanut plantation and contributed to maximum kernel equivalent yield of 1524 kg ha−1 among all medicinal and aromatic plants. Intercropping of MAPs in arecanut was found economical. The net return per rupee investment was highest in C. flexuosus (4.25) followed by Bacopa monnieri (3.64), Ocimum basilicum (3.46) and Artemisia pallens (3.12). The total system productivity of arecanut + MAPs intercropping system varied from 2990 to 4144 kg ha−1. Arecanut + O. basilicum intercropping system registered significantly higher production efficiency 8.2 kg ha−1 day−1 than other systems. Intercropping of MAPs had more positive effect on soil pH in arecanut based cropping system. The soil pH was 5.6 in 2004 and it was 0.3-0.9 units higher in 2007. Soil organic carbon (SOC) content varied significantly due to intercropping of MAPs at the end of experiment. The SOC content increased in Aloe vera, A. pallens, P. longum and B. monnieri, while it depleted in grasses and rhizomatic MAPs. Based on demand and marketing opportunities for MAPs, farmers are advised to grow aromatic plants in large areas on a community basis to meet huge industrial demand and variety of medicinal crops in small areas to meet the requirement of traditional systems of medicine.  相似文献   

19.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

20.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号