首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The aim of the present study was to investigate cataract development in diploid (2N) and triploid (3N) Atlantic salmon smolts and post‐smolts at two water temperatures (10 and 16 °C) given diets with different histidine supplementation (LH, 10.4 and HH, 13.1 g kg?1) before and after seawater transfer. In freshwater, a severe cataract outbreak was recorded in both ploidies reared at 16 °C. The cataract score was significantly higher in triploids compared to diploids, and the severity was lower in both ploidies fed the HH diet. The cataract development at 10 °C was minor. Low gill Na+, K+‐ATPase activity in fish reared at 16 °C before seawater transfer was followed by osmoregulatory stress with elevated plasma electrolyte concentrations and high mortality in sea water. Both diploids and triploids reared at 10 °C developed cataracts during the seawater period, with higher severities in triploids than diploids and a reduced severity in the fish fed the HH diet. The findings of this study demonstrate the importance of environmental conditions in the husbandry of Atlantic salmon, and particularly triploids, with regard to smoltification and adjusted diets to mitigate cataract development in fresh and sea water.  相似文献   

2.
Triplicate groups of triploid and diploid Atlantic salmon were fed diets with a low (LP, total P: 7.1 g kg?1), medium (MP, total P: 9.4 g kg?1) or high (HP, total P: 16.3 g kg?1) phosphorous (P) level from first feeding (0.18 g) to transfer to sea water (~50 g, duration: 203 days) and subsequently fed a commercial diet in sea water for 426 days (~3 kg). This study examined the short‐ and long‐term effects of dietary P on freshwater performance (mortality, growth), vertebral deformities (radiology), bone cell activity (ALP and TRACP enzyme activity in vertebrae and scales, and fgf23, bgp and igf‐I relative gene expression in vertebrae), bone mineralization (ash content) and some parameters related to fish condition (heart and liver size). Irrespective of ploidy, at seawater transfer, fish fed the MP diet had significantly highest length and weight and those fed the LP diet significantly lowest length and weight, while those fed the HP diet had intermediate lengths and weights. Increased dietary phosphorus reduced deformities in both ploidies at seawater transfer; however, triploids fed the LP and MP diets had more deformities than diploids fed the respective diets, while there was no ploidy effect observed for fish fed the HP diet. The vertebral bone ash content at seawater transfer was significantly higher in diploids than in triploids when fed the MP diet only. Alkaline phosphatase (ALP) and tartrate‐resistant acid phosphatase (TRACP) enzyme activities and relative gene expression of bone hormones involved in metabolism of plasma phosphate (fgf23) and bone growth (bgp) were not affected by ploidy at seawater transfer, but by dietary P level; LP increased ALP activity and reduced TRACP activity and fgf23 and bgp expression levels in vertebral bone. In scales, LP increased both ALP and TRACP activity. At the termination of the seawater period, the group‐wise pattern in occurrence of vertebral deformities was the same as at seawater transfer. The present results on mortality, growth, bone mineralization and development of skeletal deformities all demonstrate that triploids have a higher P requirement than diploids in fresh water. This study shows that an optimalization of P nutrition for triploid Atlantic salmon can improve health and welfare and reduce down‐grading of triploid salmon.  相似文献   

3.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

4.
An 8‐week feeding trial was conducted to investigate the effects of dietary cholesterol levels on growth, feed utilization, body composition and immune parameters in juvenile oriental river prawn, Macrobrachium nipponense. Six isolipid (80 g kg?1 crude lipid) and isoproteic (400 g kg?1 crude protein) diets, supplemented with 0, 3.0, 6.0, 9.0, 12.0 and 15.0 g kg?1 cholesterol, were evaluated. Growth performance and feed utilization of M. nipponense were improved as dietary cholesterol levels increased. Weight gain and specific growth rate were highest, and feed conversation ratio was lowest, when prawns were fed a diet supplemented with 9.0 g kg?1 cholesterol. However, final body weights and survival rates of juvenile M. nipponense were not affected significantly by dietary cholesterol. Body composition of prawns, including moisture, crude protein and crude lipid, was not significantly affected by changes in dietary cholesterol. The immune parameters measured in hepatopancreas, including total antioxidant capacity, and glutathione, catalase, alkaline phosphatase and acid phosphatase activities, were at optimum levels in prawns fed with 9.0 g kg?1 dietary cholesterol. In summary, the best growth performance, lowest feed conversation ratio, and the most enhanced antioxidant capacity and immunity parameters were attained in juvenile M. nipponense when fed a diet supplemented with 9.0 g kg?1 cholesterol.  相似文献   

5.
Six isonitrogenous and isocaloric semi‐purified diets were prepared with different levels of microbial levan: control (Basal), T1 (Basal + 2.5 g kg?1 diet), T2 (Basal + 5 g kg?1 diet), T3 (Basal + 7.5 g kg?1 diet), T4 (Basal + 10 g kg?1 diet) and T5 (Basal + 12.5 g kg?1 diet), fed to six groups of fish in triplicate tanks. The results of the 60 days feeding trail showed that supplementation of dietary levan significantly affected the weight gain percentage and specific growth rate of the treatment groups fed at 10 g kg?1 or more levan. Lowest feed conversion ratio (FCR) value and highest survival percentage among levan fed groups were observed with 12.5 g kg?1 incorporation (T5) and was comparable with (T4) group. Significant increase in muscle RNA level and RNA/DNA ratio was observed with the increasing dietary levan. Fish fed 12.5 g kg?1 levan had significantly higher protease, amylase and lipase activities compare with the control group. Lowest Aspartate aminotransferase (AST) activity in the liver and muscle was observed in the T5 group fed with highest level of dietary levan. Overall results conclude that dietary microbial levan incorporation at 12.5 g kg?1 could be used as potent dietary prebiotic for the culture of L. rohita juveniles.  相似文献   

6.
A 12‐week feeding trial was conducted in eighteen 70 L indoor polyvinyl circular troughs provided with a water flow‐through system (1–1.5 L min?1) at 28 ± 1 °C to evaluate the dietary tryptophan requirement of fingerling Catla catla (3.45 ± 0.24 cm; 0.60 ± 0.13 g). Six casein‐gelatin‐based amino acid test diets (330 g kg?1 crude protein; 13.6 kJ g?1 digestible energy) containing graded levels of L‐tryptophan (1.0, 1.4, 1.9, 2.3, 2.8, 3.4 g kg?1 dry diet) were fed to triplicate groups of fish near to satiation at 08:00, 12:30 and 17:30 h. Absolute weight gain, feed conversion ratio, protein gain, RNA/DNA ratio, hepatosomatic index, viscerosomatic index, condition factor and haematological indices improved with the increasing levels of tryptophan from 1.0 to 2.3 g kg?1 of dry diet. Significantly higher carcass protein was obtained at 2.3 g tryptophan per kilogram of the dry diet. Exponential analysis of absolute weight gain, feed conversion ratio, protein gain and RNA/DNA ratio against dietary tryptophan levels at 95% maximum and minimum responses displayed the tryptophan requirement at 2.5, 2.3, 2.5 and 2.1 g kg?1 dry diet, respectively. Inclusion of dietary tryptophan in the range of 2.1–2.5 g kg?1 dry diet, equivalent to 6.4–7.6 g kg?1 dietary protein, is recommended in formulating tryptophan‐balanced feed for the culture of this fish species.  相似文献   

7.
A 56‐d feeding trial was conducted to investigate the effect of dietary mannan‐oligosaccharides (MOS) and fructo‐oligosaccharide (FOS) on growth indices, body composition, intestinal bacterial community and digestive enzymes activity of regal peacock. A total of 240 fish were randomly distributed to 15 experimental units (40‐L aquariums) of 16 fish each. These replicates were randomly assigned to one of five treatments in a 2 × 2 + 1 factorial arrangement. The treatments were control diet (no MOS and FOS), diet A (2 gkg?1 MOS + 1.5 g kg?1 FOS), diet B (2 g kg?1 MOS + 3 g kg?1 FOS), diet C (4 g kg?1 MOS + 1.5 g kg?1 FOS) or diet D (4 g kg?1 MOS + 3 g kg?1 FOS). The results showed that feeding diet C increased specific growth rate and protein efficiency ratio and decreased feed conversion ratio compared with control diet. Higher intestinal trypsin activity and increased Lactobacillus counts were observed in fish fed diets B and C. All diets significantly elevated body protein deposition and intestinal amylase activity compared to the control diet. In conclusion, the diet supplemented with 4 g kg?1 MOS + 1.5 g kg?1 FOS was advantageous over other MOS + FOS‐supplemented diets, with respect to growth performance and health benefits of regal peacock.  相似文献   

8.
An 8‐week feeding trial was conducted to determine the optimal dietary arginine requirement for juvenile swimming crab Portunus trituberculatus. Six isonitrogenous and isolipidic experimental diets were formulated to contain graded arginine levels which ranged from 15.9 to 33.0 g kg?1. Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (4.72 ± 0.12 g). The results indicated that dietary arginine had significant effects on weight gain (WG), specific growth rate (SGR), protein productive value, feed efficiency and protein efficiency ratio. Weight gain and SGR significantly increased with the dietary arginine increasing from 15.9 to 27.4 g kg?1, while with the further increasing from 27.4 to 33.0 g kg?1, WG and SGR did not increase significantly. Maximum arginine, proline and total essential amino acid contents in muscle were observed in 27.4 g kg?1 group diet. The swimming crab fed the diet with lower dietary arginine level showed higher AST and lower ALT in the serum. Crab fed with the lower dietary arginine level had significantly lower ALT in the serum than the other groups. Haemolymph indexes were significantly affected by the dietary arginine level except for the cholesterol concentration, and the highest values were all found in 27.4 g kg?1 group diet. The two slope broken‐line model using SGR showed that the optimal dietary arginine requirement was 27.7 g kg?1 of the dry matter (56.0 g kg?1 dietary protein) for juvenile swimming crab.  相似文献   

9.
W. Li  X. Wen  Y. Huang  J. Zhao  S. Li  D. Zhu 《Aquaculture Nutrition》2017,23(5):1035-1047
A two‐factor experiment was designed to determine the suitable dietary protein and lipid levels for juvenile Nibea diacanthus. Nine extruded pellet diets were formulated to contain three levels of protein (420, 470 and 520 g kg?1) and three levels of lipid (70, 110 and 150 g kg?1). Each diet was randomly fed to triplicate groups of 25 juvenile N. diacanthus (initial weight 12.12 ± 0.23 g) for 8 weeks in net cages. The results showed that weight gain rate (WGR), specific growth rate, final body weight and energy retention were significantly influenced by the dietary protein and lipid levels‐. The highest WGR (982.5g kg?1.) of N. diacanthus was found in the group with dietary protein and lipid of 520 and 150 g kg?1. Feed intake and feed efficiency were significantly impacted by the dietary protein levels. An interactive effect between dietary protein and lipid on the protein retention and protein efficiency ratio was observed. There were no significant differences in condition factor and survival among all treatments. Hepatosomatic index and viscerasomatic index of N. diacanthus were positively related with dietary lipid levels, but negatively with dietary protein levels. Crude protein, crude lipid, ash, moisture and energy contents of the whole body, muscle and liver were influenced by dietary protein and lipid levels. Moreover, total essential amino acid pattern of the muscle was correlated to those of dietary protein. Total protein concentration in the serum was affected by dietary protein and lipid levels. Meanwhile, both serum cholesterol and triglyceride concentrations increased with increasing dietary lipid levels. These results demonstrate that the diet containing 470 g kg?1 protein and 110 g kg?1 lipid is optimal for juvenile N. diacanthus and analysis of WGR by quadratic regression indicated that the estimated optimal protein‐to‐energy ratio for juvenile N. diacanthus was 24.53 mg protein kJ?1.  相似文献   

10.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

11.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

12.
A feeding trial was conducted to study the effect of dietary lipid on growth performance and heat‐shock protein (HSP70 and HSP60) response of white seabass (WSB), Atractoscion nobilis. Five diets were formulated to contain 440 g kg?1 protein from 300 g kg?1 fish meal, 240 g kg?1 soybean meal and 100 g kg?1 soy protein concentrate with different levels of lipid: 100, 120, 140, 160 or 180 g kg?1. At the end of the trial, heat shock response based on HSP70 and HSP60 was measured in liver and white muscle from fish at ambient temperature and temperature shock conditions. Final weight and percent gain were significantly higher for fish fed the 100 g kg?1 lipid diet than for fish fed the rest of the diets (P ≤ 0.05). Feed conversion ratio was lowest for fish fed the 100 g kg?1 lipid diet. The HSP70 and HSP60 responses were positively correlated to dietary lipid levels following temperature shock. At ambient temperature, HSP60 and HSP70 responses in muscle and HSP60 response in liver increased with dietary lipid level. Temperature shock significantly increased the HSP response of fish in all treatments. Results of this study demonstrated that a moderate (110–120 g kg?1) level of dietary lipids would be recommended for production diets but a higher dietary lipid level may be required for optimal stress tolerance.  相似文献   

13.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

14.
The aim of this experiment was to determine the effects of dietary inclusion with mannan oligosaccharide (Bio‐Mos, Alltech, Nicholasville, KY, USA) on growth, survival, physiological and immunological conditions and gut morphology of the black tiger prawn (Penaeus monodon). Five diets supplemented with MOS at 0 g kg?1 (control diet), 1, 2, 4 and 8 g kg?1 were fed to the prawn juveniles (0.4 ± 0.06 g, total weight) for the duration of 63 days. Growth was the highest (< 0.05) when the prawns were fed the 1 g kg?1 MOS included diet. Wet tail muscle index (Tw/B), dry tail muscle index (Td/B) and tail muscle protein (Tmp) were higher (< 0.05) in the prawns fed MOS included diets MOS compared with the prawns fed the control diet. Total haemocyte counts (THCs) of the prawns fed MOS included diets were higher (< 0.05) than THCs of the prawns fed the control diet. Epithelium layer and epidermal cell density of the gut of the prawns fed 1 g kg?1 and 2 g kg?1 MOS diets were better than the prawns fed the control and other MOS diets. The results imply a positive effect of dietary supplementation of 1–2 g kg?1 MOS in the culture of black tiger prawns.  相似文献   

15.
Amino acids are vital for all living organisms including fish and histidine is an essential amino acid for fish. In view of this, dietary histidine requirement of fry Heteropneustes fossilis was determined by feeding casein–gelatin‐based isonitrogenous (430 g kg?1 CP) and isocaloric (17.9 MJ kg?1 GE; 15.5 MJ kg?1 DE) amino acid test diets (10 to 20 g histidine kg?1 dry diet) to quadruplicate groups of randomly assigned fish to apparent satiety for 12 weeks. Maximum absolute weight gain (AWG; 44 g fish?1), protein retention efficiency (PRE; 20%), protein efficiency ratio (PER; 1.04), haemoglobin (Hb; 11.24 g dL?1), haematocrit (Hct; 35.11%), red blood count (RBCs; 2.98 × 109 mL?1) and lowest erythrocyte sedimentation rate (ESR; 1.92 mm h?1) were obtained at 16 g histidine kg?1 dry diet. The 95% maximum quadratic response of above data exhibited the requirement to be at 15.2, 15.1, 15.6 and 15.5 g histidine kg?1 diet. As histidine is found in higher concentration in haemoglobin, requirement obtained for Hct% and Hb is 4% greater than that required for maximizing weight gain and protein retention. Based on these results, dietary histidine requirement of H. fossilis fry is recommended between 15.1 and 15.6 g kg?1, corresponding to 35.1–36.3 g kg?1 protein.  相似文献   

16.
Two trials with Atlantic salmon (Salmo salar) were conducted to evaluate the potential of krill meal to improve feed intake. In the first experiment, after transfer to sea water, salmon smolts were fed diets added 75 or 150 g kg?1 Antarctic krill meal in substitution for fish meal for 13 weeks. The apparent digestibility coefficient for crude protein and the majority of the amino acids was significantly lower in the feeds added krill meal (around 83.5%) than in the control diet (84.9%), whereas the digestibility of crude lipids, dry matter and energy was not significantly different among the three diets. Krill meal addition resulted in higher feed intake, which led to higher growth rates and final body weights. In the second experiment, large salmon were fed a diet containing 100 g kg?1 krill meal for 6 weeks before slaughter. Their feed intake and growth performance were assessed, and fillet and visceral fat contents were measured. Salmon fed the 100 g kg?1 krill meal diet tended to eat more, resulting in significantly increased growth rates, when compared to control fish. Fish fed krill meal also had a significantly lower condition factor.  相似文献   

17.
A feeding trial was conducted to determine effects of dietary inosine on growth, immune responses, oxidative stress resistance and intestinal morphology of juvenile red sea bream. A semi‐purified basal diet supplemented with 0 (D1, control), 2 g kg?1 (D2), 4 g kg?1 (D3), 6 g kg?1 (D4) and 8 g kg?1 (D5) dietary inosine, respectively, to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (initial weight: 8 g). After 50 days of feeding trial, fish fed diets with 4 g kg?1 inosine had the highest (p < .05) final weight, weight gain and specific growth rate. Similarly, improved feed intake, feed conversion ratio and protein efficiency ratio were also found at 4 g kg?1 inosine supplemented group. Some non‐specific immune parameters such as total serum protein, lysozyme activity and bactericidal activity tended to be higher for fish fed diets supplemented with inosine. Peroxidase and catalase activity also influenced (p < .05) by dietary inosine supplementation. Fish fed 2 g kg?1 and 4 g kg?1 inosine supplemented diets showed the least oxidative stress condition. Inosine supplementation significantly increased (p < .05) anterior enterocyte height and posterior fold height, enterocyte height and microvillus height compared with control. We concluded that 4 g kg?1 dietary inosine supplementation effectively provokes growth and health performance of red sea bream by increasing growth, immune response, oxidative stress resistance and intestinal health condition.  相似文献   

18.
A 12‐week feeding trial was conducted to estimate the dietary copper requirement of fingerling Channa punctatus. Six casein?gelatin‐based test diets (450 g kg?1 crude protein; 18.81 kJ g?1 gross energy) with graded levels of copper as copper sulphate (3.7, 4.7, 5.7, 6.7, 7.7 and 8.7 mg copper equivalent kg?1 diet) were formulated and fed to triplicate groups of fish (7.25 ± 0.81 cm; 5.21 ± 0.27 g) near to satiation. Fish fed diet with 6.7 mg kg?1 copper had highest absolute weight gain (AWG; 51.63 g fish?1), protein efficiency ratio (PER; 1.42 g fish?1), protein gain (PG; 8.34 g fish?1), haemoglobin (Hb; 9.68 g dL?1), haematocrit (Hct; 31.18%) and RBCs (3.24 × 106 × mm?3). Feed conversion ratio (FCR) was found to be best (1.57) at above level of dietary copper. Whole body copper concentration was found to increase with the increasing levels of dietary copper. Hepatic thiobarbituric acid‐reactive substances concentration was found to decrease with increasing dietary concentrations of copper up to 6.7 mg kg?1 beyond which a reverse trend in this parameter was noted. Broken‐line regression analysis of AWG, FCR and PG concentrations against varying levels of dietary copper yielded the requirement in the range of 6.66–6.78 mg kg?1. Data generated during this study would be useful in formulating copper‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

19.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

20.
An 8‐week feeding trial was conducted to investigate the effects of different taurine levels on the growth performance of juvenile white shrimp fed with low‐fishmeal diets. Six level diets of dietary taurine were prepared by the supplementation of taurine (0, 0.4 g kg?1, 0.8 g kg?1, 1.2 g kg?1, 2.0 g kg?1 and 4.0 g kg?1) to a control diet (100 g kg?1 fish meal). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48 ± 0.0 g), each three times daily. Shrimp fed the 0.4 g kg?1 and 0.8 g kg?1 taurine‐supplemented diets, showed significantly higher weight gain, protein efficiency ratio and protein retention efficiency than those of shrimp fed the other diets. The quadratic regression analysis (y = ?55.59x2 + 187.1x + 750.2 R² = 0.587) indicated that a maximum weight gain occurring at 1.68 g kg?1 of taurine level. The whole body and hepatopancreas taurine contents of the taurine‐supplemented diets were on the same level and higher than those of the control group. Total free amino acid content in the hepatopancreas was significantly affected by taurine supplementation. The results of the present study demonstrate that the white shrimps require taurine as an essential nutrient for growth performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号