首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristic pink colour of salmonid flesh is a result of deposition of naturally occurring carotenoid pigments. Achieving successful pigmentation in farmed salmonids is a vital aspect of fish farming and commercial feed production. Currently commercial diets for farmed salmonids contain either or both of the synthetic pigments commercially available, astaxanthin and canthaxanthin. Atlantic salmon, Salmo salar L. ( = 220 g initial weight) were given feeds where the pigment source was astaxanthin only, canthaxanthin only or a astaxanthin/canthaxanthin mix. The rearing environment was 12 × 3 m tanks supplied with sea water at the EWOS research farm Lønningdal, near Bergen, Norway. As the proportion of dietary canthaxanthin increased, flesh pigment levels also showed an increase; the pigment content in the muscle of canthaxanthin‐only fed fish was 0.4 mg kg?1 (or 14%) higher than that of the astaxanthin‐only fed fish, with the mixed pigment fed fish being intermediate between the two extremes. Results of cross‐section assessment for Minolta colorimeter redness (a*) values and Roche SalmofanTM scores also showed an increase in colour with increasing proportions of canthaxanthin in the feed. The data reported clearly indicates that S. salar ( = 810 g final weight) of this size deposit canthaxanthin more efficiently than they do astaxanthin. These results contrast with those obtained by other authors with rainbow trout, Oncorynchus mykiss (Walbaum), and imply that the absorption or utilization of the pigments differs between species.  相似文献   

2.
This study was undertaken to assess dorsal aorta cannulation as a method to evaluate alterations in diet composition and feeding protocol on pigment retention in salmonid fish. Temporal changes in blood astaxanthin concentrations of dorsal aortacannulated Atlantic salmon, Salmo salar L., were followed in relation to variations in dietary pigment concentration and fish-feeding husbandry protocol. The fish were held individually in 200-L fibreglass tanks supplied with running sea water. Each fish was forced to swim at 0.5 body lengths s?1 and was fed daily by hand to satiation. The fish had an average growth rate of 1% day?1. Blood astaxanthin concentrations were noted to be highly correlated (r= 0.995) with dietary levels of astaxanthin, but not as well correlated (r= 0.71) with total gut content of this pigment. Marked variations in blood astaxanthin concentration were noted between individual fish at each dietary pigment concentration, but the ranking of the fish was generally unaffected between each dietary pigment level. After cessation of feeding a diet supplemented with 75 mg of astaxanthin kg?1, salmon fed a diet with no pigment showed more-rapid blood pigment clearance than those that were starved. Likely, feed remaining in the alimentary tract of the starved fish functioned as a reservoir of pigment for the blood until the intestinal tract was empty. Blood pigment levels were not depressed in salmon fed a diet supplemented with 75 mg of astaxanthin kg?1 once daily instead of twice daily.  相似文献   

3.
Atlantic salmon, Salmo salar L., were fed nine experimental diets containing from 0 to 200 mg astaxanthin per kg?1 for six time periods, ranging from 3 to 21 months, in sea cages at Matre Aquaculture Research Station, Matredal, Norway. The sampled fish had an initial mean weight of 115 g and reached a weight of 3.2 kg at the termination of the experiment. Every third month, 10 fish from each dose and time group were sampled and the astaxanthin concentration in the flesh determined. The amount of astaxanthin in the flesh ranged from 0.7 to 8.9 mg kg?1 at the termination of the experiment. This paper discusses deposition of astaxanthin in the flesh of Atlantic salmon in relation to dietary carotenoid levels in the 0–200 mg kg?1 range and feeding times of 3–21 months. Under the conditions of this experiment, no significant effect on astaxanthin deposition rate could be achieved by increasing the astaxanthin level above 60 mg kg dry feed?1. Atlantic salmon should be fed astaxanthin-supplemented diets during the whole seawater stage in order to obtain maximal astaxanthin level in the flesh.  相似文献   

4.
Atlantic salmon fry hatched from pigment-free eggs and from eggs containing the pigment astaxanthin were fed eleven casein/gelatine-based purified diets with varying levels of astaxanthin, ranging from 0 to 317 mg kg?1, to determine the optimum dietary astaxanthin level for satisfactory growth and survival during the start-feeding period. The fish were fed the experimental diets for a period of 11 weeks. No difference in performance was found between the two types of fry originating from the pigment-free eggs and those containing pigment. However, the dietary astaxanthin concentration was found to have a significant effect on both the growth and the survival of fry. Fish fed diets with astaxanthin concentrations below 5.3 mg kg?1 were found to have marginal growth. In addition, mortality was high in the groups fed diets with astaxanthin concentrations below 1.0 mg kg?1. The specific growth rate (SGR) was also affected by the dietary treatment. The lipid content was higher and the moisture content was lower in the fish fed the diets containing astaxanthin concentrations above 5.3 mg kg?1. The vitamin A and astaxanthin concentrations in whole-body samples of the fry were significantly affected by the dietary level of astaxanthin. A plateau level in whole-body vitamin A concentration was observed at dietary levels of approximately 80 mg astaxanthin kg?1 and higher, while no maximum astaxanthin concentration in whole-body samples was observed within the dietary levels used. The results suggest the need for a minimum dietary astaxanthin concentration of 5.1 mg kg?1 to achieve maximum growth and survival during the start-feeding period. The results indicate a low bioavailability of vitamin A palmitate and acetate and the results also suggest a provitamin A function for astaxanthin during the same period.  相似文献   

5.
The present study was to understand how efficiently the astaxanthin in Calanus oil is utilized for flesh colouration in Atlantic salmon ( Salmo salar ). Postsmolts of the fish (309 g) were held at 7.9 °C and they were fed diets containing 20 or 60 mg astaxanthin per kilogram feed derived from a synthetic source or from Calanus oil for 181 days. Besides growth and feed intake assessments, at day 81 and 181, fish flesh were subjected to colour analysis and astaxanthin determination. Growth and feed performance did not vary between the groups. There were significant differences in the amount of astaxanthin in muscle between almost all groups both at day 81 ( P  < 0.05) and at day 181 ( P  < 0.001). However, a notable similarity between fish receiving 20 mg astaxanthin from the synthetic source and those receiving 60 mg astaxanthin from Calanus oil ( P  > 0.05) at day 181 indicated that comparable amounts were deposited only with the greater level of the natural source. Tristimuli colorimeter a* values support the analytical results at day 181. Although Calanus oil did serve as a natural dietary pigment source for farmed salmon, its inclusion level should provide more than 60 mg astaxanthin per kilogram feed to achieve colouration preferred by the market.  相似文献   

6.
Two experiments were conducted to evaluate the addition of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in the diets of goldfish, Carassius auratus. The first was designed to investigate the distribution of pigments in different tissues of goldfish and the effect of astaxanthin in the diet. The carotenoid concentration of tissues was not homogenous. The content of pigments in fish caudal fin was the highest followed by those of scales and head. Flesh had the least carotenoid deposition. Fish fed the diet containing 60 mg/kg astaxanthin had increased concentration of pigment in its head (22.6%), scales (45.5%), flesh (31.0%), and fin (21.2%), compared to fish fed basal diet (P < 0.05). Sixty parts per million astaxanthin had no effect on the weight gain and survival rate. High‐performance liquid chromatography analysis showed astaxanthin in its esterified form in goldfish. The second experiment was aimed at determining the dietary level of astaxanthin that improved color of goldfish. Goldfish were fed the same diet supplemented with 0, 10, 20, 40, 60, and 80 mg yeast astaxanthin/kg for 60 d. The deposition of carotenoids in goldfish fed diets supplemented with astaxanthin increased significantly (P < 0.05) after 15 d of feeding compared to that of the fish fed the diet without astaxanthin, but the effect of dosage of astaxanthin in the diets on the color of goldfish was not completely evident until Day 60 (P < 0.05). During the period of 15–45 d, the deposition of pigments in fish did not increase significantly (P > 0.05) in any treatment with the exception of the diet with 40 mg yeast astaxanthin/kg.  相似文献   

7.
在人工繁殖水母的饵料中添加食用性人工合成色素、人工合成荧光色素、天然虾青素、铁元素和饲喂含有色素的海蜇等,测定水母采食饵料后感官指标、酪氨酸酶活力和总类胡萝卜素含量的变化,分析添加物质对水母生理机能的影响。试验结果显示,4种人工食用色素均能大大提升水母的观赏性,但颜色保持时间短,3 h后,所有水母均恢复原来的体色,水母状态未发现改变。水母注射水溶性荧光色素,10 h后才能通过水循环扩散到全身,荧光色维持时间可达30 d。水母饲喂天然虾青素、铁元素和含有色素的海蜇1个月后,肉眼观察,海蜇组的水母比对照组的水母颜色深,而虾青素组、FeSO_4组与对照组差异不明显。各组酪氨酸酶活力和总胡萝卜素含量均较低。组内个体间酪氨酸酶活力差异较大,但各组间差异均不显著(P>0.05)。总胡萝卜素在450 nm处吸收值最高。海蜇组水母的酪氨酸酶活力和总胡萝卜素含量均最高,分别为0.133 U/mL和251.01 mg/kg。虾青素组酪氨酸酶活力最低,为0.109 U/mL。食用色素组总胡萝卜素含量最低,仅为158.83 mg/kg,酪氨酸酶活力仅高于虾青素组,可能与色素并未在表皮和中胶层形成色素沉淀有关。试验结果表明,人工添加色素能获得颜色各异的水母,水溶性荧光色素能长期保存在动物体内,可作为体色调控色素。水母的色素合成与酪氨酸酶活力和总胡萝卜素含量有关。  相似文献   

8.
Effect of Astaxanthin on the Pigmentation of Goldfish Carassius auratus   总被引:1,自引:0,他引:1  
The optimal dosage of astaxanthin for goldfish Carassius auratus was determined by feeding a series of diets containing 0, 25, 50, 75, and 100 mg of astaxanthin/kg of diet for 4 wk. The pigmentation on fish skin was measured by visual assessment against a color chart and by counting chromatophores produced in the dermis layer of fish skin. Both criteria showed that 36–37 mg/kg astaxanthin was the optimal dosage to stimulate fish color. A 4-wk observation after this experiment demonstrated that fish color stimulated by dietary astaxanthin was stable in its intensity. Therefore feeding astaxanthin could be a suitable way for goldfish producers to stimulate color among fish grown in an algae-free environment. The survival rate of fish fed diets with astaxanthin was significantly higher than fish fed diets without astaxanthin. However, there was no significant effect of astaxanthin on fish weight gain.  相似文献   

9.
Abstract  Isomeric ratios of astaxanthin in eggs and alevins of Atlantic salmon, Salmo salar L., have proven useful in identifying female spawners of farmed origin, but the method underestimates the proportion of fish of farmed origin. The rate of underestimation was studied by analysing astaxanthin content in tissue of 55 farmed Atlantic salmon ascending two Norwegian rivers in the autumn of 1991. The astaxanthin content fell into two distinct classes. Fifty-one per cent of the adult escaped salmon had isomeric ratios similar to salmon fed synthetic astaxanthin, whereas all the remaining fish had ratios similar to wild fish. Discriminant analysis classified 96.4% of the fish with known astaxanthin content into the correct astaxanthin class on basis of tail-fin erosion, length, weight and gill-cover damage. This discriminant function was used to estimate the astaxanthin classification of 1017 farmed salmon caught in nine rivers during 1989–1991. The classification success varied among years from 52 to 64%. Corresponding numbers for females and males were 45–48% and 54–70%, respectively. Thus, estimates of spawning rates of farmed female salmon via astaxanthin content in eggs or alevins from redds should be adjusted accordingly. The observed isomeric ratios of astaxanthin in the escaped farmed salmon and the relationship with morphology indicates that a significant proportion of the escapees ascending rivers have spent more than 1 year in the wild after escape.  相似文献   

10.
Atlantic salmon, Salmo salar L., juveniles, with a mean initial weight of 1.75 g, were fed casein-based purified diets which had been supplemented with different levels of astaxanthin for a 10-week period. The astaxanthin content of the diets ranged from 0 to 190 mg kg?1 dry diet. The growth and survival of the juveniles were recorded throughout the experiment. The proximate composition, astaxanthin and vitamin A content were determined from whole-body samples at the start and termination of the experiment. The dietary treatment was found to affect growth significantly (P < 0.05). A reduction in the mean weight of the juveniles was observed in the groups fed the diets without astaxanthin supplementation. There was no difference in growth rate between the fish in the groups fed the diets containing 36 or 190 mg astaxanthin kg?1 dry diet, whereas the fish in the group fed the diet containing 5.3 mg astaxanthin kg?1 dry diet had a lower growth rate. There was a tendency to higher survival in the groups fed the diets containing astaxanthin when compared with the groups fed the non-supplemented diets. The moisture and ash contents were significantly lower and the lipid content was higher in the groups fed the astaxanthin-supplemented diets. The astaxanthin and the vitamin A concentrations in the fish were found to be dependent upon the dietary astaxanthin dose; the highest values were found in the fish fed the diet with the highest astaxanthin content. These results strongly indicate that astaxanthin functions as a provitamin A for juvenile Atlantic salmon. The body storage of vitamin A increased in the fish fed the diets containing astaxanthin. However, the increase was low in the fish fed the diet containing 5.3 mg astaxanthin kg?1 dry diet.  相似文献   

11.
The influence of α-tocopheryl acetate (α-TOAc) on plasma concentration and fillet deposition of dietary astaxanthin was investigated in Atlantic salmon Salmo salar L. The diets were added 30 or 50 mg kg–1 astaxanthin, and 200, 400 or 800 mg kg–1α-TOAc at each astaxanthin level. Improved flesh deposition of astaxanthin by 8–14% was achieved for fish fed diets with 30 and 50 mg kg–1 astaxanthin, respectively, by the dietary addition of 800 compared with 200 mg kg–1α-TOAc. These results were supported by CIE[1976]L*a*b* tristimulus redness measurements (a* value). Plasma astaxanthin concentration mirrored the muscle astaxanthin concentration in the groups of fish fed a diet containing 30 mg kg–1 astaxanthin. The salmon fed a high astaxanthin and low α-TOAc diet had the highest plasma concentration of idoxanthin (P < 0.05). Astaxanthin retention was significantly higher (P < 0.001) in salmon fed 30 mg kg–1 astaxanthin than in those fed 50 mg kg–1 astaxanthin, but was not significantly affected by dietary α-TOAc. Liver weight, body weight, specific growth rate, feed/gain ratio and mortalities were not affected by dietary α-TOAc levels. In conclusion, the dietary addition of α-TOAc appears to increase astaxanthin fillet deposition in salmonids and may reduce the demand for astaxanthin supplementation. The effect was rather small and requires verification.  相似文献   

12.
To elucidate whether absorption and deposition of dietary astaxanthin are influenced by the use of different dietary fish oils having different melting points and fatty acid profiles, triplicate groups of individually labeled Atlantic salmon (initial average weight 569 g) were reared in 2 m2 tanks, supplied with saltwater. The fish were fed four different experimental diets coated with either herring oil, capelin oil, sandeel oil, or a Peruvian oil high in polyunsaturated fatty acids. Salmon fed diets containing Peruvian high PUFA oil had significantly higher (13%) fillet carotenoid content than salmon fed herring oil (P<0.05). Astaxanthin retention was significantly higher (P<0.05) in salmon fed capelin and Peruvian high PUFA oil than in the two other groups. The effects of dietary oil supplements on carotenoid deposition were rather small and require verification. Redness of fillets and blood plasma astaxanthin levels did not differ among treatments. Liver weights, body weights, as well as specific growth rates, and feed conversion ratios were unaffected by dietary oil source. Significant (P<0.05) positive linear relationships were found between final fillet idoxanthin concentration and total saturated fatty acids in supplement oils, astaxanthin and total monounsaturated fatty acids, and redness and total n−3 fatty acids, whereas the relationships between redness and total monounsaturated fatty acids and astaxanthin and total n−3 fatty acids were negative.  相似文献   

13.
Experiments were conducted to determine whether poor intestinal absorption of astaxanthin or some other metabolic factor is primarily responsible for pigmentation failure in white chinook salmon and small juvenile fish of other salmonid species. None of the fish studied failed to absorb astaxanthin from a single oral dose of the pigment. Intensity of flesh pigmentation in coho ranging in weight from 30–400 g, and fed a diet supplemented with astaxanthin, was significantly correlated with body weight. There was no correlation, however, between flesh colour and plasma astaxanthin concentration or between body weight and plasma astaxanthin concentration. Dietary triiodothyronine reduced both flesh pigmentation and plasma astaxanthin. It is concluded that poor flesh pigmentation results from rapid metabolism of absorbed pigment to colourless derivatives rather than from failure of the fish to absorb pigment.  相似文献   

14.
This study examined astaxanthin bioavailability and kinetics in adult Atlantic salmon Salmo salar L., following two different routes of astaxanthin administration (oral vs. intraperitoneal (i.p.) injection) using two different carriers of the pigment (gelatin vs. sesame oil). The dorsal aorta of adult Atlantic salmon (mean initial weight 950 g) was cannulated. The fish received a single dose of astaxanthin (572 μg kg?1) in sesame oil or (514 μg kg?1) in gelatin via the oral or i.p. route. Plasma was sampled regularly up to 72 h post oral administration and up to 510 h post i.p. injection. The astaxanthin concentration–time curves from plasma were best fit to a one‐compartment pharmacokinetic model for each of the four treatments. The gelatin carrier resulted in higher availability of astaxanthin compared to the sesame oil carrier. The bioavailability for astaxanthin in sesame oil was only 38.7% of that in gelatin by i.p. injection, and only 53.5% of that in gelatin by oral administration. Higher availability of astaxanthin was observed when i.p. injection was used compared to oral administration. The bioavailability for astaxanthin administered orally was only 12% of that by i.p. injection in sesame oil, and only 8.7% of that by i.p. injection in gelatin.  相似文献   

15.
Abstract. Parr of Atlantic salmon, Salmo salar L., were fed semi-purified diets supplemented with 60 mg astaxanthin kg−1 and without astaxanthin supplementation for 10.5 months. The astaxanthin concentration in the non-supplemented diet was analysed to be 6–0 mg kg−1 The growth of the fish was significantly affected by the dietary treatment. The mean daily weight gain in the groups fed the supplemented diets was 0.39% throughout the period, whereas the groups fed the non-supplemented diet had a mean daily weight gain of 0.18%. The dry matter and fat content were significantly higher in fish fed the supplemented diet. The astaxanthin concentration in the muscle of fish fed the astaxanthin-supplemented diet was 2–7 mg kg−1 versus 0–3 mg kg−1 in the non-supplemented fish. Antioxidant vitamins in the muscle (retinol, α-tocopherol) and liver (retinol, α-tocopherol and ascorbic acid) were two to 20 times higher in the fish in the supplemented group, suggesting antioxidant sparing effects. Blood haemoglobin and immunological parameters tended to be higher in fish fed the low astaxanthin diet although the difference was not significant. However, the resistance to challenge with Aeromonas salmonicida was higher in fish fed the astaxanthin supplemented diet. This may be due to a difference in weight at the time of the challenge which, in turn, may have influenced the body composition and smoltification of the fish. A relationship between dietary astaxanthin concentration and antioxidant status in both liver and muscle was observed, and this may also have had an influence on the observed differences in blood parameters and disease resistance.  相似文献   

16.
The development of cataracts in Atlantic salmon, Salmo salar L., was studied in 16 groups of smolts fed diets differing in prooxidant (iron, copper, manganese) and antioxidant (vitamin E, vitamin C, astaxanthin) composition and lipid level for 23 weeks in sea water, using a 2(7-3) reduced factorial design. The seven dietary variables were systematically varied at low (requirement level and 150 g lipid kg(-1)) and high levels (below known toxic levels and 320 g lipid kg(-1)). A mean endpoint cataract incidence of approximately 36% was observed. High dietary levels of vitamin C and astaxanthin reduced cataract frequency, whereas high dietary lipid level, iron and manganese were associated with increased cataract frequencies. Considering the nutritional status of selected organs of the fish, only the status of ascorbic acid correlated negatively to cataract development (P < 0.05). The lens glutathione (GSH) status was not correlated to cataract frequency, nor statistically explained by the dietary variables. However, the study shows that balancing the diet with respect to pro- and antioxidant nutrients may significantly protect Atlantic salmon against development of cataracts. An incidence of reversible osmotic cataract observed at week 14 was positively correlated to plasma glucose concentration.  相似文献   

17.
A study was conducted to determine the effects of dietary lipid and bile acids on astaxanthin absorption in Atlantic salmon (Salmo salar L.). Fish with an average weight of 1500 g were fitted with a dorsal aorta cannula and fed diets containing herring oil, soybean lecithin, lard, or herring oil supplemented with taurocholic acid (2.5 g/kg diet). Each fish was fed all of the experimental diets in successive order to minimize the effect of individual variation. At a given time following the feeding of each diet, blood was collected and analyzed for astaxanthin. Soybean lecithin significantly lowered the absorption of astaxanthin compared to fish fed herring oil. A 20% (p < 0.12) increase in blood astaxanthin was observed when the fish were fed the diet supplemented with taurocholic acid. Feeding lard significantly increased the blood astaxanthin level compared to the control group. It appears that altering the micellar structure by stimulating micellar (taurocholic acid) or mixed micellar (lecithin) systems did not increase the apparent absorption of astaxanthin. However, increasing the phospholipid level may have actually decreased the absorption possibly by lowering the astaxanthin solubility in the micelles. The increased apparent absorption of astaxanthin with lard is possibly linked to the increased content of 16:0, 18:1n − 9 or 18:2n − 6 fatty acids in this diet, or a reduction in very long chain monoenes (20:1n − 9 and 22:1n − 9). This suggests that the solubility of astaxanthin is higher in diets containing higher levels of 16:0 or 18:1n − 1, or alternatively, that reductions in longer chain monoenes (20:1n − 9 and 22:1n − 9) increase the micellar solubility of this pigment.  相似文献   

18.
The rapid growth of Atlantic salmon, Salmo salar L., culture in north-western Europe has given rise to concerns regarding the biological consequences of fish farm escapes on wild salmonid populations. Canthaxanthin, a carotenoid pigment additive to farmed salmon feed which is passed from females to their progeny, may be used as an indicator of the numbers of escaped farmed salmon which spawn in the wild. In the present study, thin-layer chromatography and high-performance liquid chromatography (HPLC) were used to screen emergent Atlantic salmon fry sampled from seven river catchments in Ireland for canthaxanthin. The incidence of fry containing canthaxanthin at greater than trace levels (<5% of total carotenoid pigment) was 0–4%, with an average of 1.7%, among the seven rivers sampled, indicating that the progeny of farmed salmon were present at similarly low frequencies. Canthaxanthin was detected at trace levels in an unexpectedly high proportion (35%) of salmon fry. Canthaxanthin was present at levels exceeding trace amounts in 24% of 21 non-anadromous brown trout, Salmo trutta L., sampled from six Irish rivers and present at trace levels in a further 57% of the fish, indicating that dietary canthaxanthin is freely available to salmonids in Irish rivers. The widespread presence of trace levels in salmon fry may be attributable, at least in part, to the increased sensitivity of the HPLC methods and to rapid dietary uptake during early post-emergence feeding.  相似文献   

19.
ABSTRACT

Eleven commercial processing lines for the slaughter of Atlantic salmon were evaluated to investigate the efficiency of the refrigerated seawater live chilling method with respect to stunning fish and reducing body temperature. The method is commonly used in the Norwegian salmon industry to both stun and chill fish before killing. Carbon dioxide gas was added to the live chilling tanks, or in some cases, to a subsequent carbon dioxide stunning tank. Criteria used for evaluation were water quality parameters (dissolved oxygen, carbon dioxide, pH, temperature, total ammonium, ammonia, alkalinity, color, total organic carbon, and ferric ion), fish behavior, white muscle pH, and body and core temperatures. At two processing plants, fillet quality (Roche color, texture, ultimate pH, and water content) was also determined. The results are discussed in terms of fish acclimation temperatures, water quality, welfare, handling stress, chilling efficiency, pre-live chilling factors, refrigerated seawater live chilling process parameters, and fillet quality. Even though the live chilling method can be used to minimize fish handling stress during slaughter and may serve as an efficient chilling method, it was found in most cases that under commercial conditions when large biomasses were slaughtered, both handling stress and chilling efficiency were less than optimal. However, no adverse effects on the fillet texture and color were observed as a result of fish processing.  相似文献   

20.
High dietary content of vegetable oil (VO) has been associated with increased intestinal lipid accumulations in fish. The extent of this in aquacultured Atlantic salmon (Salmo salar L.) and its health effects are not certain. Samples were therefore collected from two separate feeding trials to investigate the effect of high dietary VO on intestinal lipid accumulations in Atlantic salmon. In the first trial, the fish were fed diets high in plant protein and with fish oil or ~80% of the fish oil replaced with either olive oil, rapeseed oil or soybean oil in a land‐based experimental set‐up. The second trial was performed in sea cages under commercial production conditions, and the fish were fed two dietary concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (9.7% or 5.5% EPA + DHA of total fatty acids). Neither dietary VO nor variations in EPA and DHA led to any significant effects on intestinal health or lipid accumulations. There were, however, indications of a delayed lipid transport in the rapeseed oil‐fed fish of the first trial, possibly caused by high dietary ≥18‐carbon fatty acids and low dietary 16:0 fatty acid and cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号