首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The red seaweed Asparagopsis armata (Harvey; Rhodophytae, Bonnemaisoniaceae) produces biologically active secondary metabolites that are valuable natural ingredients for cosmetics and medicine and its cultivation may therefore be a profitable venture. The tetrasporophyte of this species (“Falkenbergia rufolanosa”) was successfully tank-cultivated as a continuous biofilter for the effluent of a commercial fish farm in southern Portugal. Optimal stocking density for highest biomass yield and a low level of other algal species in winter and late spring was 5×g centrifuged fresh weight l− 1. The effect of total ammonia nitrogen supply (TAN flux) on biofiltration and biomass yield was investigated in winter and spring. Results revealed that A. armata is currently the seaweed-biofilter with the highest TAN removal of up to 90 μmol l− 1 h− 1 at a TAN flux of about 500 μmol l− 1 h− 1. In the tanks used, this is equivalent to a removal of up to 14.5 g TAN m− 2 day− 1. At a lower TAN flux of about 40 μmol l− 1 h− 1, TAN removal by A. armata is more than double to what is reported at this flux for another successful seaweed biofilter, the genus Ulva. Monthly variation of A. armata biomass yield peaked in May and was lowest in January. At TAN fluxes between 300 and 400 μmol l− 1 h− 1, an average water temperature of 21.7 °C and a total daily photon flux density of 47 Mol m− 2, seaweed yield was over 100 g DW m− 2 day− 1 with a recorded maximum of 119 g. During spring, autumn and early summer, the biomass of A. armata within the experimental tanks doubled every week. A model for the up scaling of this finfish integrated aquaculture of A. armata varies the investment in biofilter surface area and estimates the return in biofiltration and biomass yield. Highest TAN removal efficiencies will only be possible at low TAN fluxes and a very large biofilter area, resulting in a low production of biomass per unit area. To remove 50% of TAN from the effluent (1 mt Sparus aurata; 21 °C), 28 m2 of biofilter, designed to support a water turnover rate of 0.8 Vol h− 1 would be necessary. This system produces 6.1 kg FW (1.5 kg DW) of A. armata per day and has the potential to turn biofiltration into an economically sustained, beneficial side effect.  相似文献   

2.
The optimal conditions for growth of Porphyra dioica gametophytes were investigated in the laboratory, focusing on bioremediation potential. Porphyra dioica is one of the most common Porphyra species along the northern coast of Portugal and can be found year-round. The influence of stocking density and photon flux density (PFD) on the growth, production and nutrient removal was tested. Maximum growth rates, up to 33% per day, were recorded with 0.1 g fw l− 1 at 150 and 250 μmol photons m− 2 s− 1. Growth rate decreased significantly with increasing stocking density. Productivity (g fw week− 1) had an inverse trend, with more production at the higher stocking densities. At 150 μmol m− 2 s− 1 and with 1.5 g fw l− 1, 1.4 g fw week− 1 were produced. At this PFD, there was no significant difference in production between 0.6 to 1.5 g fw l− 1. Nitrogen (N) content of the seaweeds decreased with increasing stocking densities and PFDs. The maximum N removal was recorded at 150 μmol m− 2 s− 1, with 1.5 g fw l− 1 stocking density (1.67 mg N day− 1). However, the N removed by thalli at 50 μmol photons m− 2 s− 1 was statistically equal to that at 150 and 250 μmol photons m− 2 s− 1, at a stocking density of 1.0 g fw l− 1. The influence of temperature and photoperiod on growth and reproduction was also assessed. Growth rates of P. dioica were significantly affected by temperature and photoperiod. In this experiment (with 0.3 g fw l− 1 stocking density), the highest growth rate, 27.5% fw day− 1, was recorded at 15 °C and 16 : 8¯, L : D¯. Male thalli started to release spermatia 21 days after the beginning of the experiment, in temperatures from 10 to 20 °C and with 10, 12 and 16 h of day length. Unfertilized female-like thalli were observed at 10 to 20 °C, under all photoperiods tested. Growth of these thalli declined after 4 weeks. By then, formation of young bladelets in the basal portion of these thalli was observed. After 7 weeks all biomass produced was solely due to these vegetatively propagated young thalli, growing 22.4% to 26.1% day− 1. The results of this study showed that P. dioica appears to be a candidate as a nutrient scrubber in integrated aquaculture systems.  相似文献   

3.
The present study was undertaken to investigate the distribution of Listonella anguillarum in a Japanese flounder (Paralichthys olivaceus) hatchery. A total of 2704 isolates were obtained from the developing fish, live diets and artificial feeds of Japanese flounder and their rearing water, 439 of which were identified as L. anguillarum by the combining incubation on thiosulfate-citrate-bile salt-sucrose (TCBS) agar at 35 °C overnight with polymerase chain reaction (PCR) detection for the VAH1 hemolysin gene. L. anguillarum was detected in all seven rotifer samples, with densities of 2.5 × 103 to 4.6 × 106 colony forming units (CFU) g− 1. Both the analyzed samples of Nannochloropsis oculata contained this bacterium at densities of 1.6 × 104 to 1.4 × 105 CFU g− 1. L. anguillarum was detected in only one of four samples of Artemia nauplii with a density of 4.8 × 105 CFU g− 1 (35%) and it was not detected in the two analyzed artificial feed samples. L. anguillarum was detected in 11 of 18 specimens of larval and juvenile Japanese flounder at densities of 5.0 × 101 to 7.4 × 105 CFU g− 1, while it was not detected in the two analyzed egg specimens of Japanese flounder. These results indicate that L. anguillarum associated with the developing Japanese flounder is likely derived from rearing water and live diets such as rotifers. Further, it is strongly suggested that L. anguillarum is a transient bacterium of the intestinal microflora for the Japanese flounder but is a permanently indigenous one for the Japanese flounder hatcheries.  相似文献   

4.
Growth and energy budget of juvenile cobia (initial body weight ∼ 22 g) at various temperatures (23, 27, 31 and 35 °C) were investigated in this study. Maximal ration level (RLmax, %/day) increased as temperature (T, °C) increased from 23 °C to 31 °C but decreased at 35 °C, described as a quadratic equation: RLmax = −0.023T2 + 1.495T − 17.52. Faecal production (f, mg g− 1 day− 1) increased with increased temperature (T, °C), described as a power function: lnf = 0.738lnT − 0.806. As temperature increased, feed absorption efficiency in dry weight (FAEd, %), protein (FAEp, %) and energy (FAEe, %) all increased first and then decreased, but the variation of feed absorption efficiency was small, with ranges of 89.59-91.08%, 92.91-94.71%, 93.92-95.32%, respectively. Specific growth rate in wet weight (SGRw, %/day), dry weight (SGRd, %/day), protein (SGRp, %/day) and energy (SGRe, %/day) showed a domed curve relative to temperature (T, °C), described as quadratic equations: SGRw = − 0.068T2 + 3.878T − 50.53, SGRd = − 0.079T2 + 4.536T −59.64, SGRp = − 0.084T2 + 4.783T − 63.08 and SGRe = − 0.082T2 + 4.654T − 60.99, and SGRw, SGRd, SGRp and SGRe maximized at 28.5 °C, 28.6 °C, 28.4 °C, 28.5 °C, respectively, as calculated from the regression equations. The relationships between feed conversion efficiency in wet weight (FCEw, %), dry weight (FCEd, %), protein (FCEp, %), energy (FCEe, %) and temperature (T, °C) also took on a domed curve described as quadratic equations: FCEw = − 0.726T2 + 39.71T − 473.8, FCEd = − 0.276T2 + 15.31T − 190.6, FCEp = − 0.397T2 + 22.05T − 277.9 and FCEe = − 0.350T2 + 19.39T − 239.9, and FCEw, FCEd, FCEp and FCEe maximized at 27.4 °C, 27.8 °C, 27.7 °C and 27.7 °C, respectively, as calculated from the regression equations. Energy budget of juvenile cobia fed satiation was 100C = 5F + 67(U + R) + 28G at water temperature 27 °C and 100C = 5F + 70(U + R) + 25G at water temperature 31 °C, where C is food energy, F is faeces energy, (U + R) is excretion energy and metabolism energy, and G is growth energy.  相似文献   

5.
The current study investigated acute toxicity to ammonia of the South African abalone, Haliotis midae, from three size classes relevant to mariculture operations, and the chronic impact of sub-lethal ammonia levels on growth of juvenile abalone.Results showed that tolerance to ammonia (at pH 7.8 and Ta = 15 °C) increases with body size (i.e. age) as indicated by 36 h LC50 values: juvenile abalone (1-2.5 cm shell length) had the lowest LC50 of 9.8 μg l− 1 FAN, whereas LC50 was 12.9 μg l− 1 FAN in “cocktail”-size abalone (5-8 cm shell length). The highest LC50 of 16.4 μg l− 1 FAN was observed in “brood stock”-size animals (10-15 cm). When “cocktail”-size abalone were allowed to acclimatize to sub-lethal ammonia levels for 48 h, their ammonia tolerance increased compared with non-acclimatized abalone of the same size: LC50 was 2.0 μg l− 1 FAN higher at 14.8 μg l− 1 FAN.Growth of juvenile abalone (1-2.5 cm shell length) during chronic exposure to sub-lethal FAN levels is inhibited: specific growth rate (SGR) is significantly reduced by 58.7% to 0.10 ± 0.03% d− 1 (weight) compared with 0.24 ± 0.06% d− 1 of abalone of a control group (no ammonia).The results demonstrate the negative effects of ammonia not only on survival but also on growth of farmed abalone, both impair profitability of the farming operation. The information from the present study will be helpful in determining water quality requirements in South African abalone farms.  相似文献   

6.
In the Sacca di Goro lagoon a farming cycle of the Manila clam (Ruditapes philippinarum) was simulated seeding young molluscs in an unexploited sandy spot. The experimental area (2100 m2) consisted of three sectors: a control (C), almost devoid of clams (∼ 1600 m− 2, ∼ 30 ind m− 2), a low (L) density area (400 m2, ∼ 300 ind m− 2) and a high (H) density zone (∼ 110 m− 2, ∼ 800 ind m− 2). Water chemistry, external freshwater nutrient loads, molluscs filtration rates, biomass, elemental composition and nutrient recycling were analysed.Clam filtration rates and light and dark fluxes of nutrients were measured with intact core incubations. Three replicate cores (i.d. 20 cm) were collected from C, L and H in April, one month after the seeding, June, August and October 2003. External loads were calculated multiplying dissolved and particulate nutrients concentration by freshwater flow from the main lagoon tributaries. Direct excretion, filtration activity of clams and particulate matter deposition resulted in significantly higher ammonium (NH4+) and soluble reactive phosphorus (SRP) effluxes to the water column at L and H. For the entire farming cycle, particulate nitrogen (PN) uptake by clams from the water column was 1.7 (C), 9.1 (L) and 16.3 (H) mol m− 2, whilst total dissolved nitrogen (TDN) fluxes were − 0.3 (C), 1.6 (L) and 6.9 (H) mol m− 2. Particulate phosphorus (PP) uptake from the water column was 0.1 (C), 0.6 (L) and 1.0 (H) mol m− 2, whilst total dissolved phosphorus (TDP) efflux was 0.2 (C), 0.5 (L) and 0.8 (H) mol m− 2. At the end of the farming cycle, harvested N as mollusc flesh was negligible for C, 0.4 mol m− 2 for L and 1.8 mol m− 2 for H. Harvested P as mollusc flesh was negligible for C, 0.02 mol m− 2 for L and 0.04 mol m− 2 for H. Farmed areas seem to have a great potential for fast coupling between sedimentation (filter feeder mediated biodeposition) and benthic recycling. At the lagoon level, mollusc farming probably attenuates the export of particulate matter to the open sea. Our results show that a minor fraction of biodeposited N (∼ 6%) and P (∼ 3%) was exported as a commercial product at the end of the farming cycle, whilst a larger fraction was incorporated in the sediments or recycled as dissolved inorganic or organic forms.  相似文献   

7.
Three potentially valuable red seaweeds, Chondrus crispus Stackhouse, Gracilaria bursa pastoris (S.G. Gmelin) P.C. Silva and Palmaria palmata (L.) O. Kuntze, collected in northern Portugal, were cultivated using the nutrient-rich effluents from a local turbot (Scophthalmus maximus Linnaeus) and sea bass (Dicentrarchus labrax Linnaeus) farm. The algae were cultivated in a two level cascade system. Several arrangements of the cascade system, stocking densities (3, 5, 7 and 8 kg m− 2) and water fluxes (140 and 325 l h− 1) were tested to optimize biomass yield and nitrogen uptake rate and efficiency. The yield and the total ammonium nitrogen (TAN) uptake of the three species were highly seasonal. Palmaria could not survive culture conditions during the summer when water temperature was above 21 °C. In the spring, Palmaria had an average yield of 40.2 (± 12.80) g DW m− 2 day− 1 and a nitrogen uptake efficiency (NUE) of 41.0% (± 17.26%). NUE expresses, in percentage, the average reduction in TAN concentration between the inflows and the outflows of the tanks. Chondrus performed better in summer with an average yield of 37.0 (± 11.10) g DW m− 2 day− 1 and removing 41.3% (± 17.32%) of nitrogen. Gracilaria grew year round, but also performed better during spring/summer, producing an average of 29.1 (± 2.90) g DW m− 2 day− 1, and only 7.3 (± 5.08) g DW m− 2 day− 1 during autumn. Yield of C. crispus did not differ significantly when grown at two different stocking densities (5 kg m− 2 and 8 kg m− 2). On the other hand, Gracilaria had significantly higher yields at 5 than at 7 kg m− 2. Better NUE, on average 76.7% (± 22.13%), was also obtained with 5 kg m− 2 stocking density and only 63.8% (± 24.62%) with 7 kg m− 2. The yield of Gracilaria increased significantly with the increase of water flux from 140 to 325 l h− 1 and more nitrogen was removed from the water. However, NUE decreased from 48.4% to 33.4% at 140 and 325 l h− 1, respectively. Biofiltration was highly improved by a cascade system with a NUE as high as 83.5%.  相似文献   

8.
The spider crab Maja brachydactyla is overexploited on the NW coast of Spain. Aquaculture of this species can be the solution to the problem, and consequently, several attempts of intensive larval rearing have been conducted. However, most of the studies already published do not provide enough zoo technical data, especially in terms of larval and prey densities or the nutritional quality of diets used for rearing.Three experiments were carried out to evaluate the conditions for intensive larval rearing of M. brachydactyla. Larval stocking density (10, 50 and 100 larvae L− 1), prey:larva ratio (15, 30 and 60 enriched Artemia larva− 1) and diet (enriched Artemia, non-enriched Artemia and polychaete supplement) effects on growth and survival of this species were studied. For larval culture nine, 35 L, 150 μm mesh-bottomed PVC cylinders (triplicates for each treatment and larval stage) connected to a recirculation unit, were used. Temperature and salinity were kept constant at 18 °C and 36‰ respectively. A 12 to 18 day trial was conducted for each experiment and samples of larvae were collected at each larval stage (zoea I, zoea II, megalopa) in the inter-molt phase and at first juvenile. Survival, carapace length and width, dry weight (DW), and proximate biochemical content (protein, carbohydrates and total lipid) as well as lipid class composition were determined.Stocking densities of 100 larvae L− 1 resulted in higher growth in DW and higher content in lipids and protein for zoea I (ZI) and zoea II (ZII) than 10 larvae L− 1. However, survival decreased with increasing stocking density.The use of 60 preys larva− 1 produced larvae with significantly higher DW and protein content, especially at ZII stage, than lower prey densities. Survival rate obtained feeding 60 preys larva− 1 up to the megalopa stage was almost two-fold (42.2%) the rate obtained using 15 preys larva− 1 (24.8%).Larvae fed on enriched Artemia (EA) showed an increase in weight up to megalopa (518.9 ± 26.5 μg) in contrast to larvae fed on non-enriched prey (A) (467.9 ± 6.9 μg). Variation in DW correlated with the total lipid content (L) of the larvae (LEA = 70.1 ± 37.5 μg ind− 1; L= 28.9 ± 3.2 μg ind− 1) especially in terms of neutral lipids. The use of an initial density of at least 50 larvae L− 1 and 60 enriched Artemia larva− 1 can be considered the most adequate rearing parameters in order to obtain good results in growth and survival of M. brachydactyla.  相似文献   

9.
Many aquaculture industries generate a nutrient-rich waste stream that can lead to eutrophication of coastal waters. To address this environmental issue, the bioremediation potential of several native Northeast American species of Porphyra was assessed and compared to the well-known Asian species. Porphyra thalli were cultured over 4 weeks at 15 °C at a stocking density of 0.4 g FW L− 1. At 3- to 4-day intervals nutrient uptake, tissue N accumulation and phycobiliprotein concentration (PBP) were determined as functions of nitrogen (N) concentration (25-300 μM) and N source (nitrate vs. ammonium). Growth rates were measured weekly. Growth and tissue N reached maximal levels at inorganic N concentrations of 150-300 μM. Maximum growth rates ranged from 10% to 25% day− 1, although induction of archeospores reduced average growth rates in many cases. No evidence of ammonium toxicity (reductions in growth rate) was observed; in fact, similar values were found with both N sources. Ammonium generally yielded higher PBP and tissue N contents than nitrate. Porphyra amplissima presented the highest growth rate, followed by the Asian Porphyra yezoensis. Under the experimental conditions, Porphyra spp. removed 70-100% of N within 3-4 days at N concentrations up to 150 μM, but was less efficient in removing inorganic phosphorus (35-91% removal). The highest tissue N and PBP concentrations were found at 150-300 μM of N, with N values close to 7% DW. Overall, Porphyra appears to be an excellent choice for bioremediation of moderately eutrophic effluents, with the added benefit that tissue may be harvested for sale.  相似文献   

10.
Tiger shrimp Penaeus monodon were intensively grown from PL15 for 56 d in tank systems at stocking densities of 1000 and 2000 shrimp m− 3, with and without the addition of artificial substrates (AquaMat® (buoyant and non-buoyant) and polyethylene mesh) at each density. Shrimp growth was significantly greater at the lower density and when substrates were added. Mean shrimp weight at harvest ranged from 0.64 ± 0.06 g (2000 shrimp m− 3, no added substrate) to 1.17 ± 0.01 g (1000 shrimp m− 3, added substrate). Survival was high and averaged 79.5 ± 2.7% across all treatments. The addition of substrates significantly increased survival at both stocking densities; however, survival was not significantly affected by stocking density. A maximum harvest density of 1645 shrimp m− 3 and biomass of 1.27 kg m− 3 were produced at a stocking density of 2000 m− 3 with added substrates. Both harvest density and biomass significantly increased with stocking density and addition of substrates. The feed conversion ratio (FCR) of formulated feed was significantly lower when substrates were added. The results show that growth of P. monodon juveniles was inversely related to stocking density during intensive production. However, production output was significantly increased by addition of artificial substrates, which enhanced both growth and survival.  相似文献   

11.
Different assays related to the first feeding of Octopus vulgaris Cuvier, 1797 are compiled in this paper. They include: age at initial feeding age, prey size selection and optimal density, attack timing after feeding, and effect of dose number on the number of captures. Prey capture and ingestion processes were also analysed. Food supplied was cultured Artemia sp. Each assay lasted 15 min.Although paralarvae already start to feed on the hatching day (day 0), it is during day 2 when a greater number of attacks is recorded (81.7 ± 14.7% paralarvae attack). They mainly prefer (significance level α = 0.05) large Artemia, 1.4 ± 0.4 mm (77.0 ± 5.6% of the total attacks) than small Artemia, 0.8 ± 0.1 mm (23.0 ± 5.6%). There is also a slight predilection for the lowest Artemia concentration (33.3 ±12.6% paralarvae attack in a 0.1 Artemia ml− 1 density, opposite 16.7 ± 7.6 and 18.3 ± 7.6% in densities of 0.5 and 1 Artemia ml− 1 respectively). The greatest predatory activity is recorded during the first 5 min after food is supplied (72.2 ± 25.5%). An increase in the predatory activity was also observed when food was distributed in several doses instead of a single dose (75.0 ± 10.0% and 46.7 ± 17.6% respectively). It was proved for the first time that paralarvae completely ingest their preys (including their exoskeletons), in this case Artemia. Time needed for their total ingestion ranges between 4 and 10 min.  相似文献   

12.
The carrageenophytic red alga Gigartina skottsbergii presents several biological constraints for its cultivation such as restricted temporal availability and high spore mortalities that affect the development of its mass cultivation. For this reason, research to develop alternative propagation methods has been undertaken. Previous laboratory studies demonstrated that manipulating temperature, light and nutrients could enhance healing and regeneration of this seaweed. In this study nursery and field experiments were undertaken to establish the possibility to regrow G. skottsbergii in conditions similar to those applied in mass cultivation practices. Frond fragments and rhizoids were tested as alternative ways to obtain new plants. Our results indicate that regeneration occurs in the field, and can be managed in nursery conditions. The addition of a nitrogen source enhances the growth from 0.6 to 1.0% d− 1 of the healed fragments and the use of a photon flux density above 50 μmol m− 2 s− 1 increases the growth rate but decrease the survival of the explants. Explants can be transferred to field conditions and grow at similar rates to those registered in the nursery (0.5% d− 1). It is also possible to propagate rhizoids of G. skottsbergii and it seems that the attachment of a frond portion to the substratum, enhanced its survival and regeneration capacity. Finally, this study demonstrated that rhizoids attached to rocks can regenerate complete plants in nature, a feature which could be a useful for developing a sustainable harvesting methodology.  相似文献   

13.
Giant freshwater prawns, Macrobrachium rosenbergii (17.9 ± 2.7 g), exposed to different concentrations of saponin at 0, 0.3, 0.6, 0.9 and 1.2 mg l− 1 for 168 h were examined for osmolality, electrolyte levels, oxyhemocyanin, protein levels, acid-base balance status, total hemocyte count (THC), phenoloxidase activity, and respiratory bursts. Hemolymph oxyhemocyanin, protein, and pO2 were inversely related to the saponin concentration. Hemolymph oxyhemocyanin, protein, pO2, pCO2, and pH of prawns exposed to 1.2 mg l− 1 saponin were significantly lower than those of prawns exposed to 0.3 mg l− 1 and control solutions. However, no significant difference was observed in osmolality or electrolyte levels of prawns exposed to different concentrations of saponin for 168 h. The THC of prawns following 168 h of exposure to 0.9 and 1.2 mg l− 1 saponin increased, but the phenoloxidase activity decreased suggesting that the decrease in phenoloxidase activity under saponin stress was not a consequence of the increase in THC. We concluded that saponin at as low as 0.9 mg l− 1 decreases the respiratory protein level and acid-base balance, and modulates the immune system of M. rosenbergii.  相似文献   

14.
Effects of the salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae were investigated. Shrimp were transferred from salinity 31‰ and pH 8.1 to different salinity levels of 22, 25, 28, 31 (control), and to different pH levels of 7.1, 7.6, 8.1 (control), 8.6 and 9.1. The results showed ion-transport enzyme activities and weight gains of postlarvae were significantly affected by salinity and pH variation, which had no obvious effect on survival rate. The changing salinity affected the activities of total ATPase and Na+-K+-ATPase notably (F > F0.05), meanwhile, non-significantly to the activities of V-ATPase, HCO3-ATPase. Within 48 h of salinity changing, the activities of ATPase, Na+-K+-ATPase in each treatment group gradually increased with the sampling time and reached their climax at 48 h, and then stabilized, showing negative correlation with salinity. The changing of pH affected greatly the activities of ATPase, Na+-K+-ATPase, V-ATPase and HCO3-ATPase (F > F0.05), the activities of ATPase, Na+-K+-ATPase in each treatment group (pH = 7.1, 7.6, 8.6, 9.1) showed peak change within 72 h and stabilized afterwards, and the Na+-K+-ATPase activities came back to the level of the control group; Meanwhile the changing extent of V-ATPase and HCO3-ATPase activity corresponded with the grads of pH, and these ATPase activities showed negative correlation with pH changing, the activities of V-ATPase, HCO3-ATPase in postlarvae of each treatment group came to stable level after 24 h. The experiment also indicated the strength order of these ion-transport enzyme activities were as follows: Na+-K+-ATPase > V-ATPase > HCO3-ATPase. Na+-K+-ATPase was the chief undertaker of osmoregulation under the salinity effects, while V-ATPase and HCO3-ATPase were the chief osmoregulation undertakers under pH changing. In different salinity environment, the contributions of Na+-K+-ATPase, V-ATPase and HCO3-ATPase of L. vannamei postlarvae approximately accounted for 62.0-78.0%, 15.9-29.0% and 2.03-4.12% of ATPase activities in total, respectively. Meanwhile, in different pH medium, the contributions of these ATPases approximately accounted for 50.7-67.4%, 21.3-31.8% and 2.15-7.90% of total ATPase activities, respectively. Weight gain of shrimp transferred to salinity 31 (control) and 28‰ was significantly higher than that of shrimp reared at 25 and 22‰, and weight gain of shrimp transferred to pH 8.1 (control) and 8.6 was significantly higher that that of shrimp transferred to pH 7.1, 7.6 and 9.1. It was suggested that during the process of desalting and culturing of postlarvae, the salinity changing should not exceed 3 and pH variety not more than 0.5.  相似文献   

15.
South African abalone, Haliotis midae, were exposed to air at 12 °C for 36 h to simulate the extent and rate mass loss experienced by animals during long distance live exports. Animals lost 15.1 ± 0.94% of their mass during the 36 h air exposure, an approximation of the highest mass losses sustained by industry.The total mass loss was attributed to water loss, as the contribution of dry mass to the total mass remained constant under all conditions. Water content decreased from 64.8% of the body mass (Mb) under control conditions to 58.8% Mb after 36 h in air. In real terms, however, animals had lost 22% of the body water pool.Abalone exhibited a typically high water turnover rate when in water (125 μL g− 1 h− 1), which decreased markedly during air exposure (2.2 μL g− 1 h− 1). Haemolymph volume decreased from 43% Mb in water to 14% Mb in air. The concomitant decrease in haemolymph pressure probably limited the first step in urine formation (ultra-filtration through the pericardium). Thus we observed that while urine flow represented about 26% of the total water loss when the animals were in water, urine flow ceased during air exposure.The decrease in haemolymph volume in air represents a redistribution of water to the tissues and not a bulk loss of haemolymph. This is supported by the concentration of haemolymph ions by a factor of 1.2 during aerial exposure, which was predicted based on the 22% decrease in water content. Under the same conditions, evaporation from water containers with similar surface to volume dimensions as abalone, accounted for only an 8.25% mass loss. As all other water loss routes were accounted for, we measured pedal mucus production rates of abalone in water and air. During 36 h aerial exposure, the pedal mucus production represented a loss of 6.8% Mb. We conclude that water loss during 36 h air exposure is attributable to evaporation (8.25% Mb) and pedal mucus production (6.8% Mb). This paves the way for directed research into mitigating water loss during the live export process.  相似文献   

16.
In Eurasian perch, Perca fluviatilis, gametogenesis is induced by decrease of both temperature and photoperiod. However, a multiplicity of other factors can display non-permissive or modulating effects on the induction of the reproductive cycle. Consequently, a 9-week study was carried out to determine the environmental cues and permissive factors controlling the induction of the reproductive cycle in this species. A two-level fractional factorial design 28-4 was used in order to identify the influent factors from 8 environmental and nutritional ones and their 28 interactions. Tested factors were: (1) amplitude of temperature decrease, (2) time, (3) kinetics and (4) amplitude of photoperiod decrease, (5) initial nutritional state, (6) handling, (7) feeding rate and (8) light spectrum. Increase of gonadosomatic index (GSIi), proportion of female in exogenous vitellogenesis (EVP), plasma 17 β-estradiol (E2) and cortisol levels, fat consumption and food intake were evaluated.This study showed that the amplitude of the decrease of temperature and the time of photoperiod decrease are the two main environmental cues controlling the induction of the reproductive cycle in Eurasian perch. GSIi was the highest (3.8%) when females were exposed to both low amplitude of temperature decrease and precocious decrease of photophase. It was the lowest (1.1%) when high amplitude of temperature decrease and late decrease of photophase were applied. Handling in association with temperature modulated the broodstock response. 100% of the unhandled fish held at 14 °C were at the exogenous vitellogenesis stage with mean E2 and basal cortisol levels of 1.6 ng mL− 1 and 9 ng mL− 1 respectively. Handled fish and fish held at 6 °C exhibited lower vitellogenesis (40-73%) associated with lower E2 (0.6-1.1 ng mL− 1) and higher basal cortisol levels (37-89 ng mL− 1). No other factor nor interaction displayed a cueing or non permissive effect on the induction of the reproductive cycle in female Eurasian perch. A first schematic model is proposed to explain the factorial determinism of the induction of the reproductive cycle.  相似文献   

17.
Realised and predicted responses to selection were obtained for harvest body weight of Oreochromis shiranus from two generations of selection at the National Aquaculture Centre, Domasi, Malawi. The realised response was estimated from the difference in the least squares means of selected and unselected control populations, while the predicted response was obtained from the difference of the mean breeding values between generations. The realised (13.2%) and predicted (14.4%) responses for harvest body weight over the two generations of selection were not significantly different (P > 0.05). The intensity of selection from F1 to F2 (0.66) and from F2 to F3 (0.59) was low due to availability of few selection candidates per family at harvest caused by mortality, tag loss and the need to form broad heterogeneous multi-strain F2 and F3 populations. Within generation, the heritability estimates for the F1 (0.31 ± 0.09), F2 (0.31 ± 0.10) and F3 (0.35 ± 0.11) generations were moderate. Across generation, the heritability estimate was low (0.14 ± 0.27). Within generation, the magnitude of the common full-sib effect was moderate (0.08-0.09) and not significantly different from zero (P > 0.05). However, across generations, the common full-sib effect was high (0.27 ±0.05) and significantly different from zero (P < 0.05). A substantial correlated selection response due to selection for increased harvest body weight was observed for both tagging body weight and for survival from tagging to harvest; for tagging body weight 22.8% from F1 to F2 and 15.9% from F2 to F3; for survival 7.2% from F1 to F2 and 13.8% from F2 to F3. The results are discussed in relation to the maximisation of the genetic gain in the future generations while constraining the rate of inbreeding.  相似文献   

18.
The objective of this study was to understand the microbial flora associated with the hatchery system of giant fresh water prawn, Macrobrachium rosenbergii during an entire rearing cycle. Bacteriological and physico-chemical analysis was done for different samples of water, larvae, and Artemia. The total bacterial load in well water, seawater and inlet water varied from 101 to 105 cfu ml− 1 with higher counts seen in larval rearing tank (LRT) water. The Vibrio count ranged between 101 to 103 cfu ml− 1. Larval samples harboured a bacterial load of 106 to 107 cfu/10 larvae. The bacterial load in Artemia hatching water ranged from 4.90 × 104 to 5.63 × 106 cfu ml− 1 while Artemia had a load ranging from 1.08 × 107 to 2.09 × 109 cfu g− 1. Vibrio count in the LRT water ranged from 101-103 cfu ml− 1 while the count in larvae ranged from 102 to 104 cfu/10 larvae. The bacterial genera were predominantly Gram-negative and comprised of Aeromonas spp., Pseudomonas spp., Vibrio spp. and Bacillus spp. and non-spore formers (NSF) were the dominant Gram-positive bacteria. This study documents the bacterial flora associated with Macrobrachium hatchery system during a regular normal run. Knowledge of the qualitative and quantitative aspects of bacterial flora in the hatchery would help to understand disturbances, if any, brought about during disease outbreaks.  相似文献   

19.
The success of penaeid shrimp aquaculture has been limited by endemic and epidemic infectious diseases around the world and shrimp defense mechanisms are a priority for control, prevention, and diagnosis. The lethal dose (LD50) of Escherichia coli lipopolysaccharides was calculated and pathogen injection and dissolved ammonia concentration on immune response were evaluated in southern white shrimp Litopenaeus schmitti. The lethal dose of lipopolysacharides was 3.78 mg kg− 1 body weight. Injection caused changes in phenoloxidase activity in plasma and nitric oxide and total haemocyte counts within the first 24 h. High concentration of dissolved ammonia caused a decrease in haemocytes by 66% within the first 72 h, when compared to the control. Hemagglutination in plasma was not affected by injection or high concentrations of dissolved ammonia. The results showed that white shrimp recognized the lipopolysacharides and responded to this microbial elicitor, as indicated by a variety of immunological indicators and that increased dissolved ammonia affected the number of circulating haemocytes.  相似文献   

20.
The results of a series of pilot-scale runs with P. mazatlanica larvae from 2004 through 2006 are reported. Preliminary runs in 2004 and 2005 used broodstock collected in summer, when massive spawning of wild populations naturally occurs. However, results of larval development were very poor and failed to produce spat in both years. In 2006, ripe broodstock were still collected in summer, but also in the spring time, based on the hypothesis that the gonads in this season were in better reproductive condition that in summer. Three larval runs were conducted in 2006: two in spring and one in summer. Larvae growth and survival greatly increased in both spring runs, ending with two successful productions of spat (∼ 20 × 103 and ∼ 100 × 103 juveniles). The summer larval run in 2006 failed again to produce spat. Additionally, the first run of April 2006 refers to an experiment that evaluated two different larval culture conditions: constant temperature (27 °C) and low stocking density (3-4 larvae ml− 1) versus variable temperature (24-28 °C) and high stocking density (8-9 larvae ml− 1). The first trial significantly increased larval survival and growth, which in turn resulted in greater numbers of settled spat, in comparison of the second trial, where survival, growth, and settlement of spat were significantly lower. Also in 2006, the quality of seawater used at the hatchery was evaluated with microbiological and chemical tests. The implication of these tests, together with results from all experiments are analyzed and discussed in terms of the potential development of large-scale hatchery cultivation of P. mazatlanica larvae in Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号