首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Glutathione S-transferases (GSTs) catalyzing the conjugation of reduced glutathione (GSH) to a vast range of xenobiotics including insecticides were investigated in the psocid Liposcelis bostrychophila Badonnel. GSTs from susceptible and two resistant strains (DDVP-R for dichlorvos-resistant strain and PH3-R for phosphine-resistant strain) of L. bostrychophila were purified by glutathione-agarose affinity chromatography and characterized by their Michaelis-Menten kinetics towards artificial substrates, i.e., 1-chloro-2,4-dinitrobenzene (CDNB), in a photometric microplate assay. The specific activities of GSTs purified from two resistant strains were significantly higher than their susceptible counterpart. For the resistant strains, GSTs both showed a significantly higher affinity to the substrate GSH while a declined affinity to CDNB than those of susceptible strain. The inhibitory potential of ethacrynic acid was very effective with highest I50 value (the concentration required to inhibit 50% of GSTs activity) of 1.21 μM recorded in DDVP-R. Carbosulfan also exhibited excellent inhibitory effects on purified GSTs. The N-terminus of the purified enzyme was sequenced by Edman degradation, and the alignment of first 13 amino acids of the N-terminal sequence with other insect GSTs suggested the purified protein was similar to those of Sigma class GSTs.  相似文献   

2.
Butyrylcholinesterase (BChE), a major detoxification enzyme found abundantly in many tissues and organisms, constitutes the first line defense in the serum of higher organisms and is a marker for toxic exposure. In this study, the interaction of two plant growth regulators, indole-3-acetic acid (IAA) and chlorogenic acid (CA) with purified human and horse serum BChE is investigated. The time dependent interaction of IAA with the two enzyme species was concentration dependent and rapid. Through kinetic studies, IAA was found to be linear-mixed type inhibitor for human serum BChE, and uncompetitive inhibitor for the horse serum enzyme. For the human BChE, α and the Ki value was calculated as 2.15 ± 1.09 and 3.09 ± 0.98 mM, respectively, and for the horse enzyme the Ki value was calculated as 1.05 ± 0.09 mM. The time dependent interaction of CA with the two enzyme species was biphasic. At low CA concentrations, CA stimulated the activities of both enzyme species whereas at high CA concentrations, inhibition was observed. At high concentrations, the inhibition kinetics for both enzymes fitted the non-competitive inhibition model. The Ki values calculated for human and horse BChE were 2.75 ± 0.14 and 0.96 ± 0.07 mM, respectively. The differences in the interaction of these two growth regulators with the two enzymes species arises from the structural differences between the human and horse serum BChE which can be considered as a triple human mutant BChE.  相似文献   

3.
Rhyzopertha dominica causes extensive damage to stored wheat grains. α-Amylase, the major insect digestive enzyme, can be an attractive candidate to control the insect damage by inhibiting the enzyme through α-amylase inhibitors. R. dominica α-amylase (RDA) was purified to homogeneity by differential ammonium sulphate fractionation, Sephadex G-25 and Sephadex G-100 column chromatography. The homogenous α-amylase has a molecular weight of 52 kDa. The pH optima was 7.0 and temperature optima was 40 °C. Activation energy of RDA was 3.9 Kcal mol−1. The enzyme showed high activity with starch, amylose and amylopectin whereas dextrins were the poor substrates. The purified enzyme was identified to be α-amylase on the basis of products formed from starch. The enzyme showed Km of 0.98 mg ml−1 for starch as a substrate. Citric acid, oxalic acid, salicylic acid, HgCl2, tannic acid and α-amylase inhibitors from wheat were inhibitors whereas; Ca2+ and Mg2+ were the activators of RDA. Ki values calculated from Dixon graphs with salicylic acid, citric acid, oxalic acid and wheat α-amylase inhibitors were 6.9, 2.6-8.2, 3.2 mM and 0.013-0.018 μM, respectively. The Lineweaver-Burk plots with different inhibitors showed mixed type inhibition. Wheat α-amylase inhibitor showed mainly competitive inhibition with some non-competitive behaviour and other inhibitors showed mainly non-competitive inhibition with some un-competitive behaviour. Feeding trials with salicylic acid, citric acid, oxalic acid and wheat α-amylase inhibitor showed significant effect of salicylic acid and oxalic acid along with wheat α-amylase inhibitor in controlling the multiplication of R. dominica.  相似文献   

4.
Glutathione S-transferase in the Australian sheep blowfly, Lucilia cuprina, was studied using 3,4-dichloronitrobenzene (DCNB) and 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The optimum pHs for enzyme activity were 7.5–8.0 and 6.7–7.4 for DCNB and CDNB conjugations, respectively. Inclusion of glutathione and bovine serum albumin in the homogenizing buffer protected the glutathione S-transferase from inhibition by endogenous compounds present in extracts of final instar larvae and of adults less than 7–8 days old. Conjugation activities for DCNB and CDNB increased throughout larval development to reach a peak early in the pupal stage. Activity then decreased through the remainder of the pupal stage and for the first 6–7 days after emergence of the adult. Almost all of the decrease in activity during the first 6 days of the adult occurred in the abdomen, which accounted for 85% of total activity in the adult female at emergence but only 47% at 6 days. Larval DCNB conjugation activity was localized almost entirely in the fat body (94%), whereas only 50% of the CDNB conjugation activity was in the fat body with the remainder in the cuticle (25%), gut (15%), and blood (10%). Adult and larval enzyme was induced ca. three- to four-fold by sodium phenobarbital. The induction was associated with changes in apparent Vmax rather than apparent Km, suggesting that phenobarbital caused increased production of forms of enzymes already present rather than inducing synthesis of altered or new forms.  相似文献   

5.
DDT-dehydrochlorinase has been isolated in a highly purified form by a procedure involving affinity chromatography, gel-permeation chromatography, and preparative isoelectrofocusing. At least two protein species appeared to possess DDT-dehydrochlorinase activity; the principal one of these was purified by a factor of 660-fold. This appeared to be dimeric with subunits of molecular weight of 23,000 and 25,000. Another protein with this activity appeared to consist of two identical subunits of Mr 25,000. The protein with greatest activity was isoelectric at pH 7.1. It was found to be homogeneous on analytical gel electrophoresis in both the presence and absence of SDS. The same protein generated a number of minor protein bands on analytical electrofocusing in polyacrylamide gels, but there is evidence that these bands may be artifactual. Both purified forms of the enzyme possessed substantial glutathione S-transferase activity with both CDNB and DCNB. An acidic protein, a dimer of subunits of Mr 23,000 had substantial GSH transferase activity with CDNB as substrate, but had no DDT-dehydrochlorinase activity.  相似文献   

6.
In vitro inhibition of electric eel acetylcholinesterase (AChE) by single and simultaneous exposure to organophosphorus insecticides diazinon and chlorpyrifos, and their transformation products, formed due to photoinduced degradation, was investigated. Increasing concentrations of diazinon, chlorpyrifos and their oxidation products, diazoxon and chlorpyrifos-oxon, inhibited AChE in a concentration-dependent manner. IC50 (20 min) values, obtained from the inhibition curves, were (in mol/l): (5.1 ± 0.3) × 10−8, (4.3 ± 0.2) × 10−6 and (3.0 ± 0.1) × 10−8 for diazoxon, chlorpyrifos and chlorpyrifos-oxon, respectively, while maximal diazinon concentration was lower than its IC50 (20 min). Calculated KI values, in mol/l, of 7.9 × 10−7, 9.6 × 10−6 and 4.3 × 10−7 were obtained for diazoxon, chlorpyrifos and chlorpyrifos-oxon, respectively. However, 2-isopropyl-4-methyl-6-pyrimidinol (IMP) and 3,5,6-trichloro-2-pyridinol, diazinon and chlorpyrifos hydrolysis products, did not noticeably affect the enzyme activity at all investigated concentrations. Additive inhibition effect was achieved for lower concentrations of the inhibitors (diazinon/diazoxon ?1 × 10−4/1 × 10−8 mol/l i.e., chlorpyrifos/chlorpyrifos-oxon ?2 × 10−6/3 × 10−8 mol/l), while an antagonistic effect was obtained for all higher concentrations of the organophosphates. Inhibitory power of 1 × 10−4 mol/l diazinon irradiated samples can be attributed mostly to the formation of diazoxon, while the presence of non-inhibiting photodegradation product IMP did not affect diazinon and diazoxon inhibitory efficiencies.  相似文献   

7.
Organophosphorus pesticides (OPs) are of environmental significance due to their high toxicity to animals. Binding to plasma proteins may effective influence the toxicological properties of xenobiotics. In an attempt to evaluate the affinity of phenthoate (PTA) to bovine serum albumin (BSA) and inhibitory ability of bound PTA to acetylcholinesterase (AChE), we investigated the interactions between phenthoate (PTA) and bovine serum albumin (BSA) using tryptophan fluorescence quenching and subsequent inhibition on AChE activity by PTA. The results showed that PTA caused the fluorescence quenching of BSA because of the formation of a PTA-BSA complex. Quenching constants (Ksv), determined using the Sterns-Volmer equation to provide a measure of the binding affinity between PTA and BSA at 303, 306, 310 and 313 K were (3.4295 ± 0.0763) × 10−4, (3.2446 ± 0.0635) × 10−4, (3.0434 ± 0.0856) × 10−4 and (2.8262 ± 0.0569) × 10−4 M−1, respectively. The thermodynamic parameters, ΔH and ΔS were −25.04 kJ mol−1 and 168.94 J mol−1 K−1, respectively, which indicated that the electrostatic interactions played a major role in PTA-BSA association. The presence of BSA consistently reduced the inhibitory ability of PTA on AChE, with the relative activity being increased from 46.98 to 61.71% for the concentration range of BSA between 0 and 4.0 g L−1.  相似文献   

8.
In order to gain insight into the development of insecticides with novel modes of action, the effects of salicylidene aniline (a), salicylidene-4-chloroaniline (b), salicylidene-4-bromoaniline (c), and salicylidene-4-nitroaniline (d) on partially purified phenoloxidase (PO) from Pieris rapae L. were investigated. The results showed that the 4 compounds could inhibit PO activity, and the inhibitor concentrations leading to a loss of 50% activity (IC50) were estimated to be 0.025 mmol L−1, 0.732 mmol L−1, 0.471 mmol L−1, and 0.675 mmol L−1, respectively. Meanwhile, all the inhibitors showed reversible competitive inhibition, except (d), which showed reversible mixed inhibition. The KI values were determined as 0.106 mmol L−1, 10.059 mmol L−1, 8.390 mmol L−1, and 20.198 mmol L−1 for the four compounds, respectively. The UV-vis spectra of (a) and (d) in the presence of copper ions and the enzyme showed that (a) could directly chelate the copper ions of PO; however, (d) could neither chelate the additional copper ions nor the copper ions of PO.  相似文献   

9.
Properties of the phenoloxidase (PO) from adult of Gastrolina depressa Baly (Coleoptera: Chrysomelidae) as well as effects of some metal ions and inhibitors on the activity of PO purified by (NH4)2SO4 were determined. The optimal pH and temperature of the enzyme for the oxidation of catechol were determined to be at pH 7.5 and at 40 °C, respectively. The kinetic parameters for the oxidation of L-DOPA and catechol by the PO were 15.01 and 9.17 mM, respectively. The PO activity was strongly inhibited by Zn2+ and Cu2+, different to Mg2+ slightly. Both ascorbic acid and cysteine exhibited competitive inhibition and the inhibitory constants (Ki) were determined to be 2.22 mM and 0.40 mM, respectively.  相似文献   

10.
A hydrophilic form of acetylcholinesterase (AChE) was purified from N-methyl carbamate susceptible (SA) and highly N-methyl carbamate-resistant (N3D) strains of the green rice leafhopper (GRLH), Nephotettix cincticeps Uhler. Both of purified AChE from SA and N3D strains displayed the highest activities toward acetylthiocholine (ATCh) at pH 8.5. In the SA strain, the optimum concentrations for ATCh, propionylthiocholine (PTCh), and butyrylthiocholine (BTCh) were about 1 × 10−3, 2.5 × 10−3, and 1 × 10−3 M, respectively. However, in the N3D strain, substrate inhibition was not identified for ATCh, PTCh, and BTCh to 1 × 10−2 M. The Km value in the SA strain was 51.1, 39.1, and 41.6 μM and that in the N3D strain was 91.8, 88.1, and 85.2 μM for ATCh, PTCh, and BTCh, respectively. The Km value in the N3D strain indicated about 1.80-, 2.25-, and 2.05-fold lower affinity than that of the SA strain for ATCh, PTCh, and BTCh, respectively. The Vmax value in the SA strain was 70.2, 30.5, and 4.6 U/mg protein and that in the N3D strain was 123.0, 27.0, and 14.5 U/mg protein for ATCh, PTCh, and BTCh, respectively. The Vmax value in the N3D strain was 1.75- and 3.15-fold higher for ATCh and BTCh than that in the N3D strain. However, it was 1.13-fold lower for PTCh. The increased activity of AChE in the N3D strain is due to the qualitatively modified enzyme with a higher catalytic efficiency. The bimolecular rate constant (ki) for propoxur was 27.1 × 104 and 0.51 × 104 M−1 min−1 in the SA and N3D strain and that for monocrotophos was 0.031 × 104 and 2.0 × 104 M−1 min−1 in the SA and N3D strain. AChE from the N3D strain was 53-fold less sensitive than SA strain to inhibition by propoxur. In contrast, AChE from the N3D strain was 65-fold more sensitive to inhibition by monocrotophos than AChE from the SA strain. This indicated negatively correlated cross-insensitivity of AChE to propoxur and monocrotophos.  相似文献   

11.
The in vitro inhibition potency of some organophosphates (OPs) and carbamates (CAs) which are widely used to control plant-parasitic nematodes on acetylcholinesterase (AChE) of Meloidogyne javanica, Heterodera avenae and Tylenchulus semipenetrans, the major pathogens responsible for the damage of a wide range of crops in Al-Qassim region, Saudi Arabia was examined. AChE of H. avenae activity was 1.58- and 1.51-fold greater than that of T. semipenetrans or M. javanica, respectively. The order of inhibition potency of the tested compounds against T. semipenetrans AChE was: carbofuran > paraoxon > oxamyl > fenamiphos > phorate-sulfoxide > aldicarb, where the corresponding concentrations that inhibited 50% of the nematode AChE activity (I50) were 5 × 10−8, 7 × 10−7, 7.5 × 10−7, 2 × 10−6, 2 × 10−4 and 2 × 10−3 M, respectively. Paraoxon, fenamiphos and carbofuran exhibited high inhibition potency against M. javanica AChE where the I50 values were below 1 nM. Phorate-sulfoxide and aldicarb were potent inhibitors of M. javanica AChE with I50 values of 3.8 and 8 nM, respectively, while oxamyl exhibited low inhibition potency with I50 of 15 nM. Fenamiphos and paraoxon showed the highest I50 values of <100 μM against H. avenae followed by oxamyl (I50 < 1 mM), whereas paraoxon, carbofuran and aldicarb showed low potency with I50 values >1 mM. All the tested compounds exhibited high inhibition potency to AChE of M. javanica than T. semipenetrans or H. avenae. Except phorate-sulfoxide in M. javanica the inhibition pattern and implied mechanism for all the tested compounds for the three nematodes is suggested to be a linear mixed type (a combination of competitive and non-completive type).  相似文献   

12.
The activity of the mutant CYPBM3 “21B3”, which is able to use hydrogen peroxide as the final electron acceptor, was evaluated against two major environmental pollutants; organochlorine and organophosphorus pesticides. This evolved CYP from Bacillus megaterium is able to transform a variety of structurally different pesticides. The catalytic parameters for two organochlorine; dichlorophen (kcat = 9.2 min−1, KM = 64.1 μM) and linuron (kcat = 226.5 min−1, KM = 468.2 μM), and two organophosphorus compounds; parathion (kcat = 10.9 min−1, KM = 59.3 μM) and chlorpyrifos (kcat = 9.2 min−1, KM = 226.5 μM) were determined giving catalytic efficiencies between 0.143 and 1.107 min−1 μM−1. CYPBM3 “21B3” has the ability to both activate and detoxify organophosphorus pesticides, as demonstrated by the chemical nature of the reaction products. The capacity to transform structurally diverse compounds together with the great stability, easy production and relatively inexpensive cofactors needed, makes CYPBM3 “21B3” an enzyme with a potential use on the environmental field.  相似文献   

13.
The present study was conducted to determine the 96 h-LC50 of benomyl to the Nile tilapia, Oreochromis niloticus and to investigate the biochemical or hematological indices of blood and the alterations in the antioxidant enzymes of this fish in response to sublethal concentrations of benomyl. Fish weighing 71.61 ± 12.05 g were used in this study; they were subjected to fasting for 4 weeks before treatment. An aqueous solution of benomyl (0, 0.5, 1, 2, 4, 8, and 16 mg L−1) was administered for 96 h to determine the LC50. The 96 h-LC50 value of benomyl was 4.39 (3.23-5.60) mg L−1 in the present study. For 5 weeks, the aqueous solution of benomyl (0, 100, 200, and 400 μg L−1) was administered to investigate its effect on the hematological parameters and antioxidant enzymes. The predominant hematological findings in fish exposed to benomyl were as follows: no significant change in the Hb (g dL−1) level, MCV (μm3), MCH (pg) and MCHC (%) as compared to the control. Benomyl exposure led to greater increases in the GPT, GOT (Karmen-unit), LDH (Wroblewski unit), total cholesterol, Fe, and Ca (mg dL−1) values, whereas the levels of ALP (KA unit), total protein, triglyceride, albumin, and Mg (mg dL−1) did not increase. Benomyl increased the in vivo HSI (%), GST (nmol min−1 mg protein−1), and SOD (U mg protein−1) values in the fish livers in the test group, unlike those in the control group for 5 weeks. At concentrations higher than 100 μg L−1, benomyl affected the GST and SOD levels of Nile tilapia in a dose- and time-dependent manner. The present findings suggest that the in vivo hepatotoxicity associated with benomyl may, in part, result from the hematological index, and antioxidants may provide limited protection against benomyl toxicity.  相似文献   

14.
A sixty-day experiment was carried out to study the effect of dietary pyridoxine (PN) on growth performance, RNA/DNA ratio and some biochemical parameters of Labeo rohita fingerlings exposed to sub-lethal dose of endosulfan (1/10th of 96 h static non-renewal LC50 = 0.2 ppb) to assess the role of pyridoxine in ameliorating the negative effects of endosulfan. Two hundred seventy fingerlings (6.5 ± 0.26 g) were randomly distributed into six treatments in triplicates (15 fish/tank). Five iso-nitrogenous (35.45-35.75% crude protein) purified diets were prepared with graded levels of pyridoxine. Six treatment groups were T0 (10 mg PN + without endosulfan), T1 (0 mg PN + endosulfan), T2 (10 mg PN + endosulfan), T3 (50 mg PN + endosulfan), T4 (100 mg PN + endosulfan) and T5 (200 mg PN + endosulfan). Weight gain (%), specific growth rate (SGR), tissue glycogen, and protease activity were significantly (P < 0.05) higher in pyridoxine fed groups compared to their non-pyridoxine fed counterpart. Protease activity was positively correlated (R2 = 0.931) with (%) weight gain. Glucose-6-phosphate dehydrogenase (G6PDH) activity was significantly (P < 0.05) higher in non-pyridoxine fed group and decreased in pyridoxine fed counterparts. There were no significant (P > 0.05) effect of dietary pyridoxine on feed conversion ratio (FCR), protein efficiency ratio (PER), survival, gastro-somatic index (GSI), hepato-somatic index (HSI) and liver and muscle DNA levels of L. rohita fingerlings. RNA levels, both in liver and muscle, increased significantly (P < 0.05) in pyridoxine fed groups. A positive correlation was observed between growth and RNA levels, both in liver (R2 = 0.91) and muscle (R2 = 0.88). RNA/DNA ratio showed a third order polynomial relationship with dietary pyridoxine, both in liver (Y = −0.014x3 + 0.1613x2 − 0.5333x + 0.7933, R2 = 0.987) and muscle (Y = −0.0407x3 + 0.4763x2 − 1.6358x + 2.4667, R2 = 0.9345). The overall results obtained in present study indicated that dietary pyridoxine supplementation at 100 or 200 mg PN/kg diet ameliorates the negative effects of endosulfan and restores optimal growth of L. rohita fingerlings.  相似文献   

15.
Multiwalled carbon nanotubes-polymeric methyl red film modified electrode (MWNT-PMRE) was made. The electrochemical behavior of carbendazim on modified electrode was studied with Cyclic Voltammetry, Linear Sweep Voltammetry, Stable Polarization Method and Chronocoulometry. The results indicated that the electrical oxidation of carbendazim on MWNT-PMRE in H2SO4 supporting electrolyte with concentration of 0.6 mol/L was irreversible and was mainly controlled by diffusion. Some parameters of the electrochemical process were evaluated. The impacts of experiment conditions on the electrochemical behavior of carbendazim were studied. A good linearity relationship between peak current and concentration of carbendazim in the range of 2.0 × 10−7-1.0 × 10−5 mol/L was found, of which the equation was Ip(A) = −1.149 × 10−5 − 2.301c (mol/L), the correlative coefficient R = −0.9953 and detection limit was 9.0 × 10−9 mol/L. The recovery was between 90.3% and 94.7%.  相似文献   

16.
17.
The effect of avermectin was studied on King pigeon brain nerve cells by cytotoxicity [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, MTT] and apoptosis [acridine orange/ethidium bromide (AO/EB) assay, transmission electron microscope (TEM) evaluation, measurement of mitochondrial membrane potential (Δψm), phosphatidylserine (PS) exposure, caspases activities, DNA fragmentation, reactive oxygen species (ROS) and caspase-3 mRNA expression] within the 2.5–10 μg L−1 concentration-range. The results revealed that within the concentrations of 2.5–10 μg L−1, avermectin showed obvious cytotoxicity and induced apoptosis in a dose-dependent manner to neurons of King pigeon in vitro. Cell viability were 99.93 ± 8.52%, 82.02 ± 4.99% and 78.23 ± 5.67% after 24 h of treatment with avermectin at the concentrations of 0, 2.5 and 5 μg L−1, which decreased to 56.36 ± 2.17% of 10 μg L−1. Treated cells showed typical apoptosis morphological changes including cytoplasmic vacuolation, chromatin condensation, unclear nuclear membrane and decreased/swollen mitochondria. Typical biochemical hallmarks of apoptosis including Δψm loss, PS exposure, activations of caspase-3, caspase-8 and caspase-9, DNA fragmentation were observed too. Moreover, the levels of ROS in the avermectin treatment groups increased significantly compared to control group. Furthermore, the caspase-3 mRNA levels increased significantly following AVM treatment. In conclusion, our experimental results show that avermectin has cytotoxicity to brain neurons of King pigeon in vitro and the mechanism of neurotoxicity induced by avermectin is closely related to apoptosis.  相似文献   

18.
The inhibitory effects of a recently introduced series of the titled compounds on insect and mammalian acetylcholinesterase (AChE) activity were examined, where the median inhibition concentration (I50) and the inhibition kinetic parameters, bimolecular inhibition rate constant (ki), affinity constant (Ka), and phosphorylation rate constant (kp), were determined for each compound. Results indicated that all examined dioxaphospholenes had less inhibitory effects on mammalian AChE than fenitrothion, a commercial pesticide with moderate mammalian toxicity. The highest selectivity was obtained with compounds containing glutamic and leucine moieties (2.70 and 2.18, respectively) while selectivity of fenitrothion was 0.93. The low inhibitory effects of the examined dioxaphospholenes on mammalian AChE were attributed to their low phosphorylation rates (kp < 2.2 min−1) compared to that of fenitrothion (kp = 4.84 min−1). QSAR equations indicated that the inhibition process is controlled mainly by both the phosphorylation rate (direct effect) and the affinity of compounds toward the enzyme (inverse effect). Although the compounds’ hydrophobicity had no effects on the inhibition process, it affects the compounds’ toxicity since it affects the ability of compounds to penetrate insects to reach the enzyme active site.  相似文献   

19.
Amitraz is a pesticide targeting the octopaminergic receptors. In a previous study, octopamine, a biogenic amine, was found to induce a biphasic effect on the honeybee heart, inhibition at low concentrations and excitation at high concentrations. Furthermore, the honeybee heart was found to be far more sensitive to octopamine compared to other insect hearts. The objective of the present study was to investigate the effects of amitraz on the electrical and mechanical properties of the honeybee heart ex vivo and on the heart rate in vivo. In ex vivo conditions, amitraz at 10−12 M caused a significant inhibition in the mechanical (p < 0.05, n = 4) and electrical properties (p < 0.05, n = 4). Higher concentrations such as 10−9 and 10−6 M induced a biphasic effect, with total inhibition for 7.86 ± 1.26 min (n = 7), followed by strong excitation of spontaneously-generated contractions (n = 7). The initial elimination of heart activity was caused by strong hyperpolarization, while the subsequent excitation was caused by a depolarization in the membrane potential of pacemaker cells at 10−9 M (n = 8). In the in vivo experiments, abdominal injection or oral application of 0.20 ng of amitraz per bee induced a persistent increase of 134.28 ± 4.07% (p < 0.05, n = 4) in the frequency of the cardiac action potentials. The above responses clearly show that the heart of the honeybee is extremely vulnerable to amitraz, which is nevertheless still used inside beehives, ostensibly to “protect” the honeybees against their main parasite, Varroa destructor.  相似文献   

20.
Trehalase, with the target to control insects, nematodes and fungi, is of increasing interest and has been investigated extensively in recent years. Validamycin compounds, as competitive trehalase inhibitors and lead compounds with broad applications have attracted substantial attention as well. In this study, the characterizations of termites trehalase were investigated and the inhibitory effects of validamycin compounds on the termites trehalase were studied as well. Results showed that the termites trehalase is presumably belonging to the acid trehalase with optimal pH of 3.3 and optimal temperature of 37 °C. It was investigated that the concentrations of validoxylamine A (VAA), validoxylamine B (VBB), validamycin A (VA) and validamycin B (VB) required for 50% inhibition IC50 of termites trehalase were calculated to be 14.73 mg l−1, 20.80 mg l−1, 3.17 × 103 mg l−1and 2.24 × 103 mg l−1, respectively. The inhibition kinetic constant Ki values for the above validamycin compounds were 3.2 × 10−6 mol l−1, 1.03 × 10−5 mol l−1, 4.02 × 10−4 mol l−1and 2.69 × 10−4 mol l−1, respectively. Validoxylamine A appeared to be the most potential termites trehalase inhibitor among the four compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号