首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Four dietary groups of juvenile Atlantic salmon, Salmo salar L., each with three replicates, were fed diets with increasing levels of docosahexaenoic acid (22:6n-3; DHA) and eicosapentaenoic acid (20:5n-3; EPA). Fatty acid composition of brain and eye was determined at the start and approximately every 3 weeks during the experimental period, and fatty acid composition of liver and fillet was determined in fish from the final sampling. Lipid class composition of brain and eye, and fatty acid composition of these lipid classes was determined at the end of the experiment. There was no effect of increasing dietary DHA content on fatty acid composition, lipid class composition or DHA levels in the lipid classes in the juvenile Atlantic salmon brain. The increasing dietary EPA content, however, was reflected in both the total fatty acid composition and in the EPA content in neutral lipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). A minor effect of the increasing dietary DHA content was found in the lipid composition of the juvenile salmon eye. Both EPA and 18:2n-6 levels in eye, however, clearly reflected the increasing and decreasing, respectively, dietary levels of these two fatty acids. The dietary EPA levels also affected the EPA levels in neutral lipids, PC, PE, PI and PS (phosphatidylserine) in the juvenile salmon eye. The results demonstrate that these dietary levels of DHA had no effect on brain lipid composition and only a minor effect on eye lipid composition. Furthermore, the dietary EPA levels significantly affected the lipid composition of both brain and eye. The fillet fatty acid composition reflected the dietary fatty acid composition, except for the DHA/EPA ratio, which was reversed in fillet compared with that in the diets. The liver fatty acid composition was also affected by the increasing dietary EPA and DHA levels.  相似文献   

2.
Sufficient high‐quality microalgae are required for indoor nursery of juvenile Ruditapes philippinarum. However, culturing numerous microalgae to support clam feeding is a heavy burden on many hatcheries. The effects of detritus from the macroalgae Ulva pertusa, Chondrus ocellatus and Undaria pinnatifida on the growth, amino acid content and fatty acid profile of Rphilippinarum were assessed as potential substitute diets. The green microalga Tetraselmis cordiformis served as comparative diet. Results revealed that the clams ingesting distinct diets presented no significant differences in growth of soft tissues, but the nutritional component of these clams differed dramatically. The clams fed with Undaria + Tetraselmis had the highest content of essential amino acids and proteins. In addition, the clams fed with single macroalgal diets and mixed macroalgal detritus and Tetraselmis showed significantly higher or statistically equal levels in n‐3/n‐6 ratio and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio with respect to Tetraselmis diets. The relative percentages of EPA and DHA in clams fed with Undaria were 28% and 63% higher than those fed with Tetraselmis, and the arachidonic acid abundances in clams ingesting Undaria + Tetraselmis and Tetraselmis were significantly higher than those in clams ingesting other diets. Together, the diets containing single Undaria or mixed Undaria + Tetraselmis produced Manila clams with nutritional advantages in terms of essential amino acids and polyunsaturated fatty acids. Thus, the detritus of macroalgae, especially Undaria, is an appropriate substitute diet, at least partially, for culture of nutrition‐improved R. philippinarum.  相似文献   

3.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

4.
An experiment was conducted in aquaria with channel catfish (Ictalurus punctatus) to determine the efficacy of augmenting fillets with conjugated linoleic acid (CLA) and omega-3 highly unsaturated fatty acids (− 3 HUFA) by feeding diets amended with products containing high levels of these nutrients. Refined menhaden fish oil at 1.5% of diet supplied the − 3 HUFA. CLA was used at dietary levels of 0.5% and 1% with a preparation that contained approximately 65% isomers of CLA. Corn oil was added to the basal diet at maximum inclusion level for added lipids of 3% for the control diet and to adjust total added lipid content of the other diets to 3%. Average initial body weight was 57.39 ± 0.25 g/fish. Six experimental diets were fed twice daily to four replicate aquaria for six weeks. At that time, fish were group weighed for determination of weight gain and feed conversion. Fillets of six fish per aquarium were recovered and stored at − 80 °C for moisture and total lipid analyses, fatty acid analysis, and sensory evaluation. Results showed feed consumption and feed conversion did not differ (> 0.05). Significantly (< 0.05) greater body weight gains were observed only for fish fed the diets with two combinations of CLA and 1.5% fish oil compared to fish fed the diet containing 0.5% CLA and corn oil. Fillet − 3 HUFA levels were significantly (< 0.05) elevated for fish fed diets containing fish oil when compared to − 3 HUFA of fillets of fish fed diets containing either corn oil or CLA and corn oil. Similarly, fillets from fish fed diets amended with CLA contained substantial amounts of CLA of up to 6.4% of total lipids. Fillets from fish fed corn oil or fish oil diets had no CLA. Taste panel evaluation indicated that fillets containing − 3 HUFA and CLA were essentially without fishy off-flavor and had excellent sensory qualities. Catfish fillets produced by amending diets with sources of − 3 HUFA and CLA at the levels used in this study would contain elevated levels of these nutraceuticals and could be an important human food source for these healthful fatty acids.  相似文献   

5.
European sea bass juveniles (14.4±0.1 g mean weight) were fed diets containing different levels of fish oil then of n-3 highly unsaturated fatty acids (n-3 HUFA) for 12 weeks. The fish performance as well as fatty acid (FA) composition of neutral and polar lipids from whole body after 7 and 12 weeks feeding were studied. The requirements of juvenile sea bass for n-3 highly unsaturated fatty acids (n-3 HUFA) were studied by feeding fish diets containing six different levels of n-3 HUFA ranging from 0.2% to 1.9% of the diet, with approximately the same DHA/EPA ratio (1.5:1).

The growth rate at the end of the trial showed significant differences. Fish fed low dietary n-3 HUFA (0.2% DM of the diet) showed significantly lower growth than the diet 3 (0.7%), then no further improvement (P>0.05) of growth performance was seen by elevating the n-3 HUFA level in the diet up to 1.9% (diet 6). No difference in feed efficiency, protein efficiency ratio or protein retention was observed among treatments, nor in protein and total lipid content. However, the n-3 HUFA levels in diets highly influenced fish fatty acid composition in neutral lipid, while polar lipid composition was less affected. Comparison of polar lipid content after 7 or 12 weeks indicated that DHA remained stable at the requirement level, while arachidonic acid decreased with time. Results of this experiment suggest that the requirement for growth of n-3 HUFA of juvenile sea bass of 14 g weight is at least 0.7% of the dry diet.  相似文献   


6.
The effect of different dietary levels of docosahexaenoic acid (DHA, 22:6w-3) on the corresponding composition of lipid classes of the eyes of sea bass, Dicentraxrchus labrax, larvae was studied using Artemia nauplii enriched with different products: oil emulsions, liposomes, a dry microalga and baker's yeast. DHA was found to be a major constituent of phosphatidylserine and phosphatidylethanolamine of visual tissues. The different DHA dietary levels were markedly reflected in the fatty acid composition of the lipid classes of eyes, suggesting a dose-dependent relationship between DHA in the food and in visual tissue lipids of sea bass larvae. The possible implications of this dietary effect are discussed.  相似文献   

7.
In order to investigate the impact of dietary lipid sources on mechanisms involved in lipid deposition, three groups of European seabass fingerlings with average initial body weight of 5.2 ± 1.0 g were fed three diets differing only by lipid source. These diets were: 100% anchovy oil (diet A), 40% anchovy oil-60% mix of vegetable oils (35% linseed, 15% palm, 10% rapeseed) (diet B) and 40% anchovy oil-60% mix of vegetable oils (24% linseed, 12% palm, 24% rapeseed) (diet C). After 64 weeks of rearing, when seabass reached the size of 160 g, the activity of lipogenic enzymes (fatty acid synthetase, glucose-6-phosphate dehydrogenase and malic enzyme) in liver and of lipoprotein lipase (LPL) in perivisceral adipose tissue, liver and white muscle were measured. Transport of lipid by lipoproteins was examined by determining plasma lipid composition and lipoprotein classes. Dietary oil source did not modify growth performance or lipid content of flesh and liver of seabass. Replacement of 60% of fish oil by the two mixtures of vegetable oils had no significant effect on hepatic lipogenesis and activity of LPL in liver and adipose tissue. Activity of LPL in white muscle was decreased in fish fed diet C compared to those fed diets A and B. Diets containing the mixture of vegetable oils led to lowered plasma, VLDL and LDL cholesterol levels compared to diet A.It is concluded that replacing 60% of fish oil by the two mixtures of vegetable oils in the feeds of European seabass fingerlings until they reach the size of 160 g has no marked effect on growth performance, lipogenesis and tissue lipid uptake but has a hypocholesterolemic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号