首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional attributes of specific point mutations, R30K, S291G, and I392T, associated with full-length acetylcholinesterase (AChE) cDNAs of organophosphate (OP)- and carbamate-resistant Colorado potato beetles (CPB), were determined using site-directed mutagenesis and baculovirus expression. Enzymatic and inhibitory properties of altered recombinant acetylcholinesterases (rAChEs) were examined. S291G increased the hydrolysis of substrates with larger substituted alkyl groups (e.g., BTC vs ATC) and increased the inhibitory action of inhibitors with larger alkyl groups (e.g., paraoxon, DFP, and N-propyl carbofuran vs. azinphosmethyl-oxon and N-methyl carbofuran). R30K in conjunction with S291G enhanced the hydrolysis activity of larger substrates and the inhibitory action of larger inhibitors. I392T attenuated the effects of S291G in that the altered rAChE with both S291G and I392T elicited substrate specificity and inhibitory properties more similar to the susceptible form of AChE without mutations.  相似文献   

2.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

3.
Molecular mechanisms of monocrotophos resistance in the two-spotted spider mite (TSSM), Tetranychus urticae Koch, were investigated. A monocrotophos-resistant strain (AD) showed ca. 3568- and 47.6-fold resistance compared to a susceptible strain (UD) and a moderately resistant strain (PyriF), respectively. No significant differences in detoxification enzyme activities, except for the cytochrome P450 monooxygenase activity, were found among the three strains. The sensitivity of acetylcholinesterase (AChE) to monocrotophos, however, was 90.6- and 41.9-fold less in AD strain compared to the UD and PyriF strains, respectively, indicating that AChE insensitivity mechanism plays a major role in monocrotophos resistance. When AChE gene (Tuace) sequences were compared, three point mutations (G228S, A391T and F439W) were identified in Tuace from the AD strain that likely contribute to the AChE insensitivity as predicted by structure analysis. Frequencies of the three mutations in field populations were predicted by quantitative sequencing (QS). Correlation analysis between the mutation frequency and actual resistance levels (LC50) of nine field populations suggested that the G228S mutation plays a more crucial role in resistance (r2 = 0.712) compared to the F439W mutation (r2 = 0.419). When correlated together, however, the correlation coefficient was substantially enhanced (r2 = 0.865), indicating that both the F439W and G228S mutations may work synergistically. The A391T mutation was homogeneously present in all field populations examined, suggesting that it may confer a basal level of resistance.  相似文献   

4.
The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in the resistant and susceptible strains (SS) of Liposcelis bostrychophila were investigated. The two resistant strains were the dichlorvos-resistant strain (DDVP-R) and the phosphine-resistant strain (PH3-R) with resistance ratios of 22.36 and 4.51, respectively. Compared to their susceptible counterpart, the AChE activity per insect and the specific activity of AChE in DDVP-R and PH3-R were significantly higher. There were also significant kinetic differences between DDVP-R and PH3-R. The apparent Michaelis-Menten constant (Km) for acetylthiocholine iodide (ATChI) was obviously lower in SS than that in PH3-R, indicating a higher affinity to the substrate ATChI in the susceptible strains. The affinity for the substrate ATChI in DDVP-R and SS were not significantly different. The Vmax value of the PH3-R was significantly greater when compared to the Vmax for the SS suggesting a possible over expression of AChE in this resistant strain. The inhibition of AChE to insecticide exposure in vitro revealed that all six insecticides were inhibitory for the extracted AChE’s. Based on the I50 values, AChE of the SS were more sensitive to dichlorvos, paraoxon-ethyl, malaoxon and demeton-S-methyl than those of the two resistant strains. As for carbaryl and eserine, the PH3-R suggested a significantly higher I50s compared to the susceptible strain, while, no significant differences were found between SS and DDVP-R.  相似文献   

5.
Wheat aphid, Sitobion avenae (fabricius), is one of the most important wheat pests and has been reported to be resistant to commonly used insecticides in China. To determine the resistance mechanism, the resistant and susceptible strains were developed in laboratory and comparably studied. A bioassay revealed that the resistant strain showed high resistance to pirimicarb (RR: 161.8), moderate reistance to omethoate (32.5) and monocrotophos (33.5), and low resistance to deltamethrin (6.3) and thiodicarb (5.5). A biochemistry analysis showed that both strains had similar glutathione-S-transferase (GST) activity, but the resistant strain had 3.8-fold higher esterase activity, and its AChE was insensitive to this treatment. The I50 increased by 25.8-, 10.7-, and 10.4-folds for pirimicarb, omethoate, and monocrotophos, respectively, demonstrating that GST had not been involved in the resistance of S. avenae. The enhanced esterase contributed to low level resistance to all the insecticides tested, whereas higher resistance to pirimicarb, omethoate, and monocrotophos mainly depended on AChE insensitivity. However, the AChE of the resistant strain was still sensitive to thiodicarb (1.7-fold). Thus, thiodicarb could be used as substitute for control of the resistant S. avenae in this case. Furthermore, the two different AChE genes cloned from different resistant and susceptible individuals were also compared. Two mutations, L436(336)S in Sa.Ace1 and W516(435)R in Sa.Ace2, were found consistently associated with the insensitivity of AChE. They were thought to be the possible resistance mutations, but further work is needed to confirm this hypothesis.  相似文献   

6.
Molecular mechanisms of carbofuran resistance in the brown planthopper, Nilaparvata lugens Stål, were investigated. A carbofuran-resistant strain (CAS) showed approximately 45.5- and 15.1-fold resistance compared with a susceptible strain (SUS) and a non-selected field strain (FM), respectively. Activities of the esterase and mixed-function oxidase were approximately 2.8- and 1.6-fold higher, respectively, in the CAS strain than in the SUS strain, suggesting that these enzymes play a minor role in carbofuran resistance. Interestingly, the insensitivity of acetylcholinesterase (AChE) to carbofuran was approximately 5.5- and 3.7-fold higher in the CAS strain compared to the SUS and FM strains, respectively, indicating that AChE insensitivity is associated with carbofuran resistance. Western blot analysis identified two kinds of AChEs, of which the type-1 AChE (encoded from Nlace1, which is paralogous to the Drosophila AChE gene) was determined to be the major catalytic AChE in N. lugens. The open reading frame of Nlace1 is composed of 1989 bp (approximately 74 kD) and revealed 52.5% and 24.3% amino acid sequence identities to those of Nephotettix cincticeps and Drosophila melanogaster, respectively. Screening of point mutations identified four amino acid substitutions (G119A, F/Y330S, F331H and H332L) in the CAS strain that likely contribute to AChE insensitivity. The frequencies of these mutations were well correlated with resistance levels, confirming that they are associated with reduced sensitivity to carbofuran in N. lugens. These point mutations can be useful as genetic markers for monitoring resistance levels in field populations of N. lugens.  相似文献   

7.
A survey of resistance to five conventional insecticides was conducted in 2009 and 2010 for the first generation 4th-instar larvae of Leptinotarsa decemlineata from Urumqi, Changji, Qitai and Qapqal. Compared with the Tekes population, a reference susceptible population, the Changji and Qapqal populations exhibited very high to moderate levels of resistance to cyhalothrin and deltamethrin, moderate to high levels of resistance to carbosulfan and carbofuran, and low levels of resistance to azinphosmethyl. Moreover, the Urumqi and the Qitai populations reached a high and a moderate level of resistance to carbosulfan, respectively. Synergistic effects of triphenyl phosphate, diethylmeleate, and piperonyl butoxide on cyhalothrin and carbosulfan in Changji population revealed that cytochrome P450s were involved in the resistance to cyhalothrin but not carbosulfan. A modified bi-PASA was developed to simultaneously detect point mutations of S291G in the AChE and L1014F in the LdVssc1 genes. The former mutation resulted in the resistance to carbamates and the latter in the resistance to pyrethroids. The rates of homozygous and heterozygous resistant individuals to carbamates (S291G mutation) were 17.6% and 14.7%, 50.6% and 42.2%, 49.9% and 41.7%, 51.3% and 41.4%, and 44.8% and 47.4%; to pyrethroids (L1014F mutation) were 5.8% and 8.7%, 36.1% and 27.0%, 41.8% and 24.8%, 12.2% and 9.7%, and 7.9% and 10.6%, respectively, in samples from Tekes, Changji, Qapqal, Urumqi and Qitai. I392T point mutation in the AChE was detected by RT-PCR among 18 individuals from Changji, Qapqal, Urumqi and Qitai. These results demonstrated that point mutations of S291G in the AChE and L1014F in the LdVscc1 are responsible for, at least partially, the resistance to carbamates and pyrethroids in L. decemlineata in some field populations in northern Xinjiang Uygur autonomous region.  相似文献   

8.
The genetics and biochemistry of oxidative resistance to diazinon were investigated in a diazinon-resistant strain of the house fly, Musca domestica L. The resistant strain was crossed with a multimarker susceptible strain and substrains containing portions of the resistant strain genome were prepared. Resistance, microsomal oxidase, and cytochrome P-450 spectral characteristics were then compared in the different strains. The major gene for resistance to diazinon is semidominant and is located on chromosome II, 13 crossing over units from the recessive mutant stubby wing. Additional resistance genes occur on chromosome II and on other chromosomes as well. Resistance to diazinon was introduced into a susceptible mutant-marked strain via genetic crossing over. Increases in parathion oxidase, total and P-450-specific N- and O-demethylase activity, and resistant strain type I binding spectrum were introduced along with resistance, indicating genes controlling these parameters and resistance are either identical or closely linked. No increase in activity of cytochrome P-450 itself was introduced into the mutant strain. Additional genes controlling the amount of cytochrome P-450 and several spectral changes characteristic of the resistant strains are apparently controlled by genes located at different loci on chromosome II. Resistance factors on other chromosomes are also present, but were not characterized.  相似文献   

9.
药剂对小菜蛾抗性及敏感品系乙酰胆碱酯酶抑制作用比较   总被引:5,自引:1,他引:4  
采用浸叶法测定了云南通海、元谋和澜沧的小菜蛾plutella xylostella田间种群对常用杀虫剂的抗药性。结果表明,云南上述地区小菜蛾田间种群对各类杀虫剂均产生了不同程度的抗性。对有机磷类药剂的抗药性为1.74~31.1倍;对菊酯类药剂的抗药性为7.41~764倍;对阿维菌素类药剂则产生了 5.60~4.06×104倍的抗性。通过离体和活体试验测定了药剂对小菜蛾头部乙酰胆碱酯酶(AChE)的抑制作用。敌敌畏和灭多威对通海抗性品系AChE离体和活体内的抑制中浓度(I50)分别是敏感品系的209、26.5倍和2.21、2.16倍;敌敌畏对通海小菜蛾种群的离体和活体内抑制中时间(IT50)小于敏感品系,分别是敏感品系的0.32和0.17倍;而灭多威对通海小菜蛾种群的离体和活体内抑制中时间(IT50)则大于敏感品系,分别是敏感品系的1.37和1.74倍。  相似文献   

10.
The DDT-resistant housefly strain, Fe, known to resist DDT by biochemical oxidation, is also resistant to carbamate insecticides and has a high in vitro microsomal epoxidase activity. The purpose of this investigation was to determine whether the DDT resistance, associated with chromosome V, is also responsible for the resistance to carbamates and for the high epoxidase levels. Genetic procedures for segregating the R factors were employed using a multimarker insecticide susceptible strain designated acbco. The technique involved backcrossing the F1 hybrid of the resistant and susceptible parents to the susceptible parent. The genotypes with a single R chromosome from the Fc parent were retained for further development as substrains and for toxicological and biochemical studies.These studies revealed that both resistance to the carbamate insecticide, propoxur, and the high in vitro microsomal epoxidation of aldrin were lost during the genetic isolation of the R factors. However, the resistance to DDT, associated with chromosome V, was present in the substrain carrying this chromosome from the Fc parent. All of the substrains were induced five- to seven-fold, by feeding phenobarbital at 1% in the diet for 3 days.Additional substrains synthesized from the substrains carrying chromosomes II and V or III and V from the Fc parent did not possess sufficient propoxur resistance or aldrin epoxidase activity to account for that present in the R parent.The interpretation of these rseults is that neither the carbamate resistance nor the microsomal epoxidase of the Fc strain is due to the factor which oxidizes DDT. Furthermore, the factor responsible for the high microsomal epoxidase activity is not due to a single chromosome such as chromosome II which is the case in other housefly strains with high oxidase activities.  相似文献   

11.
We investigated the mechanisms of resistance to α-cypermethrin in a Q biotype, highly resistant Bemisia tabaci strain (GRMAL-RP) isolated from Crete. Cytochrome P450-dependent monoxygenase activity with the substrate ethoxycoumarin, and carboxylesterase activity with the substrates α-naphthyl-acetate, β-naphthyl-acetate, and para-nitrophenol acetate were substantially elevated in the GRMAL-RP, compared to the susceptible SUD-S strain, while glutathione-S-transferase activity with the substrate 1-chloro-2,4-dinitrobenzene was not different. The metabolic inhibitors piperonyl butoxide and S,S,S-tributyl phosphorotrithioate synergised cypermethrin toxicity in the GRMAL-RP strain, however, mortality was still lower than that of the susceptible strain, indicating the presence of an additional resistance mechanism. Analysis of the sequence of the IIS4-IIS6 region of the para sodium channel gene of the GRMAL-RP strain revealed two amino acid replacements compared to that of the SUD-S susceptible strain. One is the leucine to isoleucine substitution at position 925 (L925I) previously implicated in B. tabaci pyrethroid resistance and the other is a novel kdr resistant mutation for B. tabaci, a threonine to valine substitution at position 929 (T929V). Genotype analysis showed that the L925I and T929V were present in all GRMAL-RP males tested, at an approximately 1:1 frequency, but never in combination in the same haplotype.  相似文献   

12.
Insecticide resistant strains of the kanzawa spider mite, Tetranychus kanzawai, with insensitive AChE have spread widely throughout Japan. To clarify the molecular mechanism of this insensitivity, acetylcholinesterase (AChE) cDNA of the resistant strains of T. kanzawai was determined based on the AChE cDNA sequence of Tetranychus urticae and the sequences compared between the two spider mite species. The cDNA encoded 687 amino acids of AChE primary structure showing high homology to T. urticae. Amino acid homology indicated that the AChE is an Ace paralogous type of insect AChE. There were only three substitutions of amino acid residues between the AChEs of the two species. In the AChE of the resistant strain of T. kanzawai, one of the three amino acid substitutions was Phe439Trp, which lines the acyl pocket of the enzyme active site. Considering that the same substitution was found at the equivalent position of Ace paralogous AChE in the resistant strain of Culex tritaeniorhynchus, Phe439Trp substitution likely plays an important role in the insecticide insensitivity of the mite AChE.  相似文献   

13.
14.
The susceptibility to phosalone and biochemical characteristics of acetylcholinesterase (AChE) were compared between susceptible (SS) strain and four field populations of Colorado potato beetle (CPB) collected from commercial potato fields of Hamedan Province in west of Iran. Bioassays involving topical application of phosalone to fourth instars revealed up to 252 fold resistance in field populations compared with the SS strain. Synergism studies showed that although esterase and/or glutathione S-transferase metabolic pathways were present and active against phosalone, they were not selected for and did not have a major role in resistance. It is likely that piperonyl butoxide (PBO) reduced phosalone toxicity by inhibiting bio-activation of phosalone. The affinity (Km) and hydrolyzing efficiency (Vmax) of AChE to selected substrates, namely, acetylthiocholine iodide (ATC), propionylthiocholine iodide (PTC), and butyrylthiocholine iodide (BTC) were examined. AChE inhibition by higher substrate concentration was evident only in the SS strain. In resistant field populations, Aliabad (Aa), Bahar (B) and Dehpiaz (Dp), substrate inhibition at higher concentrations was not seen. There was no definite optimal concentration found for any of the substrates examined. When ATC, PTC, and BTC were used as substrate, the reaction rates of AChE from Yengijeh (Yg) population increased as the concentration of all three substrates were increased, but were almost constant at concentration of ATC ? 3.98, PTC ? 2.8, and BTC ? 5 mM. The susceptible form of AChE had the most efficient ATC hydrolysis but very low BTC hydrolysis activity. In contrast, AChEs from field populations elicited relatively reduced ATC hydrolysis, but relatively increased BTC hydrolysis. The in vitro inhibition potency of some organophosphates (OPs), on AChEs of the field populations and SS strain was determined. The rank order from the most potent inhibitor to the least as determined by their bimolecular reaction constants (Ki) was ethyl paraoxon > diazoxon > methyl paraoxon for AChE from Aa, B, Dp, and Yg populations, respectively, whereas the rank order for the susceptible strain was methyl paraoxon > ethyl paraoxon > diazoxon.  相似文献   

15.
Sodium channel mutations were investigated through nucleotide sequencing of three cDNA fragments amplified from permethrin resistant and susceptible Aedes aegypti from northern Thailand. There was a novel nucleotide substitution (T → G) at the second position of codon 1552 resulting in the replacement of Phenylalanine by Cysteine in segment 6 domain III. This amino acid was indicated by another study to involve an aromatic-aromatic contact between the sodium channel protein and the first aromatic ring of the pyrethroid alcohol moiety. Reciprocal crosses between the homozygous parental susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive, and highly associated with the homozygous mutation. The bioassay of the F2 progeny, formed by backcrossing the F1 with the resistant parental strain, did not show a clear plateau curve across the range of doses, suggesting that resistance to permethrin was controlled by more than one gene locus. Other possible resistance mechanisms involved are discussed.  相似文献   

16.
The San Roman strain of the southern cattle tick, Boophilus microplus, collected from Mexico was previously reported to have a high level of resistance to the organophosphate acaricide coumaphos. An oxidative detoxification mechanism was suspected to contribute to coumaphos resistance in this tick strain, as coumaphos bioassay with piperonyl butoxide (PBO) on larvae of this resistant strain resulted in enhanced coumaphos toxicity, while coumaphos assays with PBO resulted in reduced toxicity of coumaphos in a susceptible reference strain. In this study, we further analyzed the mechanism of oxidative metabolic detoxification with synergist bioassays of coroxon, the toxic metabolite of coumaphos, and the mechanism of target-site insensitivity with acetylcholinesterase (AChE) inhibition kinetics assays. Bioassays of coroxon with PBO resulted in synergism of coroxon toxicity in both the San Roman and the susceptible reference strains. The synergism ratio of PBO on coroxon in the resistant strain was 4.5 times that of the susceptible strain. The results suggested that the cytP450-based metabolic detoxification existed in both resistant and susceptible strains, but its activity was significantly enhanced in the resistant strain. Comparisons of AChE activity and inhibition kinetics by coroxon in both susceptible and resistant strains revealed that the resistant San Roman strain had an insensitive AChE, with a reduced phosphorylation rate, resulting in a reduced bimolecular reaction constant. These data indicate a mechanism of coumaphos resistance in the San Roman strain that involves both insensitive AChE and enhanced cytP450-based metabolic detoxification.  相似文献   

17.
桃蚜高效氯氰菊酯抗药性与乙酰胆碱酯酶的关系   总被引:3,自引:0,他引:3  
杨帆  帅霞 《植物保护》2008,34(5):60-62
于室内对桃蚜进行高效氯氰菊酯抗药性筛选,选育至10代后抗性倍数增长到49.9倍。生化分析表明,抗性品系乙酰胆碱酯酶(AChE)活性均显著高于敏感品系。比较两个品系乙酰胆碱酶活性个体频率分布发现,更多的桃蚜个体向酶活性高的区域分布。酶动力学测定结果显示,抗性桃蚜酯酶对底物的Vmax、Km显著大于敏感品系。  相似文献   

18.
为明确直播稻田牛筋草对乙酰辅酶A羧化酶 (ACCase) 类除草剂的抗药性水平及其抗性产生的分子机制,采用整株生物测定法测定了牛筋草对6种ACCase类除草剂的抗性水平,并分别对抗性种群和敏感种群的ACCase基因部分片段进行了扩增和测序。结果表明:疑似抗性种群SJ-1对唑酰草胺、氰氟草酯、精唑禾草灵、高效氟吡甲禾灵和烯禾啶产生了高水平抗性,其抗性倍数分别为56.6、62.5、128、52.0和16.3;对烯草酮产生了低水平抗性,相对抗性倍数为4.86。将抗性种群和敏感种群的ACCase基因片段序列进行比对分析发现,SJ-1种群ACCase基因2078位氨基酸由天冬氨酸 (GAT) 突变为甘氨酸 (GGT),该位点氨基酸突变可能是其对ACCase类除草剂产生抗药性的主要原因之一。  相似文献   

19.
Methyl bromide was metabolized by susceptible and resistant strains of adult granary weevil, Sitophilus granarius (L.), mainly by conjugation with glutathione. S-Methyl glutathione and S-methyl cysteine were produced by both strains and S-methyl glutathione sulfoxide was identified as a metabolite in the resistant strain. In the untreated insects, no significant difference was observed in glutathione S-transferase activity but the resistant contained approximately twice as much glutathione per insect as the susceptible strain. When the insects were treated with methyl bromide, the glutathione content of both strains was lowered; proportionally, however, the decrease was considerably higher in the susceptible than in the resistant strain. These results indicate that conjugation of methyl bromide with glutathione is a major detoxication pathway and tolerance to this fumigant is related, in part at least, to the level of glutathione in the granary weevil.  相似文献   

20.
The cross-resistance and biochemical mechanism of the beet armyworm, Spodoptera exigua (Hübner), to spinosad was studied in the laboratory. S. exigua population were collected from Shanghai suburb. After five generations of selection, the resistance of S. exigua to spinosad increased 345.4 times compared with the susceptible strain. There was no cross-resistance between spinosad and fenvalerate, phoxim, methomyl, abamectin, and cyfluthrin. When the inhibitors, PBO, TPP, DEF, and DEM were used as synergist in the susceptible strain and resistant strain, the synergistic ratio was 0.7-, 0.5-, 1.0-, and 0.6- fold for the susceptible strain, and 9.8-, 1.5-, 2.6-, and 1.5-fold for the resistant strain, respectively. The results revealed that PBO had significant synergistic effect on the resistant strain. The activity in vitro of microsomal-O-demethylase and glutathione S-transferase in the resistant strain was 5.2- and 1.0-fold of the susceptible strain, respectively. The results implied that microsomal-O-demethylase might be important in conferring spinosad resistance in the S. exigua population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号