首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To compare the sensitivity and positive predictive value of four methods for detection of oestrus in dairy cows with resynchronised oestrous cycles. PROCEDURE: Oestrous cycles in cows in three herds were synchronised for a first round of artificial insemination (AI) and then resynchronised for a second round of AI. Sensitivity and positive predictive value of four aids (pedometers, radiotelemetric transmitters [HeatWatch; HW], tail-paint and heatmount detectors) that were used to detect the resynchronised oestrus were compared. Milk progesterone concentration and pregnancy testing at 12 weeks were used as the reference standard for cows being in oestrus. RESULTS: The mean sensitivity and positive predictive value for detecting the resynchronised oestrus, for each aid that was used, was > 80%. Tail-paint was significantly more sensitive at detecting oestrus compared to heatmount detectors (P = 0.002), but not significantly more sensitive than pedometers (P = 0.07) or HW (P = 0.55) for detecting oestrus (91.3, 85.7; 81.4 and 88.4%, respectively). Positive predictive value of HW for detecting oestrus was greater than tail-paint (P = 0.014) and heatmount detectors (P = 0.024) but not pedometers (P = 0.25; 100, 91.7, 92.9 and 87.5%, respectively). Positive predictive value of heatmount detectors was greater than pedometers in herd C (93.4% vs 73.3%; P = 0.035) but not in herds A (95.0% vs 90.0%; P = 0.56) or B (90.8% vs 100%; P = 0.10). No other significant differences in sensitivity or positive predictive value of detection of oestrus were found between aids. CONCLUSION: Tail-paint, heatmount detectors, pedometers and HW provide a high sensitivity (> 80%) and positive predictive value (> 85%) of detecting oestrus in dairy cows with resynchronized oestrous cycles.  相似文献   

2.
OBJECTIVE: To compare the use of gonadotrophin releasing hormone (GnRH) and oestradiol benzoate (ODB) administered following a synchronised pro-oestrus on reproductive performance of lactating dairy cows and the submission rates of non-pregnant cows following resynchronisation. DESIGN: Cohort study. PROCEDURE: Lactating Holstein cows enrolled in a controlled breeding program were first treated with an intravaginal progesterone releasing insert (IVP4) for 8 days, 2.0 mg of ODB intramuscular (i.m.) at device insertion (Day 0), an analogue of PGF2alpha at device removal and either 1.0 mg of ODB i.m., 24 h after device removal (ODB group, n = 242), or 0.25 mg of a GnRH agonist (GnRH group, n = 152) injected i.m. approximately 34 h after device removal. Every cow was artificially inseminated between 49 and 56 h after removal of its insert (Day 10). Cows detected in oestrus 1 day after artificial insemination (AI) that were not detected in oestrus on the previous day were re-inseminated on that day. All cows treated on Day 0 were resynchronised for reinsemination by insertion of a used IVP4 device on Day 23. Oestradiol benzoate at a dose of 1.0 mg was administered i.m. at the time of device insertion. Inserts were removed 8 days later (Day 31) and 1.0 mg of ODB was injected i.m. 24 h later. Those cows detected in oestrus between Days 31 and 35 were artificially inseminated. On Day 46 these cows were resynchronised for a third round of AI by insertion of an IVP4 device, used previously to synchronise cows for the first and second rounds of AI, and administration of 1.0 mg of ODB i.m.. Eight days later inserts were removed. Cows detected in oestrus between Days 54 and 58 were artificially inseminated. Bulls were run with the herd between rounds of AI and removed after 21 weeks of mating. RESULTS: Treatment with ODB or GnRH at the first synchronised pro-oestrus did not significantly alter the reproductive performance over three rounds of AI or over a 21-week breeding period. Treatment also did not alter submission rates at the second round of AI or the proportion of non-pregnant and non-return cows ('phantom' cows) detected and did not result in significant differences in concentrations of progesterone in plasma 10 and 18 days after removal of inserts at the first round of AI. Treatment with GnRH reduced the proportion of cows detected in oestrus at the first round of AI (36.2 vs 97.5%; P < 0.001). CONCLUSION: Administration of GnRH compared to ODB at a synchronised pro-oestrus results in similar reproductive performance. Treatment with GnRH reduced the proportion of cows detected in oestrus following treatment. This may offer advantages to the way AI is managed by enabling insemination at a fixed-time and removing the need for the detection of oestrus.  相似文献   

3.
Progesterone concentrations have been measured in defatted milk of British Friesian cows of four herds during the oestrus cycles (other than short cycles) immediately before artificial insemination (AI) at oestrus and immediately after AI (in non-pregnant cows), and during early pregnancy. Differences in mean progesterone concentrations between herds were significant (P less than 0.05) on all days within the day 10-18 period after AI, both in pregnant and in non-pregnant, inseminated cows but were not significant between pregnant and non-pregnant cows within herds until day 17 or 18. It is concluded that up to this time (that of luteolysis in non-pregnant cows) undefined factors, variable among herds, can have a much greater influence on the rate of progesterone secretion by corpora lutea and consequent progesterone concentration in plasma and milk than does the presence of conceptuses. Maximum mean progesterone concentration reached during early pregnancy in two herds did not differ significantly; it was reached in the 11-15-day period in one herd but not until 46-50 days in the second. Mean progesterone concentration declined after day 90.  相似文献   

4.
A 2-sample regime was used to measure whole milk progesterone concentration on the day of oestrus and insemination (Day 0) and 6 days later (Day 6) in a sample of 50 primiparous and 100 multiparous suckling beef cows. Exposure to teaser bulls and observation by cattlemen identified the occurrence of oestrus. Three sets of criteria used to define ovulatory oestrus were compared: a) milk progesterone concentration less than 6 nmol/l on Day 0; b) milk progesterone less than 6 nmol/l on Day 0 and rising to greater than 6 nmol/l on Day 6; c) milk progesterone less than 6 nmol/l on Day 0 and rising to greater than 6 nmol/l on Day 6, or cow diagnosed pregnant to 1st insemination. Using only a single milk sample on Day 0 (criterion a) would have resulted in the positive predictive value of heat detection being estimated at 98.7%. Using a pair ed measurement (criterion b) resulted in a significantly lower estimate of 84.7%. The inclusion of cows that conceived despite not showing a marked rise in milk progesterone concentration (criterion c) resulted in a more accurate estimate of 89.3 %. Use of a 2-sample regime also allowed calculation of conception rates while eliminating the effect of heat detection errors. In the cows sampled, of those in ovulatory oestrus that were inseminated, 73.1% conceived to the 1st insemination. These results demonstrate that artificial insemination within a limited breeding season can be successful if nutrition is optimal and management is intensive. The use of a 2-sample milk progesterone test may be a valuable tool in investigating heat detection and conception problems in beef herds in which artificial insemination is used.  相似文献   

5.
Post-partum milk progesterone profiles from 1400 dairy cows were used to identify 296 animals which had ovulated 50 or more days post partum without being observed in oestrus. Of these, 165 cows were left as untreated controls, being inseminated at any observed oestrus after 60 days post partum. Fixed time insemination three and four days after a single cloprostenol injection (74 cows) resulted in a short calving-to-conception interval and a lower culling rate than in control cows, while insemination at observed oestrus after cloprostenol (57 cows) resulted in an even greater improvement in these parameters. The fixed-time insemination group required significantly more services per conception than either of the other groups (P < 0.005). A study of the profiles suggested that not all of the cows had ovulated within four days of injection and that those ovulating later had a greater chance of being observed in oestrus and becoming pregnant if insemination was carried out only at observed oestrus after cloprostenol injection.  相似文献   

6.
AIM: To determine whether conception rates of anoestrous dairy cows treated with progesterone and oestradiol benzoate (ODB) could be increased by treating them with additional progesterone following insemination at the induced oestrus. METHODS: Cows which had not been detected in oestrus for at least 21 days after calving in 18 herds were confirmed anovulatory anoestrus (AA) by veterinary examination, due to the absence of a detectable corpus luteum in the ovaries. All cows were treated with intra-vaginal progesterone (CIDR insert) for 6 days and injected with 1 mg ODB 24 h after insert removal (Day 0). Only cows which were seen in oestrus on Days 0, 1 or 2 were enrolled in the trial. These cows were either treated with a second CIDR insert on Day 8, for 7 days (P4+; n=422), or remained untreated (Control; n=756). Milk progesterone concentrations were measured in a subset of enrolled cows (n=669) on Day 8 to determine the proportion of cows that ovulated following the induced oestrus. RESULTS: Conception rates to first insemination were similar in P4+ and Control cows (40.3% and 37.2%, p=0.59). Of cows which had milk progesterone concentrations measured on Day 8, 78.6% displayed oestrus and ovulated, (range: 53.8% to 94.6% among herds). Of the cows that ovulated, conception rate to first insemination was 46.8% and 43.5% in P4+ and Control cows, respectively (p=0.86). CONCLUSION: Conception rates to first insemination in AA cows treated with progesterone and ODB were not increased by progesterone supplementation using CIDR inserts following insemination. KEY WORDS: dairy cattle, postpartum anoestrus, reproduction, progesterone treatment, CIDR insert.  相似文献   

7.
The ability to synchronise onset of oestrus, and hence the time of breeding and calving, offers potential economic and management benefits to dairy farmers, especially in herds with seasonally concentrated calving patterns. A trial involving 2681 cows in 11 seasonal herds was conducted to evaluate the reproductive performance of lactating dairy cows following oestrus synchronisation with a combination of progesterone, oestradiol and prostaglandin. Cows were randomly assigned within herds to synchronised and control groups, balanced for age, date of calving, body condition and breed. Cows in the synchronised group were treated with an intravaginal progesterone-releasing device containing 1.9 g of progesterone and a gelatin capsule containing 10 mg of oestradiol benzoate 10 days prior to the planned start of the breeding season (Day 0). The device was removed 8 days later on Day -2 and a luteolytic dose of prostaglandin F2alpha was administered 2 days prior to removal of the progesterone-releasing device. Returns to service for cows in the synchronised group were synchronised by inserting a previously used intravaginal device during Days 16-21 after the start of the breeding season. Cows in the control group were left untreated. The percentage of cows being inseminated during the first 5 days was 89.0% for the synchronised group compared to 29.7% for the control group. Compared to cows in the control group, those in the synchronised group had a lower conception rate to the first insemination (52.9% v. 64.3%, p<0.001), a lower conception rate to the second insemination (51.8% v. 62.5%, p<0.001), a higher percentage of empty cows at the end of the breeding season (7.3% v. 5.1%, p<0.05), and more insemination services per pregnancy to artificial insemination (2.0 v. 1.6, p<0.001). There was no difference between the synchronised and control groups in the percentage of cows pregnant to artificial insemination (81.8% v. 85.5%, p>0.10). The mean day of conception from the start of the breeding season was advanced (p>0.0 1) by 1.3 days in synchronised cows (19.9 +/- 0.7 days; mean +/- SEM) compared to control cows (21.2 +/- 0.5 days). It is concluded that the oestrus synchronisation regime used in the present study caused a reduction in fertility, which reduced the potential gains from using such a programme to increase reproductive efficiency in dairy cows.  相似文献   

8.
<正> 影响奶牛人工授精成功率的主要原因是对发情期能否正确判断,适时输精。据1981年联邦德国Bavarian动物健康服务机构的报告,输精时间不正确,是影响奶牛繁殖率的重要因素。由于孕酮含量在发情周期中呈规律性变化,在发情期显著下降,因此可  相似文献   

9.
AIM: To compare the reproductive performance of heifers after oestrus synchronisation and fixed-time artificial insemination with non-synchronised heifers bred by herd sires. METHODS: Heifers from 10 spring-calving herds were randomly divided into two groups by herd, breed and age. Heifers in one group (the synchronised group, n = 478) were synchronised with a combination of progesterone, oestradiol benzoate and PGF2alpha, and inseminated 50-54 hours after progesterone treatment. Returns to first service were resynchronised with progesterone treatment 16-21 days after the fixed-time artificial insemination. Heifers in the other group (the control group, n = 470) did not receive any treatment and were bred by herd sires. RESULTS: The conception rate of synchronised heifers to the fixed-time artificial insemination was 51.2% and to the artificial insemination after resynchronisation 40.4%. The pregnancy rate at the end of the breeding season was lower (p<0.001) for the synchronised (92.9%) than for the control (97.2%) group. The interval from start of breeding to calving was earlier for synchronised (295.9 +/- 22.5 days, mean +/- s.d.) than for control (298.5 +/- 17.3 days) heifers. CONCLUSION: Results from this study indicate that the oestrus synchronisation programme used in the present study can reduce reproductive performance by increasing the empty rate compared with natural mating.  相似文献   

10.
A trial based on progesterone radioimmunoassay of milk samples is described. Samples from 2274 cows in 14 herds were collected on the day of insemination and 7, 23 and 30 days later, unless a return to service occurred before the designated sample date. Two additional samples were collected from cows which returned to service more than 35 days after the first service, one on the day of the return and another seven days later. All six samples from these cows were assayed for progesterone concentration.

Late returns, defined as returns to oestrus 36 or more days after mating, occurred in 8.6% of the cows. Milk progesterone assay results indicate that of these apparently late-returning cows, 55.9% suffered a loss of the conceptus, 22.1% had not been detected in oestrus around 21 days after first insemination, 11.8% were in anoestrus at insemination, 5.6% conceived to the insemination and were pregnant when thought to have had a late return, 2.6% were in prooestrus or dioestrus at insemination and 2.1% went into anoestrus after an oestrus insemination.

The average prevalence of late returns after the 35th day (8.6%) and the estimated incidence of losses of concepta (4.8%) are lower than those reported in comparable studies elsewhere. Although many of the late-return cows were mated again and conceived, this syndrome nevertheless contributes significantly to the wastage rate, at least in New Zealand dairy herds with their strictly seasonal calving pattern. The implications of these findings are discussed and recommendations for their prevention are made where appropriate.  相似文献   

11.
OBJECTIVE: To compare the effects of two doses of oestradiol benzoate (ODB) administered as part of a treatment designed to resynchronise returns to oestrus on the reproductive performance of cows in a controlled breeding program. DESIGN: Cohort study. PROCEDURE: Lactating dairy cows on two farms were treated to synchronise three successive oestrous cycles. An intravaginal progesterone releasing insert (IVP4) was used to synchronise the first oestrous cycle. The cows were then treated 15 days after the first treatment by reinsertion of an IVP4 that had been used to synchronise the first oestrus and administration of 1.0 mg of oestradiol benzoate (ODB) i.m. at device insertion. The IVP4 device was removed 8 days later and either 0.5 (n = 421) or 1.0 mg of ODB (n = 446) was administered 24 h later. Injections of (ODB) with or without the use of an IVP4 were used to synchronise the third oestrous cycle. Different synchronisation treatments were used to synchronise first and third oestrous cycles but differences were included in statistical models to account for variation in the data. This enabled examination of effects due to differences in the dose of ODB used to synchronise the second synchronised oestrus. RESULTS: The dose of ODB (0.5 or 1.0 mg) administered just before the second synchronised oestrus did not significantly (P > 0.10) affect the cumulative pregnancy rates over three successive rounds of artificial insemination, the mating start date to the conception intervals, the conception rates to the first or second insemination, the proportion of cows submitted for insemination at the second synchronised oestrus or the proportion of cows that were not pregnant yet failed to show signs of oestrous (phantom cows) identified within each herd. CONCLUSION: There was no difference in reproductive performance between cows receiving either 0.5 mg or 1.0 mg ODB after removal of used IVP4 devices that had been inserted to resynchronise them for a second insemination.  相似文献   

12.
A trial based on progesterone radioimmunoassay of milk samples is described. Samples from 2274 cows in 14 herds were collected on the day of insemination and 7, 23 and 30 days later, unless a return to service occurred before the designated sample date. Two additional samples were collected from cows which returned to service more than 35 days after the first service, one on the day of the return and another seven days later. All six samples from these cows were assayed for progesterone concentration. Late returns, defined as returns to oestrus 36 or more days after mating, occurred in 8.6% of the cows. Milk progesterone assay results indicate that of these apparently late-returning cows, 55.9% suffered a loss of the conceptus, 22.1% had not been detected in oestrus around 21 days after first insemination, 11.8% were in anoestrus at insemination, 5.6% conceived to the insemination and were pregnant when thought to have had a late return, 2.6% were in prooestrus or dioestrus at insemination and 2.1% went into anoestrus after an oestrus insemination. The average prevalence of late returns after the 35th day (8.6%) and the estimated incidence of losses of concepta (4.8%) are lower than those reported in comparable studies elsewhere. Although many of the late-return cows were mated again and conceived, this syndrome nevertheless contributes significantly to the wastage rate, at least in New Zealand dairy herds with their strictly seasonal calving pattern. The implications of these findings are discussed and recommendations for their prevention are made where appropriate.  相似文献   

13.
AIMS: To investigate the effect of targeted resynchronisation of cows treated for non-observed oestrus before the planned start of mating (PSM), that were not detected in oestrus or pregnant 23 days after treatment (phantom cows), on the proportion pregnant at 42 days after PSM and the end of mating.

METHODS: Farm staff from eight herds in two regions of the South Island of New Zealand identified 1,819 cows not showing oestrus by 10 days before PSM. These cows were treated with intravaginal progesterone for 7 days, and I/M gonadorelin 10 days and 1 day before PSM. Three days before PSM they were injected with cloprostenol and equine chorionic gonadotrophin, with fixed time artificial insemination (FTAI) at PSM. By 23 days after PSM, 1,218 cows had not returned to oestrus. Of these, 161 cows confirmed not pregnant by transrectal ultrasonography were randomly assigned to no treatment (control group; n=74) or were resynchronised 25 days after PSM using the same treatment programme as above, with FTAI 35 days after PSM (n=87). All cows that returned to oestrus were artificially inseminated until 42 days after PSM, when natural mating was used. All cows were examined using transrectal ultrasonography 80 to 90 days after PSM to confirm conception dates.

RESULTS: Of the 1,819 anoestrous cows treated before PSM, 526 (29 (95% CI=23.1–34.0)%) had not been observed in oestrus by 23 days after PSM and had not conceived, so were diagnosed as phantoms cows. For resynchronised cows, 42/87 (48 (95% CI=37.8–58.8)%) were pregnant by 42 days after PSM compared to 21/74 (28 (95% CI=18.1–38.7)%) control cows (p=0.009). At the end of mating 58/87 (67 (95% CI=56.6–76.7)%) cows in the resynchronised group were pregnant and 46/74 (62 (95% CI=50.9–73.2)%) in the control group (p=0.554). The hazard of conception from 21 to 42 days after PSM was 1.9 (95% CI=1.07–3.12) times greater for resynchronised than control cows (p=0.026).

CONCLUSION: In cows not observed in oestrus and treated before PSM, resynchronisation increased the proportion pregnant by 42 days after PSM.

CLINICAL RELEVANCE: The benefit of resynchronisation depends on the number of anoestrous cows before PSM and the number of phantom cows after PSM. However at the herd-level it is likely that providing advice to reduce the known risk factors for cows not being observed in oestrus before the PSM may well be more cost effective than identifying and treating a sub-population of phantom cows.  相似文献   


14.
The relative merits of three hormone treatments of dairy cows: (1) intravaginally administered progesterone and oestradiol benzoate; (2) intravaginally administered progesterone and injected cloprostenol; and (3) injected cloprostenol; begun 35-75 days after calving and designed to synchronize oestrus and ovulation and allow successful artificial insemination (AI) at fixed times, have been assessed utilizing information from progesterone concentrations in milk. From this it was concluded that 89% of the cows had ovulated one to three times between calving and the beginning of treatment. Treatment (2) was more effective than (1) in synchronizing ovulation. This was due to the fact that when treatments began early in the ovulation cycle, the requirement for a rapidly effective luteolytic agent was provided by cloprostenol but not by oestradiol benzoate. Treatment (2) was also more effective than (3) in synchronizing ovulation. This is interpreted as meaning that progesterone treatment for 12 days had a beneficial effect in restoring normal cyclic ovarian function in the cows after calving. Whilst cloprostenol administered alone did not have this beneficial effect, there is no evidence that it had a detrimental effect. Based on all cows in treatment groups, the proportion that became pregnant to the fixed-time AI was significantly greater after treatment (2) than after (1), but when based on numbers of cows with synchronized ovulation, there were no significant differences among treatments in the proportions becoming pregnant. The progesterone/cloprostenol treatment had a disadvantage in that when begun during the 11-22 day period of the ovulation cycle, so resulting in a long, total period of suppression of ovulation (mean, 32.1 days), fertility to the fixed-time AI was poor despite effective synchronization of ovulation. Ovulation cycles immediately following the failed, fixed-time AI were normal, both in length and in maximum, luteal-phase progesterone concentration and indicated normal corpus luteum function. Thus the infertility could be ascribed neither to poor timing of AI nor to gross degeneration of follicles prior to their synchronized ovulation following the prolonged suppression of ovulation. The 12-day progesterone treatments when given to anovulatory cows gave, within 5.5 h of their beginning, a concentration of progesterone in milk that was not significantly different from the maximum reached. This concentration declined during the 12 days of the treatment but remained above pretreatment level until 5.5 h after treatment withdrawal; the maximum reached was about half that in normal ovulation cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
This study focused on the use of radioimmunoassay of progesterone in milk for the diagnosis of post-partum ovarian cyclicity and accurate detection of oestrus and non-pregnancy in cows in the artificial insemination (AI) programme in Bangladesh. In Investigation 1, milk samples were collected on day 0 (day of AI), day 9–13 and day 21–24 from 444 milking cows of various breeds presented for the first post-partum insemination by 413 farmers living at 182 villages/regions in Mymensingh District from 6 AI centres and sub-centres. Each cow was then examined three times after each AI until it stopped returning to oestrus. Sixty to 90 days after the last AI, the cows were examined per rectum to confirm the pregnancy. Milk progesterone data on day 21–24 contributed to a clear diagnosis with respect to non-pregnancy in 100% cows, indicating a possible use of this progesterone assay for identifying non-pregnant cows in AI programmes. In Investigation 2, milk progesterone was monitored two times in a month with a 10-day interval in 88 cows. The samples were taken between 10 days after calving and the first detected oestrus, followed by two more samples 10 days apart. The proportion of cows accurately detected in oestrus was 30%. Another 30% were stated to be in oestrus when they were not (false positive) and 40% were not detected when they were in oestrus (false negative). The mean intervals between calving and oestrus and between calving luteal activity were 40 to 362 days (median = 120, n = 82) and 34 to 398 (median = 111, n = 64) days, respectively. The body condition scores at calving and at the initiation of luteal activity influenced the interval between calving and luteal activity (p < 0.05). Cows suckled twice daily initiated luteal activity earlier than their counterparts suckled several times daily (p < 0.05). Determination of progesterone in milk on day 21–24 is a good means for detecting non-pregnant cows.  相似文献   

16.
The aim of this study was to investigate whether the skim milk progesterone concentrations at artificial insemination (AI) and day of rise of post-ovulatory progesterone concentration thereafter affect the conception and embryonic death rates in repeat-breeding cows. Milk samples were obtained from 96 repeat-breeding cows that failed to conceive to three or more AIs. The samples were taken from the cows at the day of AI and three times/week until day 45 post-AI. Skim milk was obtained after centrifugation and used for progesterone assay. The cows with a progesterone concentration more than 0.5 ng/ml at AI showed a significantly higher incidence of late embryonic death than those having a progesterone concentration<0.5 ng/ml at AI (p<0.01). As the progesterone level at insemination rose, conception rate declined. A negative correlation was shown between conception rate and skim milk progesterone level at AI. Of 56 cows showing a rise of progesterone to 1 ng/ml or more within 6 days after AI, 28 cows (50%) conceived. On the contrary, only eight of 39 cows (20.5%) conceived when the progesterone rose up to 1 ng/ml after day 6 post-AI. We concluded that increased progesterone concentration at the time of AI and delayed rise of progesterone post-AI might lead to decrease in fertility in repeat-breeding cows.  相似文献   

17.
A group of 97 spring-calving beef cows were initially oestrus synchronised with controlled internal drug release (CIDR) intravaginal progesterone implants inserted for nine days and a prostaglandin injection on day 7. Approximately half the cows were given 10 microg buserelin when the implants were inserted, and they all received a single fixed-time artificial insemination (AI) 56 hours after the withdrawal of the implants. The overall pregnancy rate to the first synchronised AI was 55 per cent, the buserelin-treated cows having a pregnancy rate of 63 per cent compared with 47 per cent in the untreated cows (P>0.05). Sixteen days after the first synchronised AI all the cows were re-implanted with used CIDR implants which were removed five days later, and the cows received a second synchronised AI on days 23 to 24. Cows which received the second AI were implanted with new CIDR devices 16 days later and these were removed after five days and the non-pregnant cows received a third synchronised AI. The pregnancy rates to the second and third synchronised services were 74 per cent and 75 per cent, respectively.  相似文献   

18.
The first aim of this study was to determine the influence of the procedures [hormonal treatments for fixed time artificial insemination (FTAI) versus insemination at spontaneous oestrus (SEAI)] on several sequential inseminations (AI). A second aim was to determine the influence of some intrinsic and extrinsic factors and their interactions, including characteristics of the animals such as age, season, farm, sire, and AI technician on the response to both procedures. A retrospective analysis was performed from a data base of 120.807 AIs of healthy cows with at least 40–70 days post-partum at first service. Overall, FTAI achieved slighter greater pregnancy rates than insemination after detected oestrus. The second AI seems to be a key insemination as effects of sire and technician were greater than in the following ones. The use of FTAI or SEAI in one AI did not affect the results of the following AIs, regardless if FTAI or SEAI procedures were used in that AI. Technician had greater variation than sire or farm on final pregnancy rate. The results of each sire for pregnancy rate varied according to the type of insemination, with sires achieving greater results with one or other procedure. Pregnancy rate was positively related to the days in milk in the first two AIs. Results were greater in autumn than in spring services.  相似文献   

19.
Recommendations for oestrus synchronisation of dairy heifers using progesterone-containing intravaginal devices suggest re-insertion of used devices 16 days after first insemination for a period of 5 days to allow a second opportunity for artificial insemination. Controlled studies on the effectiveness of re-using intravaginal devices to synchronise returns to oestrus in non-pregnant dairy heifers are lacking. A clinical trial was conducted involving 750 Friesian heifers in 13 herds. After an initial synchronisation programme, the used intravaginal devices were re-inserted 14 or 16 days after first insemination into half of the heifers in each herd for a period of 5 days. After the first synchronisation programme, 47.5% of heifers remained non-pregnant. Re-insertion of used intravaginal devices for 5 days significantly increased the number of non-pregnant heifers detected in oestrus and inseminated by 48 hours after device removal compared to heifers in which devices were not re-inserted (45.2% v. 27.3%, p < 0.05, in herds where intravaginal devices were re-inserted on day 14; 48.8% v. 13.6%, p < 0.05, in herds where intravaginal devices were re-inserted on day 16). Re-insertion at 14 or 16 days after first insemination was equally effective in increasing visible returns to service. However, the number of non-pregnant heifers synchronised for a second round of artificial insemination was less than expected. Conception rate to the re-synchronised oestrus was unaffected by the treatment. It is concluded that the additional procedures of CIDR re-insertion, removal, tailpainting and insemination involved in there-synchrony programme, and the relatively low in-calf rate to the re-synchronised round of insemination, reduced the potential benefits of re-synchronisation.  相似文献   

20.
The skim milk progesterone profile was assessed by radioimmunoassay, without extraction, from the day of insemination (day 0) until the cows were dried off on day 225 of gestation. A total of 418 samples were collected from 154 pregnant Holstein cows. The daily variation in skim milk progesterone was recorded from day 1 until day 45 of pregnancy to detect the commencement of progesterone secretion from the corpus luteum after insemination. Subsequent determinations were made every 2 weeks from day 46 until lactation ceased. On the day of artificial insemination and for the first 2 days after insemination, all the cows had a basal progesterone concentration <0.1 ng/ml. A rise in progesterone (0.2±0.1 ng/ml) was first detected on the third day after insemination. The progesterone values then increased significantly (p<0.001) until day 15.The values then remained nearly constant (2.5–3.5 ng/ml) until day 106 of pregnancy, when they began to decline. Between days 120 and 180 of gestation, progesterone was significantly decreased (2.2–2.9 ng/ml) before it rose again to the previous plateau (3.5–3.9 ng/ml) around day 180. The progesterone concentration then remained at the higher level until the animals were dried off.Abbreviations AI artificial insemination - RIA radioimmunoassay  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号