首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了研究浮动叶轮轴向间隙变化对其液体泄漏量及压力、液体作用在不锈钢盘上轴向力的影响规律,将径向和轴向的间隙液体流动分别简化为平行平板间粘性层流运动和轴对称二维粘性层流运动,基于液体通过径向和轴向的间隙泄漏量相等,推导出了计算轴向间隙的液体泄漏量及压力、液体作用在不锈钢盘上轴向力的数学表达式。并通过设计实例计算,绘制出了轴向间隙的液体泄漏量和液体作用在不锈钢盘上轴向力与轴向间隙变化的关系曲线,从控制一定泄漏量并减少轴向力的角度出发,分析得出轴向间隙取0.4~0.8mm较为适宜。并在平衡腔内不安装不锈钢盘和石墨盘条件下,计算出了平衡腔内液体作用在叶轮上轴向力。通过比较分析,浮动叶轮有明显减少轴向力的效果。  相似文献   

2.
转子所受的轴向力是关系到离心泵运行稳定性的重要问题,轴向力的大小和方向与离心泵的水力设计、结构设计中的许多参数都有相关性,其中叶轮盖板与蜗壳泵盖之间的轴向间隙是关键影响因素之一。为了量化地探究不同流量下轴向力特性与轴向间隙尺寸之间的关系,该文基于雷诺时均方程(Reynaolds-averaged Navier-Stokes equations,RANS),采用剪切应力传输(Shear Stress Transport)模型,即SST k-ω湍流模型,对一个前盖板含有后弯式副叶片的离心式挖泥泵进行了全流道数值模拟。考虑侧腔流域的多相位定常流动数值模拟得到了与试验测量结果非常吻合的外特性计算结果,各性能参数的计算误差均在5%以内。对该泵在3种轴向间隙下的外特性及轴向力变化规律进行了计算分析,结果表明:随前间隙的增大,泵的效率明显下降,扬程有不同程度的降低,轴功率变化不大;前、后盖板外表面所受轴向力随轴向间隙和流量的改变均有不同程度的变化,而叶轮内流道所受轴向力则基本不变,可视为定值;后盖板所受轴向力的绝对值最大,对总轴向力的方向及变化规律起着决定性作用,叶轮内流道所受轴向力的绝对值最小。随着前间隙的增大,前后盖板上的压力分布越来越均匀,而前后盖板上的速度沿径向均匀分布,基本不受轴向间隙变化影响。因此,在离心泵的水力设计中应综合考虑外特性、轴向力及加工成本,尽量减小前轴向间隙尺寸。本研究可为离心泵的优化设计提供参考。  相似文献   

3.
为了建立一种适合自吸喷灌泵在自吸过程中的气液两相流数值模拟方法,采用 ANSYS CFX 软件,进行仿真自吸喷灌泵自吸过程的数值计算,研究自吸过程中气液混合、气液分离及气液逸出现象,分析自吸过程中泵内部的速度、压力及含气率的变化规律,了解自吸过程的气液两相流特点。自吸泵的整个自吸过程分为3个阶段:自吸初期由叶轮旋转作用排水产生的吸气阶段(t≤0.5 s)、自吸中期由气水混合及气水分离作用产生排气功能的吸气阶段(0.5 s4 s)。自吸成功的关键就是叶轮的旋转迫使叶轮进口处少量的水混合着一部分气体沿着叶轮叶片压力面流动至叶轮出口处并进入正反导叶,然后沿着反导叶叶片压力面流出,表明在自吸过程中气水混合物总是沿着较高的压力面流动。通过采用摄影技术得到多级自吸喷灌泵在自吸初期及中期时泵出口段水柱高度的变化规律,发现试验结果与数值计算结果非常相近,不仅两者的变化规律基本相同,而且其结果相差不超过6%。  相似文献   

4.
为了阐明螺旋角对凸轮泵转子腔内部流量特性的影响规律,揭示螺旋角和凸轮泵特性曲线的定量关系,基于FLUENT动网格技术和RNG k-ε湍流模型,对凸轮泵转子腔内部进行三维瞬态流动数值计算,比较了9种螺旋角凸轮泵转子腔内部流量特性,揭示了螺旋角对转子腔内部瞬态流动结构的影响机制,并通过理论计算及试验验证数值预测分对比析,其相对误差在2.5%~5.7%,具有较高的准确性。研究表明:螺旋角对凸轮泵流量特性及泵腔内部流动有显著影响,相比直叶转子,螺旋转子出口的平均流量和流量脉动幅值均明显降低,从而有效抑制转子腔内二次流、旋涡结构与转子间隙区速度突变;螺旋角为45°~60°时,泵出口平均流量达峰值,泵出口流量脉动幅值最低,转子腔内部流动结构较好,结果表明凸轮泵转子腔最优螺旋角取值为45°~60°。该研究可为凸轮泵转子优化设计提供参考。  相似文献   

5.
旋流泵无叶腔内部流场数值模拟   总被引:7,自引:1,他引:7  
简要介绍了旋流泵国内外的研究历史和现状。对型号为WQX20-16-2.2的旋流泵内部流道进行了三维造型,应用非结构化网格生成技术,首次把旋流泵无叶腔和叶轮作为一个整体,对其内部三维不可压湍流场进行数值模拟。采用工程实际中广泛应用的湍流模型即基于雷诺时均方程和 双方程湍流模型,用SIMPLE算法来求解,给出了旋流泵无叶腔内部速度和压力分布图,并对计算结果进行了分析和研究。结果表明了旋流泵无叶腔内部流动确实存在较强的纵向旋涡和轴向旋涡,不仅验证了前人提出的流动模型的正确性,而且为今后进一步改进和完善旋流泵设计理论提供了一定的依据。  相似文献   

6.
诱导轮与叶轮匹配不合理,是影响微型离心泵运行稳定性的原因之一。为了研究诱导轮与叶轮之间的轴向距离(简称为轴向距离)的匹配对离心泵性能的影响,该文以一台前置诱导轮离心泵为研究对象,采用数值方法定量分析了不同轴向距离对离心泵能量特性、汽蚀特性和压力脉动特性的影响。选取5种轴向距离,分别为0.1S,0.5S,1.0S、1.5S和2.0S(S为诱导轮轴向长度与叶栅稠密度的比值),对离心泵进行三维流场数值预测。结果表明,轴向距离增加后,扬程和效率均有所增加,汽蚀余量降低,但叶轮内压力脉动幅值升高。其中,在额定工况下,当轴向距离增大至1.0S时,扬程提高了0.61 m,效率提高了5.8%,临界汽蚀余量降低了0.4 m;轴向距离继续增大后,各项性能变化不大。综合分析认为,轴向距离为1.0S时,诱导轮与叶轮的匹配性能最佳,有利于离心泵稳定运行。研究结果可为微型离心泵诱导轮与叶轮的匹配设计提供参考。  相似文献   

7.
平衡鼓的轴向力平衡能力是多级离心泵发生故障并影响其寿命的关键因素。该文采用数值模拟方法,在多级泵的外特性、平衡管内压力和泄漏量的数值计算结果与试验结果基本一致的基础上,研究了平衡鼓间隙泄漏量变化对首级叶轮前泵腔的压力分布、首级叶轮及整个叶轮轴向力的影响。研究结果表明:首级叶轮前泵腔中的漩涡区是腔体内压力变化的主要原因。当平衡鼓间隙由0增大到0.5 mm时,首级叶轮的轴向力在间隙为0时最大,在间隙为0.3 mm时最小,其最小值为最大值的20.6%;整个叶轮所受轴向力随着平衡鼓间隙增大呈先减小后增大的趋势。无量纲化的平衡鼓间隙面积大于6.6×10-3时,由于平衡鼓前后压差较小,已无法有效平衡轴向力,在此范围轴承发生断轴的风险较大。该研究可为多级泵平衡鼓设计提供参考。  相似文献   

8.
冷藏库内气体流场数值模拟与验证   总被引:14,自引:13,他引:14  
计算流体力学(CFD)在各种与流体相关的领域内广泛应用,并取得了很好的效果。合理的气体流场才能保证均匀的温度场,这对冷藏库内货物的降温速率和贮藏质量起着至关重要的作用,而常规设计方法很难得到合理的气体流场。本研究以一个(长×宽×高)4.5 m×3.3 m×2.5 m的实验冷库为对象,建立了二维紊流数值计算模型,并采用了SIMPLE算法和交错网格技术进行了求解计算。实验验证表明模型与实际吻合较好。模拟研究揭示整个冷库的流场存在一个中心大回流区、流场主流贴附边界流动、流场在拐角处速度减小。在此基础上,还对可能影响冷藏库内气流组织的多个设计参数(冷风机出口风速,拐角挡板,货物等)进行了模拟研究,研究表明这些参数对冷藏库内流场和温度场都有巨大的影响,进一步说明CFD工具在冷藏库设计和优化设计过程中的重要作用和意义。  相似文献   

9.
斜流泵叶轮水力径向力的数值模拟与试验验证   总被引:2,自引:4,他引:2  
该文采用数值分析法研究了斜流泵叶轮的水力径向力变化规律,通过数值模拟准确地预测了斜流泵的水力性能,扬程预测误差在4.4%以内。通过数值分析获得了斜流泵叶轮的瞬态水力径向力数据,均匀进口条件下,叶轮的瞬态水力径向力均值几乎为零。对瞬态水力径向力进行傅里叶分析,获得其在频域内的分布,结果显示,当工况从0.6倍设计流量点变至0.4倍设计流量点时,1倍和4倍轴频下的径向力突然增大,叶轮的水力不平衡和动静干涉中的叶片通过激励增强了上述频率下的水力径向力数值。流场分析显示,在小流量工况时,叶轮与导叶体之间的回流涡旋完全占据了泵内流道空间。进一步的压力脉动分析证实,在小流量工况下,动静干涉中的叶片通过激励显著增大了叶轮与导叶之间测试点的压力脉动幅值。  相似文献   

10.
半开式离心泵变工况叶顶间隙的流动特性   总被引:1,自引:5,他引:1  
为研究不同工况下,叶顶间隙对半开式叶轮离心泵内部流场及外特性的影响,该文对某半开式叶轮离心泵内部三维湍流流场进行数值模拟。揭示了离心泵内不同工况下叶轮流道和叶顶间隙层内的流动规律,对比分析了4种不同流量工况下叶顶间隙泄漏涡的流动特性、叶顶间隙层总压与相对速度分布,以及流量的变化对离心泵外特性的影响。结果表明:在小流量(设计流量为1.5 m3/h)时,间隙层内充满了泄漏涡,随着流量的增加涡核逐渐减少;大流量时涡核几乎消失,但此时流体速度激增,流动冲击损失变大在叶轮出口与间隙层附近存在着大面积回流,小流量时回流几乎占据了整个出口。通过模型泵外特性试验,验证了数值计算的准确性。该文为离心泵叶顶间隙设计及水力优化提供了参考。  相似文献   

11.
针对轴流泵在输送污水介质中的磨损和缠绕问题,设计了外特性相同但后掠角分别为40°和60°后掠叶片,并采用Particle颗粒模型进行固液两相流数值模拟,发现设计流量工况下60°后掠叶片固相分布情况要优于40°后掠叶片,60°后掠叶片压力面上的固相体积分数平均比40°后掠叶片上的固相体积分数小0.1,60°后掠叶片吸力面上的固相体积分数平均比40°后掠叶片小0.2。进一步对60°后掠叶片进行研究,发现随着颗粒直径的增加,叶片上的固相体积分数随之增加,且固相集中的区域都很相似;随着初始颗粒体积分数的增加,60°后掠叶片上的固相体积分数也随之增加,但初始颗粒体积分数越大,对后掠叶片压力面上固相体积分数的影响越小。为检验后掠叶片的抗缠绕能力,对60°后掠叶片进行缠绕试验,发现单独的后掠叶片形式的轴流叶轮不易发生缠绕,但当叶轮与套筒配合后,若面对大量棉线,容易在进口边轮缘处发生堆积。该研究为输送污水介质轴流泵的抗磨损和抗缠绕性能的研究提供了参考。  相似文献   

12.
为研究机电一体化轴流泵间隙泄漏流对泵内流场结构的影响规律及机制,该研究基于RNG k-ε湍流模型,利用ANSYS CFX仿真软件对该泵进行不同流量工况(1 674~2 510 m3/h)的全流场瞬态数值模拟。具体分析该泵压力、湍动能和涡量场分布情况,研究转子摩擦损耗和泄漏量随流量变化的关系,并揭示径向速度和叶轮效率的变化规律,明确机电一体化轴流泵的泄漏流流动特性。研究结果表明:在额定工况(2 092 m3/h)下,机电一体化轴流泵电机转子外壁面的机械摩擦损耗扭矩占泵总扭矩的19.1%,且占比随流量的增加而增大;流体流经该泵电机定转子间隙并泄漏回流至叶轮入口,形成射流,使得叶轮入口轮缘位置存在明显的径向流动。该流动导致叶轮流道内径向系数为0.9~1.0的近轮缘位置出现高湍动能、强涡量区域,引起该区域水力损失增大,水力效率降低,且流量越小,影响越为显著。因此,机电一体化轴流泵节能设计的重点在于电机与叶轮协同设计,在满足水力性能的前提下尽可能降低转子摩擦损耗以及间隙泄漏流流动对叶轮进口流场结构的破坏。研究结果可为机电一体化轴流泵的研究及性能提升提供...  相似文献   

13.
当轴流泵在小流量工况下运行时,由于叶轮进口的冲角增大,导致在叶轮内产生脱流等不稳定流动结构,降低泵的水力性能。该文采用计算流体动力学分析方法对轴流泵内部流场进行了研究,结果表明:该轴流泵的特性曲线存在明显的驼峰区域,在0.3到0.61倍最优流量工况区间,轴流泵的扬程和效率明显下降。在临界失速工况下(0.61倍最优流量工况),叶片吸力面前缘靠近轮缘处及叶片尾缘靠近轮毂处均出现了脱流;在深度失速工况下(0.45倍最优流量工况),脱流进一步发展,并与来流共同作用形成稳定的涡旋结构,阻塞整个流道。为了提高轴流泵在小流量工况下的水力性能,引入一种轴流泵进口管开槽技术,分析其对轴流泵内部流场的影响及驼峰的改善作用。结果表明:在小流量工况下,轴向开槽可以减小叶轮进口环量和冲角,可以减小叶片背部的脱流,轴流泵的驼峰得到明显的改善。开槽深度是改善轴流泵小流量工况下驼峰的重要因素之一,当槽深与叶轮直径比为0.02时,叶轮内的通道涡几乎完全消除,轴流泵深度失速工况点的扬程、效率分别提高了66%和32%,极大地改善了轴流泵的水力性能。沟槽数目越多,槽长越长,消除驼峰的能力越好,60个沟槽与2/3倍叶轮直径的槽长在其他参数相同的条件下消除驼峰的能力更强。该文可为避免轴流泵内部的失速流动以及消除水力性能曲线上的驼峰相关研究提供参考。  相似文献   

14.
基于CFD计算的轴流泵改型设计和效果   总被引:1,自引:4,他引:1  
为了解决南水北调淮安二站改造工程中,水泵水力模型TJ05-ZL-02与现场土建结构存在的轮毂比不对应的问题,该文基于CFD数值计算针对淮安二站主水泵进行改型分析研究。将轮毂比为0.4的TJ05-ZL-02水力模型改成轮毂比为0.4667的新模型,确保改型之后的水泵模型跟TJ05-ZL-02水力模型性能相似,能够满足淮安二站调水、排涝的工程要求,同时应适当减小流量系数,适当降低高效区扬程。在改型设计时,研究主要设计参数对轴流泵性能的影响,控制叶片性能变化的方向,采用CFD数值计算的方法,对设计参数改变后的轴流泵水力性能进行验证,确定最终的改型设计方案。通过数值模拟对TJ05-ZL-02和改型的最终设计方案进行泵装置性能研究。最后将改型方案的模型泵装置试验结果与数值模拟结果对比,近一步对改型方案的可行性进行论证分析。研究结果表明:改型后轴流泵性能高效区扬程和流量,完全能够满足淮安二站运行要求;改型后轴流泵装置效率超过了70%,而原先淮安二站运行效率仅有54%,效率提高近20%,提高了调水性能,节约了运行成本;同时研究成果对今后的轴流泵改型设计具有重要的指导意义。  相似文献   

15.
为分析叶片安放角对轴流泵马鞍区工况运行特性的影响,以比转速822的轴流泵为研究模型,试验测试了不同叶片安放角下的运行特性。研究表明:随着叶片安放角的增大,模型泵最优工况处的扬程、流量和效率均逐渐增大,-4°到+4°的增幅分别为10.4%,26.7%和0.87%;不同安放角下,泵扬程曲线均存在明显的马鞍区;随着叶片安放角的增大,试验泵马鞍区的绝对位置向右上方偏移,但相对位置仍主要位于0.5QBEP~0.6QBEP(QBEP为最高效率点对应的额定流量),且均在0.55QBEP时扬程达到最小值;随着叶片安放角的减小,马鞍区内相对扬程在逐渐增大,马鞍区驼峰特性有所改善;随着叶片安放角的增大,各个安放角下马鞍区范围内的压力脉动较最优工况下更剧烈;叶轮进口压力脉动主频为叶片通过频率,泵出口处压力脉动主要受导叶影响,随流量减小逐渐向高频移动;随着叶片安放角的增大,叶轮进口和泵出口处主频处的压力脉动幅值均逐渐增大,在叶轮进口处,0.6QBEP和0.55QBEP时压力脉动幅值最大增幅分别达1.78和1.65倍,在泵出口处,正安放角下压力脉动幅值相对负角度有所增大;内流分析表明小流量工况下叶轮进口存在回流现象,叶轮出口靠近轮毂处有明显旋涡,导致小流量下压力脉动幅值增大。  相似文献   

16.
为研究渣浆泵运行过程中叶轮的磨损情况,该文以一台离心式工程塑料渣浆泵为研究对象,对其全流场进行了结构化网格划分,首先对包括设计工况点在内的5个工况进行了清水条件下的数值模拟,并与试验数据进行对比,发现最大误差不超过5%,设计工况点误差不超过3%,说明所用数值模拟方法得到的结果是可信的。随后基于ANSYS CFX商用软件中的Particle欧拉多相流模型,对模型泵内流场进行了固液两相数值模拟并进行了快速磨损试验,模拟与试验结果表明:叶轮磨损较严重的部位位于叶片进口边、流道中前段靠近叶片压力面的后盖板内侧、叶片压力面与后盖板交界处及叶片压力面端面;背叶片的磨损主要发生在叶片压力面外缘,并由此处开始往轮毂处发展,磨损形状大致呈抛物线型,分析认为隔舌处的高压引起流道中颗粒相回流撞击背叶片外缘是造成背叶片磨损的主要原因。通过模拟结果与试验结果的对比,证明所采用的数值模拟方法可以有效地预测渣浆泵运行时叶轮的磨损,其结果可较好地解释磨损产生的原因,该研究可为今后渣浆泵叶轮抗磨损性能的优化设计提供参考。  相似文献   

17.
为了研究叶轮和叶片2种切割方法下不同切割角度对离心泵外特性的影响,采用FLUENT软件模拟了中比转数泵叶轮切割后的内部流动,并预测了相应的外特性;考虑切割角度、切割量和比转速的影响,对现有切割公式进行了修正。外特性预测结果表明,在相同切割量下,切割叶轮后的扬程降低量明显大于切割叶片后的扬程降低量;切割角度在0~10°范围内,正向斜切的效率高于正切和反向斜切;切割叶轮时的轴功率明显小于切割叶片时的轴功率;切割角度在10°~10°范围内,斜切的轴功率均低于正切的轴功率。内部流场分析表明,在相同切割量下,随着叶轮切割角度的增大,正向斜切明显减弱了正切时的涡流现象。无论正切还是斜切,切割叶片的效果优于切割叶轮。研究结果可为中比转数离心泵的叶轮切割提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号