首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
以马尾松为试验对象,研究了微波干燥过程中,初含水率对木材内部温度、水蒸气压力的影响,旨在为微波干燥过程中木材干燥质量的控制提供依据。研究结果表明:在微波辐射功率相同的条件下,不同初含水率的木材内部蒸汽达到最大值的时间很接近,并且木材初含水率越高,木材内部蒸汽压力上升越快,压力峰值越大,最大压力值保持的时间越短,蒸汽压力下降的越迅速。木材在微波加热过程中,木材温度达到恒温段之前,压力上升比较缓慢,达到恒温段之后,压力迅速上升,很快达到最大压力值。木材初含水率高,压力峰值大,其相应的温度也高。  相似文献   

2.
将马尾松Pinus massoniana板材置于不同的电场(相距为20 mm电板间的一定电势差)中,经过不同时间的处理后,测试和分析其在厚度(高度)方向的含水率梯度,并与未经电场处理的板材比较,研究电场强度及其作用时间与马尾松木材含水率梯度的影响.研究结果表明:①电场强度与作用时间对马尾松木材厚度(高度)方向的含水率梯度有影响;②厚度(高度)方向的含水率梯度随电场强度(相距为20 mm电板间的电势差)和作用时间的增加都有不断下移的趋势;③电场方向对马尾松木材厚度(高度)方向的含水率梯度的变化无影响.图5参26  相似文献   

3.
核磁共振技术在分析木材微波干燥过程中水分移动的应用   总被引:1,自引:1,他引:1  
在马尾松木材微波干燥水分迁移试验中,利用核磁共振技术测量微波干燥过程中T2弛豫时间和MRI成像图,以及各干燥阶段温度和压力分布,分析了水分含量变化和迁移动力。结果表明,木材含水率在纤维饱和点以上时,水分移动的主要驱动力应该是温度引起的水蒸汽压力梯度,它使木材中水分以蒸汽的形式排出,相对来讲含水率梯度则影响较小,干燥过程呈现等速干燥。在纤维饱和点以下时,微波干燥过程水分移动的主要驱动力为水蒸汽压力梯度,木材内含水率浓度梯度对水分移动也具有一定的影响。  相似文献   

4.
马尾松木材微波干燥特性的研究   总被引:1,自引:0,他引:1  
研究了马尾松Pinus massoniana木材微波干燥速度、温度梯度和含水率梯度随时间的变化规律。实验结果表明,微波连续干燥过程明显分为加速段、等速段和减速段3个阶段,等速段在整个干燥过程中占的比例最大。微波干燥过程中,温度的变化大致分为初期升温,等温和后期升温3个阶段,初期升温和等温阶段木材内温度分布比较均匀,后期升温阶段木材内的温差逐渐增大。微波干燥过程中,在整个横断面上,木材初含水率梯度没有被加大,而是被均匀化,甚至还出现木材表面含水率提高的情况。图6参10  相似文献   

5.
微波真空干燥过程中木材内的水分迁移机理   总被引:9,自引:3,他引:9  
该文以马尾松木材为研究对象,对微波真空干燥过程中木材内部的含水率分布进行了研究,首次阐述了微波真空干燥过程中木材内部的水分迁移机理.研究结果表明:在微波真空干燥过程中,木材内部的含水率分布比较均匀,在厚度方向没有明显的整体性含水率梯度,特别是在干燥的后期,木材内部的含水率分布更加均匀;当含水率在纤维饱和点(FSP)以上时,木材中的自由水和水蒸气在压力梯度的作用下以渗透流的形式在木材内部迁移;当含水率在FSP以下时,木材中的水分在压力梯度的作用下以水蒸气的形式向木材表面迁移;因热扩散、含水率梯度引起的水分迁移可以忽略不计.   相似文献   

6.
微波真空干燥过程中木材内部的温度分布   总被引:4,自引:2,他引:2  
该文以马尾松木材为研究对象,对微波真空干燥过程中木材内部的温度分布进行了研究.结果表明:在一定的辐射功率(160 kW/m3)和厚度(60 mm)范围内,木材内的温度分布比较均匀,基本不呈现出整体性的温度梯度;在干燥的后期,木材内温度分布的局部不均匀性有加大的趋势;在微波真空干燥过程中,木材内部的温度差是由于微波场和湿木材本身不同部位介电特性的差异引起的,这种不均匀性以局部的形式存在于木材中.   相似文献   

7.
马尾松木材浮压干燥过程中的传质传热特性   总被引:2,自引:5,他引:2  
该文阐述了在真空状态且浮压条件下马尾松的干燥过程特性,揭示了加热温度、木材含水率、真空度及真空度变化频率对木材表面水分蒸发强度的影响.实验证实,提高温度、真空度和加快真空度变化频率都有利于加快木材内水分的迁移.真空频率加快时,木材内的温度场变化也加快,干燥时间明显缩短.此外,当外界压力不变时,木材表面水分蒸发强度随含水率的提高而增强,纤维饱和点以下更有明显的区别.  相似文献   

8.
以杉木、马尾松木材为试验材料,采用零距拉伸技术评价了木材管胞纵向抗拉强度,比较了不同含水率条件下管胞抗拉强度的差异,探讨了水分的影响机制。此外,重点研究了热处理对木材管胞纵向抗拉强度的影响,分析了管胞强度变化与化学成分、纤维素结晶度之间的关系。结果表明,杉木早材管胞纵向抗拉强度平均值为499 MPa,马尾松早材管胞平均值461 MPa;两种木材管胞在饱水态下的抗拉强度比气干态均较低;在160~220℃、1~3 h热处理条件下马尾松木材早材管胞纵向抗拉强度与素材相比有所降低。  相似文献   

9.
木材真空-浮压干燥过程中吸着水迁移特性分析   总被引:2,自引:0,他引:2  
该文以马尾松为试验材料 ,通过对水分扩散系数和浮压系数的试验研究 ,总结出木材在真空 浮压干燥过程中吸着水迁移的基本规律 .试验分析表明 ,真空 浮压干燥过程中 ,含水率梯度不是水分移动的主要驱动力 .在纤维饱和点以下时 ,木材内部吸着水的迁移可分为 :水蒸汽压力梯度下的扩散迁移和由于干燥介质压力的波动而引起的浮动压力下的迁移两个部分 .由数据分析可见 ,当介质温度一定时 ,木材水分扩散系数随绝对压力的减小和压力变化速率的加大而增加 ,且压力变化速率对扩散系数的影响大于绝对压力的影响  相似文献   

10.
以马尾松(Pinus massoniana Lamb.)素材(对照)及热处理材(处理温度分别为145、160、175℃)为研究对象,参照LY/T 2054—2012《锯材机械加工性能评价方法》对其机械加工性能进行评价,利用元素分析仪和傅立叶变换红外光谱仪(FTIR)对其化学组成成分进行了定性分析,探索高温热处理对马尾松人工林木材机械加工性能的影响.结果表明,175℃以下热处理,对马尾松木材综合机械加工性能的影响不大;但对单项机械加工性能的影响各有不同,主要表现为:热处理后,马尾松木材的刨削、铣削性能得到提高,而砂削、钻削、车削、开榫性能则随着处理温度的升高表现出先降低后升高的规律.通过对热处理材化学组成成分的定性分析,发现在145~175℃的热处理过程中,木材组分中的羟基数量减少,半纤维素部分降解,结晶度增加,且木材中C元素质量分数呈增加趋势,而H、O元素质量分数呈降低趋势.高温热处理会在一定程度上改变马尾松木材的机械加工性能,影响到其后续加工利用.  相似文献   

11.
木材纤维对撞流干燥特性的研究   总被引:3,自引:0,他引:3  
该文以垂直 倾斜半环多级组合对撞流干燥系统为研究对象 ,通过对木质纤维进行初含水率、气流流量、气流温度和带载率等系统参数的实验研究 ,探讨木质纤维的对撞流干燥特性 .研究结果表明 :木质纤维干燥的气流温度在 90℃时即可达到当前中密度纤维板生产中利用气流干燥所普遍采用的 12 0℃才能达到的效果 ;气流流量的变化除引起流场变化外 ,还会影响纤维在对撞腔内的停留时间和穿透深度 ,从而影响干燥效果 ;带载率的变化在一定范围内不会影响纤维干燥的质量 ,但影响系统产量 ;系统能够适应现有生产系统纤维原料初含水率的变化 ,干燥品质不受初含水率的影响 ;采用对撞流干燥系统可以使设备管道长度大大缩短 ,从现有气流干燥使用的 10 0m以上的长度 ,缩短为 13 5m .  相似文献   

12.
木材中非等温水分迁移的研究   总被引:1,自引:1,他引:0  
为研究微波真空等高强度干燥过程中,温度梯度对木材中水分迁移的影响程度,该文通过试验测定了封闭马尾松木材试件在短期温度梯度作用下,木材内部温度场和含水率场的分布,含水率梯度与温度梯度比值的大小(dM/dT)及其影响因素. 试验结果表明:在短期温度梯度的作用下,木材内部的水分会从热端向冷端迁移,使冷端的木材含水率高于热端,形成方向相反的温度梯度场和含水率梯度场,且dM/dT在0.9%/℃以下;木材内温度、初始含水率和作用时间是影响dM/dT的重要因素;随着木材温度和初始含水率的增加,木材中的dM/dT越大;随着作用时间的延长,木材中的dM/dT增加.   相似文献   

13.
为实现干燥过程中树盘含水率的在线精准检测,分析了环境温度对电阻应变式称质量装置测量精度的影响规律,获得了利用环境温度和电测质量计算精准质量的二元回归方程,并用其将树盘的电测质量校正为精准质量。用树盘绝干质量、干燥过程中在线测算的精准质量计算含水率实际值,对HYD-B型含水率仪进行了实验校正。探讨了纤维饱和点之下探针深度、间距、位置及材温补偿和介质温度补偿对含水率仪测量精度的影响规律,确定适宜的探针深度和间距,得到了适宜探针深度、间距下含水率测值的修正公式。结果显示:称质量装置测量精度的二元回归校正方程的相关系数达0.99;纤维饱和点以下,探针插入木材深度距离上表面为木材厚度的1/2~2/3、间距30 mm时,含水率仪检测精度高;材温补偿和介质温度补偿对检测精度影响不大,可用方便的介质温度补偿代替材温补偿。  相似文献   

14.
预热是木材干燥的重要环节 ,实践中一般仅凭经验来确定预热时间 .该文对木材预热时间进行了理论计算和试验验证 ,并将试验数据与经验预热时间进行了对比分析 ,讨论了木材厚度、预热温度、含水率、基本密度对预热时间的影响程度 .试验及分析结果表明 :①理论预热时间与试验值很接近 ,通过理论计算来确定木材的预热时间是可行的 .②经验预热时间与试验值相差很大 ,其比值介于 2 2~ 8 6之间 .③木材含水率和基本密度对预热时间无显著影响 ;预热温度对预热时间有一定的影响 ;木材厚度是影响预热时间的最主要因素 .  相似文献   

15.
生物质燃料燃烧机理及影响其燃烧的因素分析   总被引:1,自引:0,他引:1  
生物质燃料是一种资源储量大、清洁环保的可再生能源,研究其燃烧机理是一项非常有价值的工作。主要以秸秆燃料为例对生物质燃料的燃烧机理进行详细介绍;分别从炉膛温度、空气量、生物质燃料颗粒尺寸、反应时间、水分含量、灰分含量以及气固混合比等方面对影响生物质燃料燃烧的因素进行详细分析;对生物质燃料燃烧设备的设计有针对性地提出一些建议。  相似文献   

16.
热处理木材的水分吸着热力学特性   总被引:5,自引:2,他引:5  
为了弄清楚热处理木材细胞壁中的水分吸着环境,即由半纤维素和木素组成的无定形区构造的变化,本研究通过对未处理及150,180,230℃处理云杉材在温度为20℃和50℃时的水分吸着等温线的测定,得到了吸着水的微分吸着热QL、微分吸着自由能ΔG及微分吸着熵TΔS与水分吸着量W、热处理温度之间的关系.结果表明:①与未处理木材相比,热处理木材的水分吸着机构发生变化,即第一层吸着和第二层吸着不具有时间上的重叠性;②随着热处理温度的升高,水分吸着量减少,这是由于吸湿性的半纤维素发生变化而致;③在相对湿度为60%时,微分吸着热QL和微分吸着熵TΔS随着热处理温度的升高而减少,这一现象意味着水分子与木材分子之间形成的氢键结合数量上的减少.  相似文献   

17.
人工林刺槐木材物理力学性质研究   总被引:2,自引:1,他引:1  
目的刺槐作为我国重要的速生用材树种,被广泛应用于北方人工林种植,深入研究刺槐木材的物理力学性质,为刺槐人工林建设经营以及木材的高效精细化利用提供科学依据。方法本文对采自于山东省东营市刺槐林场的4株不同树龄人工林刺槐沿树干等分成0.65 m长若干小段并顺序编号,测定和分析每段木材的物理性质(气干密度、全干密度、基本密度)、力学性质(顺纹抗压强度、横纹径向全部抗压强度、横纹弦向全部抗压强度、抗弯强度、抗弯弹性模量)以及化学组分(纤维素、半纤维素、木质素)含量,并通过SEM电镜扫描图对各段木材的微观构造进行对比分析。结果刺槐木材的气干密度、全干密度、基本密度、顺纹抗压强度、横纹全部抗压强度(径向、弦向)、抗弯强度、抗弯弹性模量均随树龄的增大而增加,随树干位置增高呈现先增大后减小的规律。将木材气干密度与顺纹抗压强度、横纹(径向、弦向)全部抗压强度、抗弯强度、抗弯弹性模量分别进行线性和幂函数拟合,两种模型均能很好地拟合试验结果,拟合度R2值为0.865~0.895。各段木材化学组分中纤维素含量随树龄及树干高度位置的变化规律与木材各项力学性质的变化规律相似。木材的微观构造中导管占比率随树龄增大而减少,随树干高度位置增加呈现出先减后增的变化规律。结论10年生、15年生、20年生、25年生刺槐木材的气干密度、顺纹抗压强度、抗弯强度、抗弯弹性模量均为中级以上,是良好的家具和建筑用材。在利用时应充分考虑不同树龄木材和树干不同位置的差别。密度作为影响木材力学性质的直接要素,可根据相关方程通过刺槐木材的密度值估算部分力学性质的数值。刺槐木材纤维素含量与木材各项宏观力学性质相关度很高,而木材导管占比率的差异则从微观构造上揭示了木材密度变化的内在机理。   相似文献   

18.
木材微波加热过程中的表面温度和干燥速度   总被引:1,自引:0,他引:1  
测定并分析了不同微波加热功率,加热时间条件下木材的表面温度、干燥度和含水率的变化规律。结果表明:微波加热功率是影响木材表面温度和干燥速度的主要因素,在不同的微波加热功率下木材表面温度随加热时间的延长而增加,木材含水率随加热时间的延长而减少。微波加热过程中木材温度达到或超过木素和半纤维素的软化温度。  相似文献   

19.
间歇微波干燥过程中木材内含水率动态分布规律   总被引:2,自引:0,他引:2  
为研究微波干燥过程中木材内部的含水率动态分布规律,以红橡和南方松木材为研究对象,采用无损检测的X射线扫描方法,揭示间歇微波干燥过程中木材内部含水率分布的动态变化规律。结果表明:微波干燥的绝大部分时间内,木材厚度方向存在着整体性内高外低的含水率梯度场;随着干燥过程的进行,木材内部水分更趋均匀,当木材平均含水率在10%以下时,木材内水分分布非常均匀;在整个微波干燥过程中,木材内部虽然发现了部分内层含水率低于外层的情况,但并未出现与常规干燥相反的含水率梯度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号