首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protease nexin-II (PN-II) [amyloid beta-protein precursor (APP)] and the amyloid beta-protein are major constituents of neuritic plaques and cerebrovascular deposits in individuals with Alzheimer's disease and Down syndrome. Both the brain and the circulation have been implicated as sources of these molecules, although they have not been detected in blood. Human platelets have now been found to contain relatively large amounts of PN-II/APP. Platelet PN-II/APP was localized in platelet alpha-granules and was secreted upon platelet activation. Because PN-II/APP is a potent protease inhibitor and possesses growth factor activity, these results implicate PN-II/APP in wound repair. In certain disease states, alterations in platelet release and processing and clearance of PN-II/APP and its derived fragments could lead to pathological accumulation of these proteins.  相似文献   

2.
Amyloid beta protein enhances the survival of hippocampal neurons in vitro   总被引:24,自引:0,他引:24  
The beta-amyloid protein is progressively deposited in Alzheimer's disease as vascular amyloid and as the amyloid cores of neuritic plaques. Contrary to its metabolically inert appearance, this peptide may have biological activity. To evaluate this possibility, a peptide ligand homologous to the first 28 residues of the beta-amyloid protein (beta 1-28) was tested in cultures of hippocampal pyramidal neurons for neurotrophic or neurotoxic effects. The beta 1-28 appeared to have neurotrophic activity because it enhanced neuronal survival under the culture conditions examined. This finding may help elucidate the sequence of events leading to plaque formation and neuronal damage in Alzheimer's disease.  相似文献   

3.
Alzheimer's disease is a form of localized amyloidosis characterized by cerebral cortical amyloid plaques, neurofibrillary tangles, and amyloid deposits within the walls of leptomeningeal vessels. Although most cases of Alzheimer's disease are sporadic, kindreds with autosomal-dominant inheritance of the syndrome suggest that a single mutation may be important in pathogenesis. Direct sequencing of DNA from a family with autopsy-proven Alzheimer's disease revealed a single amino acid substitution (Phe for Val) in the transmembrane domain of the amyloid precursor protein. This mutation correlates with the presence of Alzheimer's disease in all patients in this study, and may be the inherited factor causing both amyloid fibril formation and dementia.  相似文献   

4.
Alzheimer's disease is characterized by widespread deposition of amyloid in the central nervous system. The 4-kilodalton amyloid beta protein is derived from a larger amyloid precursor protein and forms amyloid deposits in the brain by an unknown pathological mechanism. Except for aged nonhuman primates, there is no animal model for Alzheimer's disease. Transgenic mice expressing amyloid beta protein in the brain could provide such a model. To investigate this possibility, the 4-kilodalton human amyloid beta protein was expressed under the control of the promoter of the human amyloid precursor protein in two lines of transgenic mice. Amyloid beta protein accumulated in the dendrites of some but not all hippocampal neurons in 1-year-old transgenic mice. Aggregates of the amyloid beta protein formed amyloid-like fibrils that are similar in appearance to those in the brains of patients with Alzheimer's disease.  相似文献   

5.
The amyloid beta peptide (A beta P) is a small fragment of the much larger, broadly distributed amyloid precursor protein (APP). Abundant A beta P deposition in the brains of patients with Alzheimer's disease suggests that altered APP processing may represent a key pathogenic event. Direct protein structural analyses showed that constitutive processing in human embryonic kidney 293 cells cleaves APP in the interior of the A beta P, thus preventing A beta P deposition. A deficiency of this processing event may ultimately prove to be the etiological event in Alzheimer's disease that gives rise to senile plaque formation.  相似文献   

6.
Gene dosage of the amyloid beta precursor protein in Alzheimer's disease   总被引:16,自引:0,他引:16  
The progressive deposition in the human brain of amyloid filaments composed of the amyloid beta protein is a principal feature of Alzheimer's disease (AD). Densitometric analysis of Southern blots probed with a complementary DNA for the amyloid protein has been carried out to determine the relative dosage of this gene in genomic DNA of 14 patients with AD, 12 aged normal subjects, and 10 patients with trisomy 21 (Down syndrome). Whereas patients in the last group showed the expected 1.5-fold increase in dosage of this gene, none of the patients with AD had a gene dosage higher than that of the normal controls. These results do not support the hypothesis that the genetic defect in AD involves duplication of a segment of chromosome 21 containing the amyloid gene. Alternative mechanisms for the brain-specific increase in amyloid protein deposition in AD should be considered.  相似文献   

7.
The distribution of cells containing messenger RNA that encodes amyloid beta protein was determined in hippocampi and in various cortical regions from cynomolgus monkeys, normal humans, and patients with Alzheimer's disease by in situ hybridization. Both 35S-labeled RNA antisense and sense probes to amyloid beta protein messenger RNA were used to ensure specific hybridization. Messenger RNA for amyloid beta protein was expressed in a subset of neurons in the prefrontal cortex from monkeys, normal humans, and patients with Alzheimer's disease. This messenger RNA was also present in the neurons of all the hippocampal fields from monkeys, normal humans and, although to a lesser extent in cornu ammonis 1, patients with Alzheimer's disease. The distribution of amyloid beta protein messenger RNA was similar to that of the neurofibrillary tangles of Alzheimer's disease in some regions, but the messenger RNA was also expressed in other neurons that are not usually involved in the pathology of Alzheimer's disease.  相似文献   

8.
One hundred years ago a small group of psychiatrists described the abnormal protein deposits in the brain that define the most common neurodegenerative diseases. Over the past 25 years, it has become clear that the proteins forming the deposits are central to the disease process. Amyloid-beta and tau make up the plaques and tangles of Alzheimer's disease, where these normally soluble proteins assemble into amyloid-like filaments. Tau inclusions are also found in a number of related disorders. Genetic studies have shown that dysfunction of amyloid-beta or tau is sufficient to cause dementia. The ongoing molecular dissection of the neurodegenerative pathways is expected to lead to a true understanding of disease pathogenesis.  相似文献   

9.
A method is described for the partial purification of the paired helical filaments that accumulate progressively in human neurons in Alzheimer's disease (senile dementia). Paired helical filaments have unusual solubility characteristics, including insolubility in sodium dodecyl sulfate, urea, reducing agent, and guanidine, which prevent analysis of their molecular composition by gel electrophoresis. The paired helical filaments appear to contain covalent bonds other than disulfide, which cross-link individual filaments into a rigid intracellular polymer. Thus, paired helical filaments appear to represent an example in neurons of an insoluble cross-linked protein. Covalently cross-linked protein polymers occur in lens senile cataracts and in terminally differentiated skin keratinocytes, suggesting that there may be a common mechanism for remodeling some structural proteins during cell aging.  相似文献   

10.
Human hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D), an autosomal dominant form of cerebral amyloid angiopathy (CAA), is characterized by extensive amyloid deposition in the small leptomeningeal arteries and cortical arterioles, which lead to an early death of those afflicted in their fifth or sixth decade. Immunohistochemical and biochemical studies have indicated that the amyloid subunit in HCHWA-D is antigenically related to and homologous in sequence with the amyloid beta protein isolated from brains of patients with Alzheimer's disease and Down syndrome. The amyloid beta protein is encoded by the amyloid beta protein precursor (APP) gene located on chromosome 21. Restriction fragment length polymorphisms detected by the APP gene were used to examine whether this gene is a candidate for the genetic defect in HCHWA-D. The data indicate that the APP gene is tightly linked to HCHWA-D and therefore, in contrast to familial Alzheimer's disease, cannot be excluded as the site of mutation in HCHWA-D.  相似文献   

11.
In prion and Alzheimer's diseases, the roles played by amyloid versus nonamyloid deposits in brain damage remain unresolved. In scrapie-infected transgenic mice expressing prion protein (PrP) lacking the glycosylphosphatidylinositol (GPI) membrane anchor, abnormal protease-resistant PrPres was deposited as amyloid plaques, rather than the usual nonamyloid form of PrPres. Although PrPres amyloid plaques induced brain damage reminiscent of Alzheimer's disease, clinical manifestations were minimal. In contrast, combined expression of anchorless and wild-type PrP produced accelerated clinical scrapie. Thus, the PrP GPI anchor may play a role in the pathogenesis of prion diseases.  相似文献   

12.
The secondary structures in solution of the synthetic, naturally occurring, amyloid beta peptides, residues 1 to 42 [beta (1-42)] and beta (1-39), and related fragments, beta (1-28) and beta (29-42), have been studied by circular dichroism and two-dimensional nuclear magnetic resonance spectroscopy. In patients with Alzheimer's disease, extracellular amyloid plaque core is primarily composed of beta (1-42), whereas cerebrovascular amyloid contains the more soluble beta (1-39). In aqueous trifluoroethanol solution, the beta (1-28), beta (1-39), and beta (1-42) peptides adopt monomeric alpha-helical structures at both low and high pH, whereas at intermediate pH (4 to 7) an oligomeric beta structure (the probable structure in plaques) predominates. Thus, beta peptide is not by itself an insoluble protein (as originally thought), and localized or normal age-related alterations of pH may be necessary for the self-assembly and deposition of beta peptide. The hydrophobic carboxyl-terminal segment, beta(29-42), exists exclusively as an oligomeric beta sheet in solution, regardless of differences in solvent, pH, or temperature, suggesting that this segment directs the folding of the complete beta (1-42) peptide to produce the beta-pleated sheet found in amyloid plaques.  相似文献   

13.
Amyloid is associated with debilitating human ailments including Alzheimer's and prion diseases. Biochemical, biophysical, and imaging analyses revealed that fibers produced by Escherichia coli called curli were amyloid. The CsgA curlin subunit, purified in the absence of the CsgB nucleator, adopted a soluble, unstructured form that upon prolonged incubation assembled into fibers that were indistinguishable from curli. In vivo, curli biogenesis was dependent on the nucleation-precipitation machinery requiring the CsgE and CsgF chaperone-like and nucleator proteins, respectively. Unlike eukaryotic amyloid formation, curli biogenesis is a productive pathway requiring a specific assembly machinery.  相似文献   

14.
The amyloid beta protein peptide is a major constituent of amyloid plaque cores in Alzheimer's disease and is apparently derived from a higher molecular weight precursor. It is now shown that the core protein of a heparan sulfate proteoglycan secreted from a nerve cell line (PC12) has an amino acid sequence and a size very similar to those of the amyloid beta protein precursor and that these molecules are antigenically related. This amyloid beta protein precursor-related protein is not found in the conditioned medium of a variant cell line (F3 PC12) that does not secrete heparan sulfate proteoglycan. The synaptic localization and metabolism of this class of proteoglycans are consistent with its potential involvement in central nervous system dysfunction.  相似文献   

15.
16.
We identified axonal defects in mouse models of Alzheimer's disease that preceded known disease-related pathology by more than a year; we observed similar axonal defects in the early stages of Alzheimer's disease in humans. Axonal defects consisted of swellings that accumulated abnormal amounts of microtubule-associated and molecular motor proteins, organelles, and vesicles. Impairing axonal transport by reducing the dosage of a kinesin molecular motor protein enhanced the frequency of axonal defects and increased amyloid-beta peptide levels and amyloid deposition. Reductions in microtubule-dependent transport may stimulate proteolytic processing of beta-amyloid precursor protein, resulting in the development of senile plaques and Alzheimer's disease.  相似文献   

17.
With the recently cloned complementary DNA probe, lambda Am4 for the chromosome 21 gene encoding brain amyloid polypeptide (beta amyloid protein) of Alzheimer's disease, leukocyte DNA from three patients with sporadic Alzheimer's disease and two patients with karyotypically normal Down syndrome was found to contain three copies of this gene. Because a small region of chromosome 21 containing the ets-2 gene is duplicated in patients with Alzheimer's disease, as well as in karyotypically normal Down syndrome, duplication of a subsection of the critical segment of chromosome 21 that is duplicated in Down syndrome may be the genetic defect in Alzheimer's disease.  相似文献   

18.
19.
Atomic view of a toxic amyloid small oligomer   总被引:1,自引:0,他引:1  
Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein αB crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: β-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the β-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.  相似文献   

20.
It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid beta-peptide (Abeta) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Abeta in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Abeta production and Abeta clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号