首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friction force that can be defined as the forces resisting relative to the movement between two surfaces contacting with each other plays an important role in textile industry. During usage, the fabrics continue to friction to the textile or the other surfaces and because of this problem fabric surface structure deteriorates. Therefore, most of the scientists have been designed different methods in order to estimate surface properties and friction of fabric before their usage. In this study, friction experiments have been performed by designed and manufactured two different systems which work as a horizontal platform and inclined plane. It has tried to investigate friction properties of polyester nonwoven fabric samples which are produced by spunlace methods (air laid and spunlace bonding) with different weights. While the selected fabric samples weight increase, it has been seen that a low friction force occurred because of more stable structure. And also, it has been observed that the higher vertical force (load) applied on the specimens the lower the coefficient of friction. These results shows that both measurement methods have similar tendencies based on the analyzed results.  相似文献   

2.
Suits produced now are high class with good quality due to advanced manufacturing techniques. Woollen fabrics and interlinings are the major materials for suit manufacture. Using woollen fabric and interlining to produce quality fabric has become an important production process. However traditional fusible interlinings are costly and involve a tedious production process, and they have some drawbacks such as strike through and bubbles. In this study, a printable interlining is proposed which can be used in place of fusible interlining. Screen-printing technique directly prints on the shell fabric and it is named printable interlining which enhances quality and reduces operational cost for garment manufacturers. Fabric quality is generally perceived through fabric hand value. Based on a series of laboratory experiments carried out to investigate total hand value and low-stress mechanical properties, this paper compares the impact of fusible interlining and printable interlining on woollen fabric using the Kawabata Evaluation System. Total hand value and five low-stress mechanical properties, tensile, bending, shearing, surface and compression were obtained. The results prove that printable interlinings can replace fusible interlinings on woollen fabrics and improve the fabric total hand value and bending, shearing and tensile properties. Printable interlining can be widely used in mass suit production with simple control process and it is cost-efficient.  相似文献   

3.
Demand for the fabric wipes is growing continuously. Wipes in industry are used for cleaning purpose. Cleaning involves rubbing action, so it is very important to know how much frictional force is encountered during the cleaning action. In this study the effects of normal load, sliding speed on frictional characteristics of nonwoven and woven wipes, both dry and wetted with different liquids, against glass and floor tile surfaces have been reported. With the increase in the normal load the coefficient of friction goes on decreasing for both nonwoven and woven wipes and this trend is observed in both dry and wet wipes. The coefficient of friction of both nonwoven and woven wipes against glass surface is in general higher than the floor tile surface. The wipes wetted with water shows an increase in coefficient of friction as compared to dry sample, but there is reduction in the coefficient of friction when the wipe samples are wetted with vegetable oil. In case of dry wipes, the coefficient of friction in case of nonwoven wipe is higher than the woven wipe. In case of woven wipes, the ranges of coefficient of friction either due to change in liquid type, normal load or sliding speed are in general smaller than that in case of nonwoven fabrics.  相似文献   

4.
Fabric porosity is the result of fabric constructional parameters combination and used technology of nonwoven production. The effects of fabric porosity structure, as well as the content of hydrophilic viscose and hydrophobic polyester fibres in the web mixture, on the vertical wicking rate by nonwoven fabrics have been explored in this research. Fibrous webs with a different content of viscose and polyester fibres, with the web volume mass range of 0.019-0.035 g/cm3 were utilized during this study. The samples were produced using a dry-laid method of web forming and two methods of web bonding, e.g. needle punching and calendar bonding. Results show that higher volume porosity gives higher vertical wicking rate by all groups of tested samples regarding the content of used hydrophilic/hydrophobic fibres and that fluid flow is faster in samples with larger pores. The higher content of viscose fibres improve the vertical wicking rate, but better rising height can be achieved at samples made from 100 % of coarser polyester fibres. A prediction model of vertical wicking rate of viscose/ polyester nonwovens was developed on the basis of the fundamental constructional parameters of nonwoven fabrics (fibre fineness, type of raw material, and web density) and a non-deterministic modelling method, e.g. genetic algorithms, which can serve as a useful tool for fabric engineers by developing a nonwoven fabric in order to fit desired wicking rate.  相似文献   

5.
In this study, Polylactic Acid (PLA) nonwoven fabric and thermoplastic polyurethane (TPU) honeycomb air cushion (TPU-HAC) were employed to form an impact resistant layer for functional knee pads. PLA nonwoven fabric has low manufacture cost and flexibility of the honeycomb air cushion improved the quality of functional knee pad sold in the market. This study focused on the strength of PLA nonwovens and the impact resistance of TPU honeycomb air pads. The PLA fibers and low-melting-point (low-Tm) PLA fibers are used as raw materials to fabricate PLA nonwoven fabric. The PLA fibers and low-melting-point PLA fibers were mixed at weight ratios of 10, 20, 30, 40, and 50 %. PLA nonwoven fabric and TPU-HAC materials were combined in a sandwich structure to protect against impact. Impact resistance was evaluated using a falling-weight impact-resistance machine. Experimental findings indicate that changing various layers can improve the impact resistance of the sandwich structure of the TPU-HAC materials. A TPU-HAC layer with a thickness of 2/8/10 mm optimized the impact resistance. In 25 J falling-weight impact test, the TPU-HAC layer 2/8/10 mm provides an impact resistance of 2932 N; the PLA/TPU-HAC composite had the best impact resistance; 2516 N. PLA nonwoven fabric had the best mechanical properties with low-Tm PLA fibers at 30 % weight. The impact resistance achieved using above combination of materials met the level 2, range 3 impact values mentioned in EN 14120 standards.  相似文献   

6.
Polypropylene nonwoven fabrics were exposed to He/O2 atmospheric pressure glow discharge plasma. Surface chemical analysis and contact angle measurement revealed the surface oxidation by formation of new functional groups after plasma treatment. Weight loss (%) measurement and scanning electron microscopy analysis showed a significant plasma etching effect. It was investigated in low-stress mechanical properties of the fabrics using Kawabata Evaluation System (KES-FB). The surface morphology change by plasma treatment increased surface friction due to an enhancement of fiber-to-fiber friction, resulting in change of other low-stress mechanical properties of fabric.  相似文献   

7.
The anisotropy in creep behavior of two types of nonwoven fabrics (needle-punched and thermobonded spun laid) has been studied. It has been observed that the amount of time dependent extension depends on the direction, amount of loading and the structure of nonwoven the fabrics. The time dependent extension (creep) for the nonwoven fabric increases with the increase in amount of load. The higher initial extension and creep are observed for needle-punched nonwoven fabric as compared to thermobonded spun-laid nonwoven fabric. The creep behavior of needle-punched nonwoven shows a logarithmic relationship with time, but the thermobonded spun-laid nonwoven fabric does not show such logarithmic relationship. For a particular fabric, the creep is dependent on the fiber arrangement and is minimum in the direction in which the proportion of fiber is maximum and visa versa.  相似文献   

8.
Lyocell is drawing attention as a new material, environmentally friendly fiber. Precedent researches on lyocell are mostly on structure, characteristics, physical properties, and dyeability. There are few researches on interlining for lyocell clothes production. This study analyzes the correlation between the appearance-related performances of lyocell-interlining bonded fabric and the mechanical properties of fusible interlining, lyocell face fabric, and lyocell-interlining bonded fabric. The stiffness of lyocell-interlining bonded fabric correlates with LT, WT, G, 2HG, 2HG5, B, 2HB, WC, and RC of fusible interlining; LT, EMT, G, 2HG, 2HB, RC, and T of lyocell face fabric; LT, WT, G, 2HG, 2HG5, B, 2HB, and T of lyocell-interlining bonded fabric. The drapability of lyocell-interlining bonded fabric correlates with LT, WT, G, 2HG, 2HG5, B, 2HG, WC, and RC of fusible interlining; LT, EMT, G, 2HG, 2HG5 and RC of lyocell face fabric; LT, EMT, G, 2HG, 2HG5, B, 2HB, LC, RC, and T of lyocell-interlining bonded fabric. The crease recovery of lyocell-interlining bonded fabric correlates with RT, T, W, WT, G, and 2HG of fusible interlining; LC, W, LT, EMT, G, 2HG, and 2HG5 of lyocell face fabric; WC, T, LT, G, 2HG, and 2HG5 of lyocell-interlining bonded fabric.  相似文献   

9.
A detailed study on the heat and moisture vapour transmission characteristics of different types of single and multi-layered fabric ensemble by using sweating guarded hot plate (SGHP) has been reported in the present paper. A comparison has been made on thermal and moisture vapour transmission properties of five different insulative fabrics, namely, knitted-raised fabric, needle punched nonwoven, through air bonded nonwoven, spunbonded-through air bonded sandwich nonwoven and warp knitted spacer fabric and three different coated fabrics, namely, plain woven rubber coated, plain woven polyester polymer coated and plain woven polytetrafluoroethylene (PTFE) coated fabric, used for thermal insulation purpose. ANOVA has been conducted to analyse the significance of type of insulative and coated fabrics used. Sandwich nonwoven fabric which has higher thickness and porosity shows higher thermal resistance followed by through air bonded fabric, raised fabric, needle punched fabric and spacer fabric. Spacer fabric shows lesser evaporative resistance due to its lesser thickness and larger aperture size, which increases the diffusion of moisture vapour. Needle punched fabric shows slightly higher evaporative resistance than spacer fabric, followed by raised fabric, through air bonded fabric and sandwich nonwoven fabric. Permeability index of different multilayered fabric ensembles are also compared.  相似文献   

10.
Layered fabric systems with electrospun polyurethane fiber web layered on spunbonded nonwoven were developed to examine the feasibility of developing protective textile materials as barriers to liquid penetration using electrospinning. Barrier performance was evaluated for layered fabric systems, using pesticide mixtures that represent a range of surface tension and viscosity. Air permeability and water vapor transmission were assessed as indications of thermal comfort performance. Protection performance and air/moisture vapor transport properties were compared for layered fabric systems and existing materials for personal protective equipment (PPE). Layered fabric systems with electrospun nanofiber web showed barrier performance in the range between microporous materials and nonwovens used for protective clothing. Layered fabric structures with the web area density of 1.0 and 2.0 g/m2 exhibited air permeability higher than most PPE materials currently in use; moisture vapor transport was in a range comparable to nonwovens and typical woven work clothing fabrics. Comparisons of layered fabric systems and currently available PPE materials indicate that barrier/transport properties that may not be attainable with existing PPE materials could be achieved from layered fabric systems with electrospun nanofibrous web.  相似文献   

11.
The thermal characteristics of hollow polyester fibers were compared with solid polyester fibers in order to study their processing behavior and performance characteristics. The effects of different processing and structural properties including fiber diameter, bulk density of layer, and surface pressure on layers of needle-punched nonwoven fabrics with hollow fibers on thermal resistance properties were also investigated. The results show that hollow fibers have a higher thermal resistance in comparison with solid ones. This is a consequence of air trapping inside the fibers, higher bulkiness, and higher surface area of hollow fibers. Furthermore, thermal resistance of microfibers is better than those of macrofibers in both hollow and solid fibers. The thermal resistance of nonwoven subjected to this study, have an inverted-U-shaped pattern versus the bulk density of the fabric. The results also showed that thermal resistance of needle-punched nonwoven fabrics can be affected by the range of heater temperature during the test, however considerably can be affected by fabric thickness as a main structural property of nonwoven fabrics.  相似文献   

12.
A durable superhydrophobic fabric with oil/water separation property has been successfully prepared by introducing the modified silica nanoparticles and polysiloxane. The as-prepared fabric shows liquid repellency not only to water but also to coffee, milk and tea droplets, which are normal in daily life. Furthermore, the treated fabric shows simultaneous superhydrophobicity and superoleophilicity, which could be utilized as materials to separate oil/water mixture with high efficiency. It is important to note that the obtained fabric kept stable superhydrophobicity even after it suffered severe friction damage. The surface morphologies of untreated/treated fabrics were characterized by the scanning electron microscopy. The chemical compositions were characterized by X-ray photoelectric energy spectroscopy and Fourier transform infrared spectrum. This functionalized fabric will be helpful for developing superhydrophobic and selective oil adsorption materials.  相似文献   

13.
The melt-blowing technique is usually used for thermoplastic resins, not for non-thermoplastic materials. In this study, nonwoven fabric was successfully obtained by a cellulose solution through melt-blowing technique. The solution was prepared by a twin-screw extruder after mixing cellulose pulp with 1-Allyl-3-methylimidazolium Chloride ([AMIM]Cl). Nonwoven fabric exhibited typical characteristics of those from melt-blown thermoplastic resins. Some aspects of meltblowing process are discussed, such as cellulose concentration, temperature of extrusion die and hot air pressure. In experimental range, to obtain nonwoven web, cellulose concentration was below 15 wt%. Temperature of extrusion die and hot air pressure had great influence on the fabric. With the increasing of temperature of extrusion die and hot air pressure, the fiber changed thin and the fiber web became better, while the fiber diameter became thicker after increasing the cellulose concentration. Elevating the temperature of extrusion die, the degree of polymerization decreased, and the quality of the fiber webs declined.  相似文献   

14.
A pilled nonwoven fabric image consists of brightness variations caused by high frequency noise, randomly distributed fibers, fuzz and pills, fabric surface unevenness, and background illumination variance. They have different frequency and space distributions and thus can be separated by the two-dimensional dual-tree complex wavelet transform reconstructed detail and approximation images. The energies of the six direction detail sub-images, which capture brightness variation caused by fuzz and pills of different sizes, quantitatively characterize the pilling volume distribution at different directions and scales. They are used as pilling features and inputs of neural network supervised classifier. The initial results based on a nonwoven wool fabric standard pilling test image set, the Woolmark®, SM 50 Blanket set, suggest that this objective pilling evaluation method developed by the combination of pilling identification, characterization method and neural network supervised classifier is feasible.  相似文献   

15.
This study proposes a combination for reciprocal reinforcement between warp knitting spacer fabrics and PU foams. PET/Kevlar nonwoven fabrics are made with an 80:20 ratio and an incorporation of various needle-punching speed of 100, 150, 200, 250, and 300 needles/min. Ascribing to having an optimal bursting strength, sound absorption coefficient, and limited oxygen index (LOI), the PET/Kevlar nonwoven fabric that is made by 200 needles/min are selected to be combined with a glass-fiber fabric by applying needle punch in order to form a surface layer. Next, warp knitting spacer fabrics and the nonwoven fabrics are laminated, followed by being combined with polyurethane (PU) foam that are featured with different densities of 200, 210, 220, 230, and 240 kg/m3 in order to form spacer fabric/PU foam composites with multiple functions. The composites are then tested with a drop-weight test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that all spacer fabric/PU foam composites reach a horizontal burning level of HF1, and their sound absorption coefficients at 2500-4000 Hz also suggest a satisfactory sound absorption. In particular, the optimal residual stress and compressive strength are present when the composites contain 210 kg/m3 PU foam. Similarly, the optimal bursting strength of the composites occurs when they are composed of 230 kg/m3 PU foam. The spacer fabric/PU foam composites are proven to have high strengths, sound absorption, and fire retardant, and thus have promising potentials for use as construction materials and light weight composite planks.  相似文献   

16.
The energy of impact must decay and be transmitted after a bullet is shot through a ballistic-resistant cloth with a laminate structure. A rigid net structure transmits the impact stress to reduce the breakage of the material in the direction perpendicular to the fabric after the impacting of a projectile. This work combines the rigid net structure of stainless steel mesh with two layers a needle-punched polyamide nonwoven fabric to create a sandwich-like laminate structure. A compound fabric that is composed of a stainless steel mesh and polyamide nonwoven fabrics is placed in multi-layer Kevlar fabrics, and the buffer effect is measured by performing a dropping weight impact test and a bullet-shooting test. The specifications of the stainless steel mesh and the order of placement of the compound fabrics are varied to show the effect of these parameters on the energy of fracture propagation and the buffer effect of the multi-layered Kevlar compound fabric that includes a layer of compound fabric that is made of stainless steel mesh and polyamide nonwoven fabrics. In this study, the compound fabric replaces several layers of Kevlar unidirectional fabric, to be used to reduce the cost of bulletproof vests without reducing ballistic resistance.  相似文献   

17.
The present study deals with the effect of parallel-laid and cross-laid web of polypropylene needle punched nonwoven fabrics on compression properties (initial thickness, percentage compression, percentage thickness loss and percentage compression resilience) under wet condition. These compression properties of polypropylene needle-punched nonwoven under wet condition have also been compared with its dry condition. With the increase in needling density the initial thickness, percentage compression and percentage thickness loss of the fabrics under wet condition decrease to higher extent compared to its dry condition both in case of parallel-laid and cross-laid fabrics. Cross-laid nonwoven fabric presents lower value of initial thickness percentage compression and thickness loss compared to parallel-laid fabric which is very prominent at high needling density (350 punches/cm2). The percentage compression resilience shows increasing trend with the increase in needling density both under dry and wet conditions of parallel-laid web. It also follows similar trend in case of cross-laid nonwoven under wet condition. The optimum needling density for compression resilience of cross-laid nonwoven fabric under dry condition is 250 punches/cm2.  相似文献   

18.
For their functional enhancement, sanitary nonwoven fabrics with a relatively smooth surface were treated using chitosan, a natural polymer with excellent biocompatibility, and nanosilver colloid solution, which has strong antibacterial effects even when used in small amounts. The treatment effect was examined at various mixing ratios. When the mixing ratio of the nanosilver solution was higher, antibacterial and deodorization activity was increased. For CH3/NS1 treated fabric, when the mixing ratio of chitosan and nanosilver solution was 3:1, the air permeability was most excellent, and worked as a positive in improving the pleasantness of the sanitary nonwoven fabric. In all samples, the electrostatic propensity was reduced, regardless of the mixing ratio. In terms of the moisture characteristics of chitosan/nanosilver treated nonwoven fabrics, the moisture uptake was found to be superior in the CH3/NS1 treated fabric. When the mixing ratio of the nanosilver solution was higher, moisture permeability decreased, showing a similar tendency to that of air permeability. The vertical water permeability coefficient increased in all treated fabrics. The dynamic water absorption rate was good in CH4 and CH3/NS1 treated fabrics. This means that the absorption of water in the liquid state became easier, thus improving applicability as sanitary nonwoven fabrics.  相似文献   

19.
The aim of the presented research was to study the influence of surface layer material on improvement of impact, dielectric, EMI shielding and sound absorption properties of sandwich composites. The sandwich composite structure consisted of Kevlar or Carbon woven fabric at the surface layer, recycled high loft nonwoven in the center and a mixture of carbon particles/epoxy matrix as a binder to hold the surface layer and core together. The carbon particles were incorporated in epoxy in order to improve failure mechanism and enhance dielectric properties or electromagnetic shielding of sandwich composites. The biggest improvements on impact properties of sandwich composites were obtained when Kevlar fabric was used as surface layer. However, surface layer of carbon fabric was found to provide better dielectric properties and improve EMI shielding of sandwich composites against Kevlar fabric surface layer.  相似文献   

20.
Cotton, a natural fibre that consists of cellulose, is highly popular because it is sweat-absorbing and comfortable to wear. However, cotton fabrics provide an excellent environment for microorganisms to grow, owing to their ability to retain moisture. Therefore, numerous chemicals have been used to enhance anti-microbial activity of cotton textiles. This paper reports results of use of silver oxide (Ag2O) or zinc oxide (ZnO) as a catalyst in the antimicrobial formulation (halogenated phenoxy compound (Microfresh, MF)) and a binder (Microban, MB) for improved treatment of cotton fabrics and minimisation of side effects of the treatment. In addition, from the morphological study, plasma technology was employed to roughen the surface of the materials to improve loading of metal oxides on the surface. Moreover, the characteristic infra-red bands related to plasma-treated cotton produced results different from untreated fabric, implying plasma treatment can improve hydrophilicity of the fabric. Mechanical strength of the specimens was also increased by plasma treatment. Meanwhile, the research showed that the control fabric slightly inhibited the growth of S. aureus because of the bleach residues on fabric surface. On the other hand, anti-bacterial activity of MF-MB-treated specimen, especially in the presence of metal oxide catalyst, was enhanced, providing a slightly larger zone of inhibition. Moreover, plasma gas contains reactive oxygen species that can enter the cell, eventually causing its death. The hydrophilic nature of carbonyl groups present in oxygen plasma pre-treated specimens also increased the anti-microbial activity after treatment with MF-MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号