首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
As maize is a chilling-sensitive crop, low temperatures during the early stages of development can be injurious to crop growth and development. Prime mechanism behind chilling-induced damage is oxidative stress. This study was undertaken to improve the chilling tolerance in hybrid maize by seed priming with KCl. For priming, seeds of the maize hybrid Hycorn 8288 were soaked in 50, 100 and 150 mg l−1 aerated solution of KCl for 24 h and then re-dried close to original weight. Primed and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Seed priming improved the performance of maize under both normal and stress conditions. It was found that the chilling tolerance in maize is well associated with the enhanced capacity of the anti-oxidative system. Priming with KCl significantly improved the chilling tolerance mainly by the activation of antioxidants including catalase, superoxide dismutase and ascorbate peroxidase enzymes. KCl treatments also improved the germination rate and time, root and shoot length, and fresh and dry weights of seedlings compared with control. Soluble sugars and α-amylase activity determined as general metabolic indicators of stress were also improved by seed priming with KCl. Other possible bases of chilling tolerance in maize included maintenance of high tissue water contents, reduced electrolyte leakage and carbohydrate metabolism. Seed treatment with 100 mg l−1 KCl was the best treatment to improve the performance of hybrid maize both under normal and chilling stress conditions.  相似文献   

2.
The optimum temperature for maize germination is between 25 and 28 °C. Poor and erratic germination at suboptimal temperature is the most important hindrance in its early sowing. This study was conducted to induce chilling tolerance in hybrid maize (Zea mays L.) by seed priming with salicylic acid (SA) and to unravel the background biochemical basis. For seed priming, maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 ppm (mg l?1) aerated solutions of SA for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Performance of maize seedlings was hampered under chilling stress. But seed priming with SA improved the seedling emergence, root and shoot length, seedling fresh and dry weights, and leaf and root score considerably compared with control both at optimal and chilling temperatures. However, priming in 50 mg l?1 SA solution was more effective, followed by priming in 100 mg l?1 SA solution. Seed priming with SA improved the chilling tolerance in hybrid maize mainly by the activation of antioxidants (including catalase, superoxide dismutase and ascorbate peroxidase). Moreover, maintenance of high tissue water contents and reduced membrane permeability also contributed towards chilling tolerance.  相似文献   

3.
Plant growth and development is hampered by various environmental stresses including chilling. We investigated the possibility of improving chilling tolerance in hybrid maize by glycinebetaine (GB) seed treatments. Maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 mg l?1 (p.p.m.) aerated solution of GB for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Germination and seedling growth was significantly hindered under chilling stress. Moreover, chilling stress significantly reduced the starch metabolism and relative water contents (RWC), and increased the membrane electrolyte leakage. However, activities of antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) were increased under stress conditions. Seed treatments with GB improved the germination rate, root and shoot length, seedling fresh and dry weights, leaf and root scores, RWC, soluble sugars, α‐amylase activity and antioxidants significantly compared with untreated seeds under optimal and stress conditions. Induction of chilling tolerance was attributed to maintenance of high tissue water contents, reduced membrane electrolyte leakage, and higher antioxidant activities and carbohydrate metabolism. Seed treatment with 100 mg l?1 GB was the best treatment for improving the performance of hybrid maize under normal and stress conditions compared with control and other levels used.  相似文献   

4.
Salinity is one of a major threat in harvesting good wheat stand on sustained basis. In this study, potential of seed priming techniques to improve the performance of wheat varieties (SARC‐1 and MH‐97) in a saline field was tested. For priming, wheat seeds were soaked in aerated solution of ascorbate (50 mg l?1; ascorbate priming), salicylic acid (50 mg l?1; salicylicate priming), kinetin (50 mg l?1; kinetin priming) and CaCl2 (50 mg l?1; osmopriming) for 12 h. For comparison, seeds were also soaked in simple water (hydropriming); in addition, untreated seeds were also taken as control. Seed priming treatments substantially improved the stand establishment; osmopriming (with CaCl2) was at the top however. Likewise maximum fertile tillers, grains per spike, 1000‐grain weight, grain yield and harvest index were observed in plants raised from seeds osmoprimed (with CaCl2) followed by ascorbate priming in both the varieties tested. As an index of salinity tolerance, seed priming treatments also improved the leaf K+ contents with simultaneous decrease in Na+ concentration, osmopriming being the best treatment. Similarly, maximum total phenolic contents, total soluble proteins (TSP), α‐amylase and protease activities were observed in osmoprimed (with CaCl2) seeds followed by ascorbate priming. Economic analysis also indicated that osmopriming is more viable with maximum net return and benefit‐to‐cost ratio. In conclusion, different seed priming treatments in wheat seeds improved the salinity tolerance nonetheless osmopriming (with CaCl2) was the most effective treatments to get higher grain yield and net return in both wheat varieties whereas kinetin was the least effective.  相似文献   

5.
Salt stress is a major yield‐limiting factor in crops by reducing nutrient uptake and plant growth. Under salt stress, decreased water and nutrient uptake results in nutrient imbalance in plants. In addition, at high pH in saline conditions, solubility of minerals is also reduced leading to low availability of certain nutrients. Perspectives to overcome these limitations by Zn seed priming were studied with maize plants exposed to NaCl as salt stress. Maize seeds were primed for 24 hr in deionized water and 4 mm ZnSO4·7H2O solution (ZnP) and subsequently air‐dried at room temperature before further use. The DTZ (diphenylthiocarbazone) staining method was used for showing Zn2+ localization in the seeds. Zn2+ and other nutrient concentrations in unprimed, water and ZnP seeds and maize plants were analysed by inductively coupled plasma mass spectroscopy (ICP‐MS). Maize plants (cv. Sun star L.) were grown for 3 weeks in complete nutrient solution with or without salt stress (100 mm NaCl) under glasshouse conditions. Seed Zn2+ contents were increased after ZnP treatment by 600%. In maize seeds, most of the primed Zn2+ accumulated in the outer tissues (particularly, aleurone layer) of maize seed. Zn priming decreased the injurious effects of salt stress on plant growth. Under salt stress conditions, biomass production of plants from ZnP treatments was 25% higher compared to water priming treatment. Zn seed priming also improved mineral nutrient status of plants grown in both control and salt stress conditions. Plants from ZnP treatments also showed higher accumulation of Na+ in the shoots. This offers perspectives for using Zn seed priming for improving early seedling development and plant nutrient status of maize under salt stress conditions.  相似文献   

6.
Lentil (Lens culinaris Medik.) is an important grain legume crop, mostly grown in semi-arid environments and often faces intermittent drought spells during different growth stages, which severely hamper its yield. This study, comprising of three separate experiments, was conducted to evaluate the potential of seed priming with CaCl2 in improving drought tolerance in lentil. In the first experiment, lentil seeds were hydroprimed (water) or osmoprimed with 0.5 and 1% CaCl2; while non-primed seeds were taken as control. In the second and third experiments, lentil seeds were subjected to pre-optimized osmopriming (1% CaCl2) and hydropriming followed by surface drying or re-drying of primed seeds to original weight. The first two experiments were conducted in petri plates, while, in experiment 3, seeds were planted in plastic pots containing peat moss, maintained at 75% water holding capacity (WHC; well-watered) or 50% WHC (water deficit). Hydropriming and osmopriming improved seed germination, seedling growth, biomass production, chlorophyll intensity, sugar accumulation and reduced the oxidative stress in lentil under water deficit. However, osmopriming (1% CaCl2) was more effective than the hydropriming in improving the lentil growth, biomass production, Ca accumulation and sugar metabolism under both well-watered and water deficit conditions. Seed surface drying, after priming, was more beneficial in improving the lentil performance, under both well-watered and water deficit conditions, than re-drying to original weight. Osmopriming (1% CaCl2) increased the seeding dry weight (67%), SPAD value (140%), leaf Ca concentration (56%), α-amylase activity (55%), total soluble sugars (48%) and reduced malanodialdehyde content (35.9%) and total antioxidant activity (29.2%) than un-primed seeds under water deficit. In conclusion, osmopriming improved the lentil performance under optimal and water deficit conditions through early and synchronized emergence, better sugar and Ca accumulation which reduced the oxidative damage and resulted in better seedling growth and biomass production.  相似文献   

7.
Rice performance under drought stress is mainly impeded by oxidative damage and hampered plant water status, which may be improved by exogenous use of osmoprotectants. In this study, the role of glycinebetaine (GB) to improve drought tolerance in rice (Oryza sativa L.) cultivar Super-basmati was evaluated. GB was used both as seed and foliar application. For priming, seeds were soaked in 50, 100 and 150 mg l−1 aerated solution of GB for 48 h. At four-leaf stage, one set of plants was subjected to drought stress, while the other set kept at full field capacity. Drought was maintained at 50 % of field capacity by watering when needed. For exogenous application, 50, 100 and 150 mg l−1 GB levels were applied at five-leaf stage. Drought stress greatly reduced the rice growth while GB application improved it both under well-watered and drought conditions. Drought tolerance in rice was strongly related to the maintenance of tissue water potential and antioxidant system, which improved the integrity of cellular membranes and enabled the plant to maintain high photosynthesis. Foliar treatments were more effective than the seed treatments, while among the GB treatment, foliar application with 100 mg l−1 was the most effective.  相似文献   

8.
In rice–wheat systems, late sowing of wheat is the major reason of low yield. This yield reduction is principally due to lower and erratic germination, and poor crop establishment because of low temperature prevailing. The present study was conducted to explore the possibility of improving late sown wheat performance by seed priming techniques. Seed priming strategies were: on‐farm seed priming, hydropriming for 24 h, seed hardening for 12 h and osmohardening with KCl or CaCl2 for 12 h. Seed priming improved emergence, stand establishment, tiller numbers, allometry, grain and straw yield, and harvest index. However, seed priming techniques did not affect plant height, number of spikelets, number of grains and 1000 grain weight. Osmohardening with CaCl2 gave more grain and straw yield and harvest index compared with control and other priming treatments, followed by osmohardening with KCl and on‐farm seed priming. Improved yield was attributed principally to better stand establishment and improved number of fertile tillers. Seed priming techniques can be effectively used to improve the performance of late sown wheat.  相似文献   

9.
A short period (240°C hr; Tb = 25°C) of heat stress (30°C day/25°C night) during forage rape (Brassica napus L.) seed development or at seed physiological maturity can reduce seed vigour, but the extent of oxidative damage associated with this short heat stress was not known. Heat-stressed seeds were assessed for malondialdehyde (MDA) content, hydrogen peroxide (H2O2) accumulation, antioxidant enzyme activity, adenylate energy charge and seed ultrastructural integrity, and compared with that of non-heat-stressed seeds. Heat stress increased both MDA content and H2O2 accumulation by 35%–50%, reduced antioxidant enzyme activity by between 12% and 67%, and significantly reduced adenosine energy charge. Transmission electron microscope images showed clear evidence of seed deterioration in heat-stressed seeds, including ruptures in cell wall and plasma membranes, fused lipid bodies and damaged mitochondria. Heat stress at physiological maturity caused more oxidative damage than the same heat stress during seed development. Seed vigour decreased as H2O2 accumulation increased and antioxidant enzyme activity decreased, but no direct relationship between lipid peroxidation and seed vigour was established. The extent of damage resulting from even shorter periods of heat stress (<240°C hr) before or at seed physiological maturity requires investigation.  相似文献   

10.
No tillage (NT) in wheat (Triticum aestivum L.) offers a pragmatic option for resolving the time and edaphic conflicts in rice (Oryza sativa L.)–wheat cropping system (RWS). However, poor stand establishment is an issue in NT wheat, which adversely affects crop growth, grain yield, and profitability. Therefore, a 2-year field study was conducted to assess the potential role of seed priming in improving the stand establishment, grain yield, water productivity and profitability of NT and plough till (PT) wheat grown after direct seeded aerobic (conservation) and puddled transplanted flooded (conventional) rice-based systems. For seed priming, wheat seeds were soaked in aerated water (hydropriming) or solution of CaCl2 (ψs −1.25 MPa; osmopriming) for 12 h, and non-primed seeds were used as control. After harvest of rice, grown as direct seeded aerobic and puddled transplanted flooded crop, primed and non-primed wheat seeds were sown following NT and PT. In both years, stand establishment of NT wheat after direct seeded aerobic and puddled transplanted flooded rice was impeded. Nonetheless, seed priming improved the stand establishment which was visible through earliness and better uniformity of seedling emergence. Overall, primed seeds completed 50% emergence in 6.4 days, against 7.8 days taken by non-primed seeds in NT wheat. The highest emergence index (41.7) was recorded in primed seeds versus 32.0 for non-primed seeds. Improved stand establishment enhanced growth, grain yield, water productivity and profitability in NT wheat. In this regard, osmopriming was the most effective, and produced grain yield of 4.5 Mg ha−1 against 3.8 Mg ha−1 for non-primed seeds in NT wheat. Water productivity of the NT wheat grown from osmoprimed seeds was 8.72 kg ha−1 mm−1 while that from non-primed seeds was 7.21 kg ha−1 mm−1. Among the RWSs, the maximum wheat biomass was produced with PT after direct seeded aerobic rice. However, grain yield, water productivity, and profitability were the highest in NT wheat following direct seeded aerobic rice. Wheat yields grown after direct seeded aerobic rice and transplanted flooded rice were 4.4 and 4.2 Mg ha−1 respectively. Planting NT wheat after direct seeded aerobic rice provided the highest system productivity (1.80) than other RWSs. Thus, seed priming is a viable option to improve the stand establishment, grain yield, water productivity and profitability of NT wheat in the RWS. Nonetheless, osmopriming was a better option than hydropriming in this regard.  相似文献   

11.
Seed priming is a method to improve germination and seedling establishment under stress conditions. The effect of seed priming in chemical solutions such as urea and KNO3, on protein and proline content, germination, and seedling growth responses of four maize (Zea mays L.) hybrids under drought and salt stress conditions was studied in a controlled environment in 2010. Treatments included stress type and intensity at five levels: moderate drought (MD), severe drought (SD), moderate salt (MS), severe salt (SS), and control (C1, without stress), three seed priming types including water (C2, as control), KNO3, and urea (as chemical priming), and four maize hybrids including Maxima, SC704, Zola, and 307. The results showed that the highest germination percentage (Ger %), germination rate (GR), seedling length (SL), radical length (RL), and seedling to radical length ratio (S/R) were achieved in no stress treatments and most proline content in SD treatment. Urea priming led to more Ger%, GR, and SL compared to other primers and treatment under KNO3 priming resulted in higher RL compared to other primers. Chemical priming had no effect on S/R and proline content. Also, in terms of most traits, no difference was found among the four hybrids. Results showed that salt stress could affect GR and RL more than the drought stress. Drought stress affected germination percentage and S/R more than the salt stress. Both stresses decreased all measured parameters, except protein and proline content which were increased remarkably, and more under drought compared to salt stress. Based on proline content, hybrid 304 appeared to be more resistant to stress than other hybrids. Generally, KNO3 and urea alleviated effects of both stresses and led to increased germination and seedling growth as well as the root length. Therefore, priming could be recommended for enhancing maize growth responses under stressful conditions.  相似文献   

12.
水分逆境下PEG诱导引发种子对糯玉米芽苗的生理调控   总被引:1,自引:0,他引:1  
应用种子引发技术在不同土壤水分逆境条件下对糯玉米的出苗和幼苗生理调节进行了研究。结果表明,采用PEG诱导引发种子技术可拓宽糯玉米种子对水分逆境的适应范围,显著提高水分逆境下种子的发芽率和种子活力指数,并增强幼苗的根系活力,根尖更为明显。种子引发可增强幼苗抗氧化系统中APX、CAT、POD和SOD活性,尤其是APX和CAT变化更为活跃;另外,种子引发可改善游离氨基酸、还原糖、脯氨酸、可溶性糖和可溶性蛋白含量等渗透调节物质,较未引发处理减少膜质过氧化。PEG引发种子技术是应对土壤水分逆境下糯玉米种子发芽受阻和出苗困难的有效措施,可提高种子对水分逆境的耐受能力。  相似文献   

13.
There is a lack of knowledge about factors contributing to the chilling‐induced alleviatory effects on growth of plants under salt stress. Thus, the primary objective of the study was to determine whether chilling‐induced changes in endogenous hormones, ionic partitioning within shoots and roots and/or gaseous exchange characteristics is involved in salt tolerance of two genetically diverses of wheat crops. For this purpose, the seeds of two spring wheat (Triticum aestivum) cultivars, MH‐97 (salt intolerant) and Inqlab‐91 (salt tolerant) were chilled at 3°C for 2 weeks. The chilled, hydroprimed and non‐primed (control) seeds of the two wheat cultivars were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m?1 NaCl salinity. Chilling was very effective in increasing germination rate and subsequent growth when compared with hydropriming and control under salt stress. Results from field experiments clearly indicated the efficacy of chilling over hydropriming in improving shoot dry biomass and grain yield in either cultivar, particularly under salt stress. This increase in growth and yield was related to increased net photosynthetic rate, greater potential to uptake and accumulate the beneficial mineral elements (K+ and Ca2+) in the roots and reduced uptake and accumulation of toxic mineral element (Na+) in the shoots of both wheat cultivars when grown under salt stress. Salt‐stressed plants of both wheat cultivars raised from chilled seed had greater concentrations of indoleacetic acid, abscisic acid, salicylic acid and spermine when compared with hydropriming and control. Therefore, induction of salt tolerance by pre‐sowing chilling treatment in wheat could be attributed to its beneficial effects on ionic homeostasis and hormonal balance. The results presented are also helpful to understand the chilling‐induced cross adaptation of plants in natural environments. Moreover, efficacy of pre‐sowing chilling treatment over hydropriming suggested its commercial utilization as a low risk priming treatment for better wheat crop production under stressful environments.  相似文献   

14.
种子引发对水分胁迫下水稻发芽及幼苗生理性状的影响   总被引:8,自引:0,他引:8  
孙园园  孙永健  王明田  李旭毅  郭翔  胡蓉  马均 《作物学报》2010,36(11):1931-1940
不同基因型稻种经水引发及聚乙二醇(PEG)渗透胁迫引发处理均能降低稻种丙二醛(MDA)含量,促进可溶性总糖(SS)降解,加快稻种内部糖代谢进程,提高相溶性溶质脯氨酸(Pro)及可溶性蛋白质(SP)含量,也有利于提高苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,引发效果较明显。且适度PEG引发稻种的效果明显好于水引发,杂交籼稻在PEG浓度为20%的条件下引发效果最优,而常规粳型水稻在PEG浓度为10%~15%的引发条件下效果较好,但超出最高PEG引发浓度的阈值,会对稻种产生危害,影响其正常萌发。引发处理后的稻种对不同程度水分胁迫程度的响应表明,适当强度的引发处理利于激发稻种物质代谢、利于各水稻品种的萌发、幼苗形态指标及保护性酶等生理指标的显著提高,而严重的水分胁迫均不利于稻种萌发;表明引发处理虽能提高水分胁迫条件下种子活力,但稻种激发自身对外界萌发环境的协调能力有限,且不同品种间存在明显差异,籼稻优于粳稻。  相似文献   

15.
Vivek Maize Hybrid 9‐ a popular single‐cross hybrid developed by crossing CM 212 and CM 145 was released for commercial cultivation in India. The parental lines, being deficient in lysine and tryptophan, were selected for introgression of opaque‐2 allele using CML 180 and CML 170 as donor lines through marker‐assisted backcross breeding. The opaque‐2 homozygous recessive genotypes with >90% recovery of the recurrent parent genome were selected in BC2F2, and the seeds with <25% opaqueness in BC2F3 were forwarded for seed multiplication. Vivek Quality Protein Maize (QPM) 9, the improved QPM hybrid, showed 41% increase in tryptophan and 30% increase in lysine over the original hybrid. The grain yield of the improved hybrid was on par with the original hybrid. The newly improved QPM maize hybrid released in 2008 will help in reducing the protein malnutrition because its biological value is superior over the normal maize hybrids. This short duration QPM maize hybrid has been adopted in several hill states of North Western and North Eastern Himalayan regions.  相似文献   

16.
Seed priming has proved to be an effective method in imparting stress tolerance to plants using natural and/or synthetic compounds to treat the seeds before germination. The present work aimed to evaluate the effectiveness of priming treatments in seeds of Chenopodium quinoa and Amaranthus caudatus to improve germination under NaCl. Species‐specific protocols for seed hydropriming and osmopriming were established by germinating seeds under different water potentials and creating seed imbibition curves. Primed seeds were then germinated under different concentrations of NaCl, and the effect of priming was analysed based on the parameters, such as final germination percentage (FGP), germination index (GI) and mean germination time (MGT). Seed hydropriming and osmopriming caused significant improvements in germination velocity and uniformity, reflected in high FGP, high GI and reduced MGT under salinity. C. quinoa had a higher tolerance to salinity than A. caudatus during seed germination. Improved germination in salinity resulted from osmopriming seeds with solutions of low water potential for A. caudatus, while for C. quinoa, this effect was achieved from hydropriming and osmopriming seeds with solutions of high water potential. Primed tolerance to moderate salinity was achieved for A. caudatus, and for both species, the salinity threshold for germination to occur was slightly broadened.  相似文献   

17.
R. Ecker    A. Barzilay  E. Osherenko 《Plant Breeding》1994,113(4):335-338
The genetics of chill-related seed dormancy, exhibited by a lisianthus (Eustoma grandiflorum) genotype native to North America, was investigated. Less than 1 % of the seeds germinated by direct hydration at 20°C, while full germination (98%) was attained by chilling imbibed seeds, for at least 11 days, at 3°C, before transferring them to 20°C. The inheritance of seed dormancy was analyzed in F1, BC1, and F2, populations, derived from mating between a normal non-chill-requiring genotype (P1) and the above chill-requiring genotype (P2). F1 seeds, of both reciprocals, and BC1 (P1) seeds were all non-dormant. The proportion of seed dormancy in F2 and BC, (P2) was 0.06 and 0.68, respectively. The inheritance model proposed includes six diallelic loci with cumulative effects, in which the presence of at least nine ‘dormancy-conferring’ alleles is necessary for inducing phenotypic seed dormancy. Possible implications of inherent seed dormancy on the utilization of native lisianthus germplasm for breeding are discussed.  相似文献   

18.
Uniform and fast germinating seeds are of prime importance for agriculture. To improve the germination properties of seeds, different treatments called priming are used. These methods generally involve the controlled uptake of water by the seeds. To be able to understand the processes involved in different priming methods the aim of the research was to study the relationship between the methods of water supply, water uptake rate by seeds, seeds moisture content and germination of China aster ‘Jolanta’ and tomato ‘Janosik’ seeds. Seeds of these species were primed by: (i) soaking in excessive amount of distilled water for 0–1440 min in the ratio of seeds to water (v:v) of 1:3; (ii) soaking in limited amount of distilled water 10–1280 ml kg−1of seeds; (iii) matriconditioning in the ratios of 1:0.4:0.2–2.0 (w:w:w) for seeds, Calflo and water, respectively. The imbibed seeds were incubated for 1 day at 20 °C and seed moisture content was measured after incubation. Additionally, in seeds moistened up to 37% (China aster) and 35% (tomato), dynamics of water uptake were examined. Seeds, after imbibition and incubation, were dried to the initial moisture content (m.c.). Percentage of the germinated seeds, maximum germination (Gmax), time for the first seed to germinate (T1), time to reach 50% germination (T50), time between 10 and 90% of Gmax (T90T10), at 5, 20 or 35 °C for the China aster seeds and at 15, 20 or 35 °C for tomato were evaluated.The results showed that water supply methods significantly affected seed imbibition rates and dynamics of seed germination, although these depended on plant species. It was found that water uptake was fastest in seeds soaked in excessive water amount and also that China aster took water faster than tomato. Imbibition of seeds during matriconditioning in Calfo and in limited water amounts was slower. Imbibition of seeds up to 37% m.c. for China aster and 35% m.c. for tomato, irrespective of the conditioning method, was the most favorable for germination. The earliest germination was observed in seeds soaked in excessive amount of water and incubated for 1 day. Germination of seeds matriconditioned, and those conditioned in limited water amount for 1 day was slower. We conclude that although the optimal final moisture content is independent of the different water supply methods used, the water supply method itself strongly affect the germination properties (T1, T50 and T90T10 dynamics of germination).  相似文献   

19.
Chickpea is an important source of protein and has a major role at human nutrition and it is essential to know the relationships between yield and its components in chickpea breeding programs. In this study, five chickpea lines provided from the chickpea breeding program of Field Crops Department, Faculty of Agriculture, Ankara University were used. In the examined characteristics, positive and significant relationships were found statistically between the number of seeds pod−1 and the number of pods plant−1, between the number of seeds plant−1 and the number of pods plant−1 and the number of seeds pod−1, between seed yield plant−1 and the number of pods plant−1, the number of seeds pod−1, the number of seeds plant−1; between the number of seeds pod−1 and seed yield unit−1 area; between the number of seeds plant−1 and seed yield unit−1 area. Negative and significant relationships were determined statistically between the number of pods plant−1 and 100 seed weight, between the number of seeds pod−1 and 100 seed weight, between the number of seeds plant−1 and 100 seed weight, between seed yield unit−1 area and 100 seed weight. The total determining coefficient linking seed yield plant−1 and seed yield unit−1 area are 0.773 (77.3%) and 0.488 (48.8%) respectively in the model which were used in our research. And also total determining coefficient related to 100 seed weight was 0.896 (89.6%) in the same model.  相似文献   

20.
This study was conducted to evaluate the influence of seed priming on drought tolerance of pigmented and non‐pigmented rice. Seeds of pigmented (cv. Heug Jinju Byeo) and non‐pigmented (cv. Anjoong) rice were soaked in water (hydropriming) or solution of CaCl2 (osmopriming). Seeds were sown in soil‐filled pots retained at 70 (well‐watered) and 35% (drought) water‐holding capacity. Drought stress caused erratic and poor stand establishment and decreased the growth of both rice types. More decrease in plant height and leaf area under drought stress was noted in pigmented rice, whereas decrease in root length and seedling dry weight, under drought, was more obvious in non‐pigmented rice. Pigmented rice maintained more tissue water and photosynthesis and had more polyphenols, flavonoids and antioxidant activity than non‐pigmented rice. Seed priming was effective in improving stand establishment, growth, polyphenols, flavonoids and antioxidant activity; however, extent of improvement was more in pigmented rice under drought. In conclusion, drought caused erratic germination and suppressed plant growth in both rice types. However, pigmented rice had better drought tolerance owing to uniform emergence, and better physiological and morphological plasticity. Seed priming was quite helpful in improving the performance of both rice types under drought and well‐watered conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号