首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Birth of the Kaapvaal tectosphere 3.08 billion years ago   总被引:1,自引:0,他引:1  
The crustal remnants of Earth's Archean continents have been shielded from mantle convection by thick roots of ancient mantle lithosphere. The precise time of crust-root coupling (tectosphere birth) is poorly known but is needed to test competing theories of continental plate genesis. Our mapping and geochronology of an impact-generated section through the Mesoarchean crust of the Kaapvaal craton indicates tectosphere birth at 3.08 +/- 0.01 billion years ago, roughly 0.12 billion years after crust assembly. Growth of the southern African mantle root by subduction processes occurred within about 0.2 billion years. The assembly of crust before mantle may be common to the tectosphere.  相似文献   

2.
The free-air gravity trend over Canada, derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, robustly isolates the gravity signal associated with glacial isostatic adjustment (GIA) from the longer-time scale mantle convection process. This trend proves that the ancient Laurentian ice complex was composed of two large domes to the west and east of Hudson Bay, in accord with one of two classes of earlier reconstructions. Moreover, GIA models that reconcile the peak rates contribute approximately 25 to approximately 45% to the observed static gravity field, which represents an important boundary condition on the buoyancy of the continental tectosphere.  相似文献   

3.
Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals   总被引:8,自引:0,他引:8  
Most minerals of Earth's upper mantle contain small amounts of hydrogen, structurally bound as hydroxyl (OH). The OH concentration in each mineral species is variable, in some cases reflecting the geological environment of mineral formation. Of the major mantle minerals, pyroxenes are the most hydrous, typically containing approximately 200 to 500 parts per million H(2)O by weight, and probably dominate the water budget and hydrogen geochemistry of mantle rocks that do not contain a hydrous phase. Garnets and olivines commonly contain approximately 1 to 50 parts per million. Nominally anhydrous minerals constitute a significant reservoir for mantle hydrogen, possibly accommodating all water in the depleted mantle and providing a possible mechanism to recycle water from Earth's surface into the deep mantle.  相似文献   

4.
Kaula WM 《Science (New York, N.Y.)》1990,247(4947):1191-1196
Of the planets, Venus and Earth are by far the most similar in primary properties, yet they differ markedly in secondary properties. A great impact into Earth is believed to have created its moon and removed its atmosphere; the lack of such an impact into Venus apparently led to a greatly differing atmospheric evolution. The lack of an ocean on Venus prevents the recycling of volatiles and inhibits subduction, so that its crust is probably more voluminous than Earth's, although distorted and quite variable in thickness. Venus's upper mantle appears to be depleted in both volatiles and energy sources because, in addition to the lack of volatile recycling, melts of mantle rocks are more dense than their solid matrix at pressures above 8 gigapascals and hence sink if they occur at depths below 250 kilometers. Appreciable energy sources persist at great depths to sustain the few great mountain complexes. The greatest current problem is reconciling the likelihood of a voluminous crust with indications of considerable strength at shallow depths of 20 to 100 kilometers.  相似文献   

5.
An exceptionally low degree of melting of the upper mantle in the equatorial part of the mid-Atlantic Ridge is indicated by the chemical composition of mantle-derived mid-ocean ridge peridotites and basalts. These data imply that mantle temperatures below the equatorial Atlantic are at least approximately 150 degrees C cooler than those below the normal mid-Atlantic Ridge, suggesting that isotherms are depressed and the mantle is downwelling in the equatorial Atlantic. An equatorial minimum of the zero-age crustal elevation of the East Pacific Rise suggests a similar situation in the Pacific. If so, an oceanic upper mantle cold equatorial belt separates hotter mantle regimes and perhaps distinct chemical and isotopic domains in the Northern and Southern hemispheres. Gravity data suggest the presence of high density material in the oceanic equatorial upper mantle, which is consistent with its inferred low temperature and undepleted composition. The equatorial distribution of cold, dense upper mantle may be ultimately an effect of the Earth's rotation.  相似文献   

6.
We obtained likelihoods in the lower mantle for long-wavelength models of bulk sound and shear wave speed, density, and boundary topography, compatible with gravity constraints, from normal mode splitting functions and surface wave data. Taking into account the large uncertainties in Earth's thermodynamic reference state and the published range of mineral physics data, we converted the tomographic likelihoods into probability density functions for temperature, perovskite, and iron variations. Temperature and composition can be separated, showing that chemical variations contribute to the overall buoyancy and are dominant in the lower 1000 kilometers of the mantle.  相似文献   

7.
St. Paul's Rocks, often postulated to be an exposure of the suboceanic mantle, consists of a wider variety of rocks than previously recognized. These perhaps crystallized at different mantle levels, and were subsequently incorporated and mylonitized in a hot but solid intrusion.  相似文献   

8.
Temporal evolution of depleted mantle thorium-uranium-niobium systematics constrain the amount of continental crust present through Earth's history (through the niobium/thorium ratio) and date formation of a globally oxidizing atmosphere and hydrosphere at approximately 2.0 billion years ago (through the niobium/uranium ratio). Increase in the niobium/thorium ratio shows involvement of hydrated lithosphere in differentiation of Earth since approximately 3.8 billion years ago. After approximately 2.0 billion years ago, the decreasing mantle thorium/uranium ratio portrays mainly preferential recycling of uranium in an oxidizing atmosphere and hydrosphere. Net growth rate of continental crust has varied over time, and continents are still growing today.  相似文献   

9.
We measured the spin state of iron in ferropericlase (Mg0.83Fe0.17)O at high pressure and found a high-spin to low-spin transition occurring in the 60- to 70-gigapascal pressure range, corresponding to depths of 2000 kilometers in Earth's lower mantle. This transition implies that the partition coefficient of iron between ferropericlase and magnesium silicate perovskite, the two main constituents of the lower mantle, may increase by several orders of magnitude, depleting the perovskite phase of its iron. The lower mantle may then be composed of two different layers. The upper layer would consist of a phase mixture with about equal partitioning of iron between magnesium silicate perovskite and ferropericlase, whereas the lower layer would consist of almost iron-free perovskite and iron-rich ferropericlase. This stratification is likely to have profound implications for the transport properties of Earth's lowermost mantle.  相似文献   

10.
Seismic anisotropy: tracing plate dynamics in the mantle   总被引:2,自引:0,他引:2  
Park J  Levin V 《Science (New York, N.Y.)》2002,296(5567):485-489
Elastic anisotropy is present where the speed of a seismic wave depends on its direction. In Earth's mantle, elastic anisotropy is induced by minerals that are preferentially oriented in a directional flow or deformation. Earthquakes generate two seismic wave types: compressional (P) and shear (S) waves, whose coupling in anisotropic rocks leads to scattering, birefringence, and waves with hybrid polarizations. This varied behavior is helping geophysicists explore rock textures within Earth's mantle and crust, map present-day upper-mantle convection, and study the formation of lithospheric plates and the accretion of continents in Earth history.  相似文献   

11.
New high-precision samarium-neodymium isotopic data for chondritic meteorites show that their 142Nd/144Nd ratio is 20 parts per million lower than that of most terrestrial rocks. This difference indicates that most (70 to 95%) of Earth's mantle is compositionally similar to the incompatible element-depleted source of mid-ocean ridge basalts, possibly as a result of a global differentiation 4.53 billion years ago (Ga), within 30 million years of Earth's formation. The complementary enriched reservoir has never been sampled and is probably located at the base of the mantle. These data influence models of Earth's compositional structure and require revision of the timing of global differentiation on Earth's Moon and Mars.  相似文献   

12.
Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (>/=2.4 x 10(10) Pascals) and temperatures. In particular, (Mg,Fe)SiO(3) perovskite, the most abundant mineral of Earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO(2) stishovite and MgSiO(3) perovskite) at the pressures of the core-mantle boundary, 14 x 10(10) Pascals. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 kilometers of Earth's mantle, the D" layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of Earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence Earth's magnetic field observed at the surface.  相似文献   

13.
Ito T  Simons M 《Science (New York, N.Y.)》2011,332(6032):947-951
Periodic ocean tides continually provide a cyclic load on Earth's surface, the response to which can be exploited to provide new insights into Earth's interior structure. We used geodetic observations of surface displacements induced by ocean tidal loads to constrain a depth-dependent model for the crust and uppermost mantle that provides independent estimates of density and elastic moduli below the western United States and nearby offshore regions. Our observations require strong gradients in both density and elastic shear moduli at the top and bottom of the asthenosphere but no discrete structural discontinuity at a depth of 220 kilometers. The model indicates that the asthenosphere has a low-density anomaly of ~50 kilograms per cubic meter; a temperature anomaly of ~300°C can simultaneously explain this density anomaly and inferred colocated minima in elastic moduli.  相似文献   

14.
Structure and dynamics of Earth's lower mantle   总被引:1,自引:0,他引:1  
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.  相似文献   

15.
Compositional stratification in the deep mantle   总被引:2,自引:0,他引:2  
A boundary between compositionally distinct regions at a depth of about 1600 kilometers may explain the seismological observations pertaining to Earth's lower mantle, produce the isotopic signatures of mid-ocean ridge basalts and oceanic island basalts, and reconcile the discrepancy between the observed heat flux and the heat production of the mid-ocean ridge basalt source region. Numerical models of thermochemical convection imply that a layer of material that is intrinsically about 4 percent more dense than the overlying mantle is dynamically stable. Because the deep layer is hot, its net density is only slightly greater than adiabatic and its surface develops substantial topography.  相似文献   

16.
Tomographic imaging indicates that slabs of subducted lithosphere can sink deep into Earth's lower mantle. The view that convective flow is stratified at 660-kilometer depth and preserves a relatively pristine lower mantle is therefore not tenable. However, a range of geophysical evidence indicates that compositionally distinct, hence convectively isolated, mantle domains may exist in the bottom 1000 kilometers of the mantle. Survival of these domains, which are perhaps related to local iron enrichment and silicate-to-oxide transformations, implies that mantle convection is more complex than envisaged by conventional end-member flow models.  相似文献   

17.
Stochastic late accretion to Earth, the Moon, and Mars   总被引:1,自引:0,他引:1  
Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.  相似文献   

18.
Kerr RA 《Science (New York, N.Y.)》2000,290(5495):1274b-1275b
On page 1338, a group of geophysicists suggests that the mysterious boundary between Earth's molten iron core and its rocky mantle most resembles an inverted sea floor, with liquid-iron-laced sediments collecting on the roof of the core. They argue that a slow, inverted rain of precipitates rising to the core-mantle boundary and settling into a kilometers-thick layer might explain a variety of observations, from a subtle nodding of Earth's axis to seismic speed zones at the boundary. Their story will be difficult to verify, however, because painting a portrait of the core-mantle boundary depends on very indirect geophysical evidence.  相似文献   

19.
Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basafts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.  相似文献   

20.
Delineating the driving forces behind plate motions is important for understanding the processes that have shaped Earth throughout its history. However, the accurate prediction of plate motions, boundary-zone deformation, rigidity, and stresses remains a difficult frontier in numerical modeling. We present a global dynamic model that produces a good fit to such parameters by accounting for lateral viscosity variations in the top 200 kilometers of Earth, together with forces associated with topography and lithosphere structure, as well as coupling with mantle flow. The relative importance of shallow structure versus deeper mantle flow varies over Earth's surface. Our model reveals where mantle flow contributes toward driving or resisting plate motions. Furthermore, subducted slabs need not act as strong stress guides to satisfy global observations of plate motions and stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号