首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Developing tomato breeding lines resistant to tomato yellow leaf curl virus   总被引:1,自引:0,他引:1  
Using controlled whitefly-mediated inoculation techniques, seven Lycopersicon chilense accessions, highly resistant to isolates of tomato yellow leaf curl virus(TYLCV) from Southern Europe, TYLCV-Sr, were selected. All exhibited similar levels of partial resistance, being symptomless and with low levels of viral DNA accumulation. However, a differential response to infection was found in interspecific hybrids with tomato and inbred lines derived from different L. chilense accessions, allowing a precise discrimination among them. This selection procedure which considers the expression of the resistance genes in the tomato genetic background led to the selection of two highly resistant F1 hybrids derived from L. chilense LA 1932 and LA 1938. A backcrossing programme was initiated, selecting for horticultural characteristics and TYLCV resistance, in field and controlled inoculation conditions. As a result of this programme, six advanced breeding lines (UPV Ty 1, 3, 6, 9, 17 and 53), exhibiting a high level of resistance to TYLCV-Sr, were obtained. Under high inoculum pressure conditions these lines suffered only 30-40% yield loss relative to non-infected control plants, and compared with 90-95% yield loss in susceptible controls. These lines also have horticultural characteristics appropriate for the fresh market tomato cultivation system in this area, and are a good base material for obtaining commercial hybrids highly resistant to different isolates of TYLCV.  相似文献   

2.
Late blight (LB), caused by the oomycete Phytophtohra infestans, is one of the most destructive diseases of tomato (Solanum lycopersicum) and other Solanaceae species. Current disease control and prevention strategies are not sufficient to control the disease in tomato. Recent germplasm screening experiments led to the identification of a new source of resistance (PI 270443) in the tomato wild species S. pimpinellifolium. This study was conducted to identify genomic regions associated with LB resistance in this accession. A large F2 population (n = 986) derived from a cross between PI 270443 and a LB-susceptible tomato breeding line (NCEBR-2) was screened for LB resistance using a highly aggressive isolate of P. infestans. Twenty-five of the most resistant and 29 of the most susceptible, but surviving F2 individuals were identified based on disease evaluations conducted in the F2 and F3 progeny populations. The selected individuals were genotyped with 153 DNA markers located across the 12 tomato chromosomes. A selective genotyping approach led to the identification of two genomic regions on tomato chromosomes 1 and 10 associated with LB resistance in PI 270443. Identification of two genomic regions associated with resistance was consistent with a previous estimate of the number of LB resistance genes in this accession. Research is currently underway to fine map the two resistance genes and incorporate them into new tomato breeding lines and hybrid cultivars.  相似文献   

3.
Late blight (LB), caused by Phytophthora infestans, is one of the most devastating diseases of tomato (Solanum lycopersicum) worldwide. Aggressive pathogen isolates resistant to fungicides have driven research in favour of finding new sources of host resistance for tomato breeding. Recently, we reported S. pimpinellifolium accession PI 270443 exhibiting LB resistance stronger than all commercial LB-resistant tomato cultivars. The purpose of this study was to examine the inheritance of LB resistance conferred by this accession. An interspecific cross was made between PI 270443 and a LB-susceptible tomato breeding line and advanced to F10 generation. A total of 166 F9 and corresponding F10 recombinant inbred lines (RILs) were evaluated for response to LB in four replicated greenhouse experiments. Estimates of heritability (h2) of LB resistance, determined by parent–offspring (F9:F10) correlation analysis, ranged from 0.66 to 0.81, with an average of 0.76. The moderately high h2 of LB resistance in PI 270443 suggests the utility of this accession for tomato breeding. Molecular mapping and RNA-sequencing efforts are underway to identify genes underlying LB resistance in PI 270443.  相似文献   

4.
Late blight (LB), caused by Phytophthora infestans, is one of the most devastating diseases of tomato (Solanum lycopersicum) worldwide. Due to the emergence of new and aggressive P. infestans isolates, identifying new genetic resistance to LB is a priority in tomato breeding. Recently, we reported the identification of several Solanum pimpinellifolium accessions with strong LB resistance. In this study, we investigated the utility of resistant accession PI 163245 for tomato breeding by examining heritability (h2) of resistance and the response to selection for resistance. Estimates of h2 based on F2 : F3 and F3 : F4 parent : offspring correlation analyses averaged 0.79 and 0.94, respectively, suggesting the heritable nature of LB resistance in PI 163245. Analysis of response to selection for resistance from F2 to F4 generations indicated a realized h2 of 0.63, confirming the utility of this resistance in tomato breeding. Two methods of estimating the minimum number of loci involved indicated the presence of one major resistance locus. Currently, genetic mapping and breeding efforts are underway to further confirm the viability of this accession for improving tomato LB resistance.  相似文献   

5.
Summary Three sugarbeet breeding lines partially resistant to the root-rotting fungus, Rhizoctonia solani, were converted to the tetraploid condition without selection. These three diploid and tetraploid lines were crossed with three diploid male-sterile lines to produce equivalent diploid and triploid hybrids. The triploid hybrids were significantly more resistant to Rhizoctonia than were the diploid hybrids. However, the tetraploid resistant limes were no different than their diploid equivalent lines. Reciprocal crosses provided no evidence of maternal effect on resistance. Cytoplasm that included the male-sterility factor had no influence on resistance. Triploid hybrids, where the resistant parent is tetraploid, should be advantageous in the breeding of rhizoctonia-resistant hybrid varieties.Joint contribution of the Agricultural Research Service, U.S. Department of Agriculture, the Colorado State University Experiment Station, and the Beet Sugar Development Foundation. Published with the approval of the Director of the Colorado State University Experiment Station as Scientific Paper Series No. 2072.  相似文献   

6.
Summary Five pairs of lines, nearly isogenic except for genes for resistance and susceptibility to culture CR3 of Erysiphe graminis (DC). Merat hordei Em. Marchal, developed from the barley (Hordeum vulgare L.) varieties Algerian, Franger, Durani, Rupee, and Multan, had five different genes at the M1-a locus on chromosome 5 conditioning resistance to culture CR3. The resistant isogenic lines developed from Durani, Rupee, and Multan each had one additional resistance gene, closely linked in coupling to their resistance gene at the M1-a locus, conditioning resistance to culture 63.5 or 64.54. The sixth pair of isogenic lines, developed from the variety Long Glumes, had three resistance genes: one at the M1-a locus, a second closely linked in coupling to the first, and a third gene. The first and the third genes in Long Glumes appear to be the same as the two genes in Multan. The outstanding resistance to E. graminis hordei of most of the donor varieties for the isogenic lines is explained by their possessing two or more resistance genes. The presence of approximately 20 different genes in and around the M1-a locus suggests that there is a cluster of closely linked resistance loci in that region of chromosome 5.Contribution from Applied Plant Genetics Laboratory, Northeastern Region, Agricultural Research Service, U.S. Department of Agriculture, in cooperation with the Agricultural Research Department, Danish Atomic Energy Commission.  相似文献   

7.
J. W. Scott  J. P. Jones 《Euphytica》1989,40(1-2):49-53
Summary Resistance to fusarium wilt, incited by Fusarium oxysporum (Schlecht.) f. sp. lycopersici (Sacc.) Snyder & Hansen race 3 in tomato (Lycopersicon esculentum Mill.) was discovered in LA 716, a L. pennellii accession. A resistant BC1F3 breeding line, E427, was developed from LA 716. E427 was crossed with the susceptible cv. Suncoast and F1, BCP1, BCP2 (to Fla 7155, a susceptible parent) F2, F3, and BCP2S1 seeds were obtained. Segregation for resistance following root dip inoculation over three experiments indicated a single dominant gene controlled resistance. Five of the 12 BCP1S1's segregated more susceptible plants, whereas one of the 12 segregated more resistant plants than expected (P<0.05). Three of 23 F3 lines segregated more susceptible plants than expected while 1 of the 23 had more resistant plants than expected (P<0.05). Segregation in all other lines fit expected ratios. Five of the 23 F3's were homozygous resistant which was an acceptable fit to expectations (P=0.1–0.5). The gene symbol I 3 is proposed for resistance to race 3 of the wilt pathogen. Deviations from expected ratios in data reported here and for other breeding lines indicate an effect of modifier genes and/or incomplete penetrance. Plant age at inoculation and seed dormancy did not affect results.Florida Agricultural Experiment Station Journal Series No. 8101.  相似文献   

8.
Tomato yellow leaf curl virus (TYLCV) is one of the most widespread begomoviruses transmitted by the whitefly Bemisia tabaci that cause tomato yellow leaf curl virus diseases (TYLCDs). TYLCD losses can be especially severe in open‐field tomato (Solanum lycopersicum L.) crops. TYLCV is particularly well known and widespread in the Mediterranean (Med) countries where TYLCD control is mostly based on insecticidal control of B. tabaci populations. Unfortunately, Tunisian B. tabaci populations include Middle East‐Asia Minor I and the Med species that have developed resistance to many classes of insecticides. Therefore, TYLCD‐resistant cultivars are essential for sustainable disease management. Six TYLCD resistance genes (Ty) have been introgressed from wild species into cultivated tomato and are available for breeding. Information on the Ty genes or gene combinations is useful for breeding resistant cultivars. To this end, 14 tomato lines carrying different Ty gene combinations and two susceptible tomato entries were evaluated for TYLCD incidence and severity in two field trials during late season in Tunisia. Entries with Ty‐1/Ty‐3 + Ty‐2 offered the highest levels of resistance in Tunisia.  相似文献   

9.
DNA marker-assisted selection was employed to select Xa-21 bacterial blight resistance and waxy (Wx) genes. Genotypes with both genes were selected from four F2 populations involving indica × indica, indica × intermediate and japonica × indica crosses. With the assistance of PCR marker, 13 true breeding lines carrying Xa-21 were identified from F2 generation of IRBB 21 × G 11353 cross. Similarly ten, eleven and fifty two plants having Xa-21 gene were isolated from G 3005-4-1 × IRBB 21, IRBB 21 × HJX 74 and IRBB 21 × SY 2crosses respectively. The lines with Wx gene in both homozygous and heterozygous state were also scored from the above crosses. Twenty plants having both Xa-21 and Wx loci in homozygous state were identified. DNA-based progeny testing was conducted to ensure the selection of homozygous lines for Xa-21 and Wx genes. Finally,twenty true breeding lines with high amylose content and Xa-21 gene were isolated from four crosses. These homozygous lines are phenotypically superior and resistant to Chinese race 5 of the bacterial blight pathogen. Fifty-six germplasm sources were surveyed for PCR polymorphism in order to facilitate future PCR-based marker assisted transfer of bacterial blight resistance genes xa-5, xa-13 and Xa-21 to any desired varietal background which will be useful for selection of parents in breeding programmes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Molecular markers have been used for identification and mapping of genes and QTLs for numerous agriculturally important traits in tomato, including resistance/tolerance to biotic and abiotic stresses and fruit- and flower-related characteristics. However, the extent to which markers have been utilized in tomato breeding programs has not been clearly determined. A review of the literature indicated that the utility of most markers for use in tomato breeding programs have not been verified. Many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations. In this study, we examined the utility of available markers for several major disease resistance traits in tomato by testing them in a number of breeding lines and commercial cultivars with known resistance/susceptibility responses. While several markers were validated, others needed PCR optimization for successful amplifications or were not informative in the genotypes used. Specifically, of the 37 markers examined 19 (~51%) were informative, including markers for resistance to Fusarium wilt, late blight, bacterial wilt, tomato mosaic virus, tomato spotted wilt virus, and root knot nematodes. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding lines and populations. However, with recent advances in tomato sequencing, it is becoming increasingly possible to develop more informative markers to accelerate the use of MAS in tomato breeding.  相似文献   

11.
Tomato (Solanum lycopersicum) production in tropical and subtropical regions of the world is limited by the endemic presence of Tomato yellow leaf curl virus (TYLCV). Breeding programmes aimed at producing TYLCV‐resistant tomato cultivars have utilized resistance sources derived from wild tomato species. So far, all reported breeding programmes have introgressed TYLCV resistance from a single wild tomato source. Here, we tested the hypothesis that pyramiding resistances from different wild tomato species might improve the degree of resistance of the domesticated tomato to TYLCV. We have crossed TYLCV‐resistant lines that originated from different wild tomato progenitors, Solanum chilense, Solanum peruvianum, Solanum pimpinellifolium, and Solanum habrochaites. The various parental resistant lines and the F1 hybrids were inoculated in the greenhouse using viruliferous whiteflies. Control, non‐inoculated plants of the same lines and hybrids were exposed to non‐viruliferous whiteflies. Following inoculation, the plants were scored for disease symptom severity, and transplanted to the field. Resistance was assayed by comparing yield of inoculated plants to those of the control non‐inoculated plants of the same variety. Results showed that the F1 hybrids between the resistant lines and the susceptible line suffered major yield reduction because of infection, but all hybrids were more resistant than the susceptible parent. All F1 hybrids resulting from a cross between two resistant parents, showed a relatively high level of resistance, which in most cases was similar to that displayed by the more resistant parent. In some cases, the hybrids displayed better levels of resistance than both parents, but the differences were not statistically significant. The F1 hybrid between a line with resistance from S. habrochaites and a line with resistance from S. peruvianum (HAB and 72‐PER), exhibited the lowest yield loss and the mildest level of symptoms. Although the resistance level of this F1 hybrid was not statistically different from the level of resistance displayed by the 72‐PER parent itself, it was statistically better than the level of resistance displayed by the F1 hybrids between 72‐PER and any other resistant or susceptible line.  相似文献   

12.
The inheritance of resistance to powdery mildew was investigated in 20 accessions of Hordeum spontaneum and in 20 F4 lines derived from crosses between the variety ‘Aramir’ and 13 accessions of H. spontaneum. Two resistance genes were detected in 17 accessions, and three resistance genes in one accession. In two accessions, only one resistance gene was present. The 20 breeding lines showed a large variation in infection type and infection level. The genetic relationship between the resistance genes detected was investigated in the seven most resistant F4 lines. These F4 lines were divided into three groups which carried different resistance genes. In two lines, the detected resistance gene was shown to be race-specific.  相似文献   

13.
Yellow rust caused by Puccinia striiformis is a wheat disease of worldwide importance. The Yr17 resistance gene introgressed from Aegilops ventricosa was effective, in France, against all yellow rust isolates until 1998. The SC‐Y15 marker is one of three molecular markers closely linked to Yr17. In this paper, results obtained are compared with the molecular marker SC‐Y15 and with resistance tests performed at the seedling and adult plant stages on 31 lines from five populations derived from recurrent selection programmes. The resistance tests showed that Yr17 controlled the resistance in seven lines, but that others had additional resistance at the adult stage (18 lines). The molecular test corresponded well with the resistance test in most lines (98% of 156 plants tested), including individual plants that were resistant or susceptible in heterogeneous lines. It also indicated the presence of Yr17 in lines in which it could not be identified by the resistance test because of the presence of other genes. Three of the 156 plants tested appeared to have the gene Yr17 according to the resistance tests, but lacked the molecular marker. These could have resulted from breakage of the linkage, the number being consistent with the estimate of linkage already published. This indicated the need for a resistance test, at least in later stages of breeding programmes, if it is considered essential to have the Yr17 gene present. The use of the selected lines in breeding programmes is also discussed.  相似文献   

14.
Marker assisted selection (MAS) and wheat doubled haploids (DH) are relatively new technologies, recently applied to wheat breeding programs. Simulations demonstrate that DHs increase the efficiency of MAS, and offer faster strategies for combining large numbers of genes with a minimum number of marker tests. When small numbers of marked loci (1-3) are selected simultaneously, selection of DH progeny is 5-6 times more efficient than selecting F4 derived families. Combining 4-8 marked loci, screening of F2 plants and using only those plants homozygous or segregating for all of the marked loci as parents for DH production (10-31% of F2 plants) is 3-10 times as efficient as using F1 plants. A number of protocols have been proposed involving sib-matings and selection to fix some genes, with further selection in the second generation to improve the proportion of useful DH lines. In one scheme (recombinant F2 selection) all F2 plants, either homozygous or heterozygous for the marked alleles, are intercrossed at random and the recurrent F1 plants still having these alleles are used for DH production. An alternative strategy (recurrent DH selection) is to select from an initial DH population and intercross those lines having most favourable marked loci with a second cycle of DHs to fix all favourable marked loci. Combining more than 12 marked gene loci does not seem feasible, due to the very large numbers of F2s (>2000) required. This has implications when using MAS for quantitative trait loci, where many minor gene loci would have to be combined. Direct selection for some multi-genic quantitative traits amongst the DH lines may be more efficient than using MAS where recurrent selection is used. At the Cereal Research Centre, the practical problems of using these protocols as part of the spring wheat breeding program are being evaluated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Late blight (LB), caused by Phytophthora infestans, is a destructive disease of tomato (Solanum lycopersicum) worldwide. Currently, there are few commercial cultivars of tomato with resistance to LB, and the disease is mainly controlled by heavy use of fungicides. Due to the emergence of fungicide‐resistant pathogen isolates, there is a concerted effort to identify new genetic sources of resistance and breed new resistant cultivars. A recent screening identified several new tomato accessions with strong resistance to LB. Here, we report on the genetic basis of LB resistance in S. pimpinellifolium accession PI 270441, as determined by generation means analysis and analysis of response to selection, using populations derived from crosses with LB‐susceptible breeding line Fla. 8059. Heritability of LB resistance ranged from 0.76 to 0.78, and the minimum number of genes was estimated 1—few. These results suggest that transfer of LB resistance from PI 270441 to the cultivated tomato should be feasible via a traditional backcross breeding approach. Genetic mapping studies are underway to identify molecular markers associated with resistance in this accession.  相似文献   

16.
In pepper (Capsicum annuum), the major genes (R‐genes) Me1 and Me3 confer resistance against root‐knot nematodes (Meloidogyne spp.). The combination of R‐genes and quantitative resistance factors in the same genotype is considered a good breeding strategy for increasing the durability of R‐genes. To ascertain this hypothesis, five pepper inbred lines, differing in their quantitative resistance level, were combined with Me1 or Me3 genes in F1 hybrids. The resistance of inbred lines and F1 hybrids was evaluated in a greenhouse with soil naturally infected by M. incognita in two successive growing years. In both years, lines carrying Me3 were less infected by the nematode when combined with quantitative resistance. An increase in nematode infection was observed in the second growing year in lines carrying Me1 or Me3, independently of quantitative resistance. The infection level recorded in inbred lines without R‐genes was similar in both years. The effectiveness of quantitative resistance controlling M. incognita is confirmed in greenhouse conditions, although the durability of Me1 and Me3 when combined with quantitative resistance factors was not seen to increase.  相似文献   

17.
Fruit taste is an important component of fruit quality, but its genetic basis is complex, making it difficult to alter by plant breeding. Thaumatin is a sweet‐tasting, flavour‐enhancing protein produced by fruits of the African plant Thaumatococcus daniellii Benth. Agrobac‐terium‐mediated transformation was used to produce two transgenic tomato lines expressing biologically active thaumatin in fruits. Transgenic tomato fruits from the T2 plant generation were sweeter than the controls and possessed a specific aftertaste as determined by sensory evaluation. These results demonstrate that transgenic expression of thaumatin could be useful for modifying tomato fruit taste, especially in breeding lines possessing poor fruit taste, such as those carrying a non‐ripening (nor) mutation.  相似文献   

18.
Summary Tomato accessions (Lycopersicon sp.), along with commercial cultivars and breeding lines were grown in a field infested with the brown root rot (BRR) organism, Pyrenochaeta lycopersici and evaluated for resistance. Three L. esculentum Mill. accessions, P.I. 260397, P.I. 262906 and P.I. 203231, were resistant and were used as male parents in crosses designed to transfer resistance to tomatoes of fresh market type. Through analysis of parental generations and F1 and F2 progenies from three crosses the heritability of resistance in the broad sense was estimated to range from 25 to 43 percent. The minimum number of genes influencing resistance was estimated to be from 4 to 8.Florida Agricultural Experiment Stations Journal Series Paper no. 317.  相似文献   

19.
Rhynchosporium secalis is a serious pathogen of barley (Hordeum vulgare L.) in central Norway. A breeding effort was initiated in 1977 to introduce resistance from different sources into adapted genotypes, and the first cultivar from the program was recently released. However, little is known about the resistance genes introgressed in this cultivar or in advanced breeding lines. An effort was made to address this issue through a set of isolates and available molecular markers. Fourteen breeding lines and their resistance donors were investigated by evaluating their reactions to 11 R. secalis isolates. Bulked segregant analysis was used to identify molecular markers linked to resistance genes in 12 of the breeding lines. The isolates were found to be of less discriminating value than the markers. Useful information has been obtained as to the nature of several of the resistance genes introgressed. Eight of the 12 breeding lines contained introgressed genes that were located at the `complex Rh' locus on chromosome 3H and hence may not easily be pyramided into the same genotype. Previous information about the nature of the resistance in `Jet' is questioned. Neither of the resistance genes Rh or Rh2 seems to have been incorporated into Norwegian breeding material.  相似文献   

20.
Historically, conventional breeding has been the primary strategy used to develop a number of Striga‐resistant varieties currently grown in the Sahel of Western Africa. In this study, we have successfully developed and applied a marker‐assisted selection strategy that employs a single backcross programme to introgress Striga resistance into farmer preferred varieties of cowpea for the Nigeria savannas. In this strategy, we have introduced the Striga resistance gene from the donor parent IT97K‐499‐35 into an elite farmer preferred cowpea cultivar ‘Borno Brown’. The selected 47 BC1F2 populations confirmed the recombinants with desirable progeny having Striga resistance gene(s). The 28 lines selected in the BC1F2:4 generation with large seed size, brown seed coat colour and carrying marker alleles were evaluated in the field for resistance to Striga resistance. This led to the selection of a number of desirable improved lines that were immune to Striga having local genetic background with higher yield than those of their parents and standard varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号