首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Soybean (Glycine max (L.) Merr.) plants nodulated with Bradyrhizobium japonicum. Nitragin strain 61A118, were grown with or without the vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. Gerd.) Gerd. and Trappe in pot cultures in soil high (40.4 μg/g) in available Mn. Leaves of the nonVAM plants showed severe symptoms of Mn toxicity and had toxic (314 μg/g) concentrations of Mn in the foliage. NonVAM plants had significantly lower dry weights and nodule mass than VAM plants. Concentrations of Mn in the VAM plants were significantly (P<0.05) lower than in the nonVAM plants, and there were no symptoms of Mn toxicity. Both VAM and nonVAM plants had a significant negative correlation between shoot dry mass and leaf Mn concentration. Since levels of Mn increased with increasing VAM‐fungal colonization, we conclude that it was not the VAM condition per se which alleviated Mn toxicity. We suggest that the significantly higher levels of Mn in the leaves (P<0.05) and the roots (P<0.001) of nonVAM plants was due to increased uptake of Mn by the nonVAM plants. This exudation, which are generally observed in nonVAM plants, and to the role of such exudates in solubilizing MnO2 and chelating the resulting Mn2? for facilitated absorption.  相似文献   

2.
A mesocosm experiment was conducted to examine the effect of an arbuscular mycorrhizal (AM) fungus (Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and a plant growth-promoting rhizobacterium (PGPR) (Pseudomonas mendocina Palleroni), alone or in combination, on the structural stability of the rhizosphere soil of Lactuca sativa L. grown under two levels of salinity. The plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both salinity levels, whereas the mycorrhizal inoculation was only effective in increasing shoot biomass at the moderate salinity level. The aggregate stability of soils inoculated with the PGPR and/or G. mosseae significantly decreased with increasing saline stress (about 29% lower than those of soils under non-saline conditions). Only the inoculated soils showed higher concentrations of sodium (Na) under severe saline stress. The severe salinity stress decreased the glomalin-related soil protein (GRSP) concentration, but the highest values of GRSP were recorded in the inoculated soils. Our findings suggest that the use of AM fungi and/or a PGPR for alleviating salinity stress in lettuce plants could be limited by their detrimental effect on soil structural stability.  相似文献   

3.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi affect diverse aspects of plant form and function. Since mycorrhiza-mediated changes in host-plant responses to root colonization by different VAM fungi vary widely, it is important to assess each endophyte for each specific effect it can elicit from its host as part of the screening process for effectiveness. Three species of VAM fungi and a mixture of species were compared with non-VAM controls for their effects on soil organic matter contents and on nutrition and morphology in two varieties (native and hybrid) of corn (Zea mays L.) and one of sunflower (Helianthus annuus L.) in P-sufficient and N-deficient soil in pot cultures. Differences in soil organic matter due to the fungal applications were highly significant with all host plants. Native corn responded more to VAM colonization than the hybrid did; differences in treatments were significant in leaf area, plant biomass, and root: shoot ratio in the former, but not in the latter. Responses in the sunflower were similar to those in the native corn. Significant VAM treatment-related differences in shoot N and P contents were not reflected in shoot biomass, which was invariant. Correlations between plant or soil parameters and the intensity of VAM colonization were found only in soil organic matter with the native corn, in specific leaf area in the hybrid corn, and in plant biomass in the sunflower. The presence of the different endophytes and not the intensity of colonization apparently elicited different host responses.  相似文献   

4.
The effects of three commonly used fungicides on the colonization and sporulation by a mixture of three arbuscular mycorrhizal (AM) fungi consisting of Glomus etunicatum (Becker & Gerd.), Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Gigaspora rosea (Nicol. & Schenck) in symbiosis with pea plants and the resulting response of the host-plant were examined. Benomyl, PCNB, and captan were applied as soil drenches at a rate of 20 mg active ingredient kg-1 soil 2 weeks after transplanting pea seedlings in a silty clay-loam soil containing the mixed inocula of AM fungi (AM plants). Effects of fungicides were compared to untreated plants that were inoculated with fungi (AM control). The effect of mycorrhizal inoculation on plant growth was also examined by including nonmycorrhizal, non-fungicide-treated plants (non-AM control). Fungicides or inoculation with AM fungi had only a small effect on the final shoot weights of pea plants, but had greater effects on root length and seed yield. AM control plants had higher seed yields and lower root lengths than the corresponding non-AM plants, and the fungicide-treated AM plants had intermediate yields and root lengths. Seed N and P contents were likewise highest in AM control plants, lowest in non-AM plants, and intermediate in fungicide-treated AM plants. All three fungicides depressed the proportion (%) of root length colonized by AM fungi, but these differences did not translate to reductions in the total root length that was colonized, since roots were longer in the fungicide-treated AM plants. Pea plants apparently compensated for the reduction in AM-fungal metabolism due to fungicides by increasing root growth. Fungicides affected the population of the three fungi as determined by sporulation at the final harvest. Captan significantly reduced the number, relative abundance, and relative volume of G. rosea spores in the final population relative to the controls. The relative volume of G. etunicatum spores was greater in all the fungicide-treated soils, while G. mosseae relative volumes were only greater in the captan-treated soil. These findings show that fungicides can alter the species composition of an AM-fungal community. The results also show that AM fungi can increase seed yield without enhancing the vegetative shoot growth of host plants.  相似文献   

5.
 Vesicular-arbuscular mycorrhizal (VAM) fungi increase root uptake of P and other minerals, but their role in the uptake of herbicides has received far less attention. These experiments were conducted to determine the effect of the VAM fungus, Glomus epigaeus (Daniels and Trappe), on the absorption of atrazine and trifluralin by roots of corn and soybean. Atrazine uptake by excised corn-root segments was consistently increased by the VAM fungus, but VAM enhancement of atrazine uptake by soybeans was less than that observed for corn. Roots from corn grown for 8 weeks in the greenhouse prior to the experiment took up 25 pmol mm–3 root, whereas non-mycorrhizal roots took up only 11 pmol mm–3 root. Soybean and corn root uptake of trifluralin was also enhanced by VAM infection. Addition of P did not increase herbicide uptake by non-VAM plants. The direct role of VAM hyphae on atrazine uptake was demonstrated using a two-chamber system, where only the fungal hyphae had access to 14C-atrazine-treated soil. Hyphal systems of the fungus were able to remove and transfer 14C-atrazine residues from soil to corn plants, demonstrating direct uptake of the herbicide by the fungal hyphae. Received: 1 July 1998  相似文献   

6.
Summary In a growth chamber study we examined the influence of a plant growth-promoting rhizobacterium, Pseudomonas putida R-20, and an acid-tolerant vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus intraradices 25, on Medicago sativa L. and Lotus corniculatus L. growth and nodule development. Seedlings were planted in an acidic (pH 5.5), P-deficient soil containing re-established native microflora (minus VAM) and appropriate rhizobia, and inoculated with the rhizobacterium, the VAM fungus, or both. The plants were assayed at three intervals for up to 10–11 weeks. The growth-promoting rhizobacteria alone increased alfalfa shoot mass by 23% compared to all other treatments, but only at 8 weeks of growth, apparently by promoting nodulation and N2 fixation (acetylene reduction activity). The presence of VAM, either alone or in combination with the rhizobacteria, generally decreased root length but only at 8 weeks also. As a group, the inoculation treatments increased all nodular measurements by 10 weeks of growth. Few treatment effects were found at 7 and 9 weeks for birdsfoot trefoil; neither plant nor nodular measurements differed among treatments. By 11 weeks, shoot mass was increased by the rhizobacteria alone by 36% compared to the control. As a group, the inoculation treatments all showed increased nodular responses by this time. The rhizobacteria stimulated mycorrhizal development on both plant species, but only at the initial samplings. No synergistic effects between the plant growth-promoting rhizobacterium and VAM inoculation were found. Although these results lend credence to the concept of managing microorganisms in the rhizosphere to improve plant growth, they emphasize the necessity for a more thorough understanding of microbial interactions as plants mature.  相似文献   

7.
The influence of infection by the vesicular-arbuscular (VA) mycorrhizal fungus Glomus fasciculatum on populations of general taxonomic and functional groups of naturally-occurring rhizosphere and rhizoplane bacteria and actinomycetes associated with roots of sweet corn (Zea mays var. rugosa) and subterranean clover (Trifolium subterraneum L.) was assayed on selective media. Total numbers of bacteria, but not actinomycetes, on the rhizoplane increased on plants with VA mycorrhizas (VAM) compared to plants without VAM. Bacteria and actinomycete populations were not affected quantitatively in the rhizosphere soil of VAM plants. However, VAM affected specific groups of bacteria and actinomycetes in both the rhizosphere soil and rhizosplane. Rhizosphere soil of mycorrhizal plants contained more facultative anaerobic bacteria, had fewer fluorescent pseudomonads, but had the same number of Gram-negative bacteria as non-mycorrhizal plants. Of the actinomycetes assayed, populations of both Streptomyces spp and chitinase-producing actinomycetes decreased in the rhizosphere, but not in the rhizoplane of mycorrhizal plants.Leachates of VAM and non-VAM rhizosphere soil were also compared for the presence or activity of bacteria that could influence sporulation by the root pathogen Phytophthora cinnamomi Rands. Fewer sporangia and zoospores were produced by P. cinnamomi in leachates of rhizosphere soil from VAM plants than from non-VAM plants, suggesting that sporangium-inducing microorganisms had declined or sporangium-inhibitors had increased.Since assays for specific functional groups of microorganisms revealed changes even when total numbers seemed the same, we conclude that the microbial equilibrium had been altered by formation of VA mycorrhizas.  相似文献   

8.
Vesicular‐arbuscular mycorrhizal (VAM) fungi have been proposed as a low‐input solution to the problem of inadequate phosphorus (P) levels in many tropical and subtropical soils. To determine the mycorrhizal dependency of two Hawaiian endemic tree species, mamane (Sophora chrysophylla Seem.) and koa (Acacia koa Gray), seedlings were grown in the greenhouse with and without the VAM fungus, Glomus aggregatum Schenck and Smith emend Koske, at three levels of soil solution P (0,0.02, and 0.20 mg P/L) in a volcanic ash soil. Inoculation significantly increased colonization of roots by the VAM fungus in both mamane and koa seedlings. At 0.02 mg P/L, mamane inoculated with the VAM fungus had significantly greater subleaflet P concentrations at 48 days after planting (DAP), and significantly greater leaf areas, shoot dry weights, and root lengths at harvest compared to uninoculated plants. At 0 mg P/L, koa grown in association with the VAM fungus had significantly greater subleaflet P concentrations at 41 DAP, and significantly greater leaf areas, and dry weights of leaves, stems, and roots at harvest. Mamane was highly dependent on the VAM association for maximum growth, while koa was moderately dependent on the VAM association. These results demonstrate that P uptake and early growth of mamane and koa can be increased significantly at low soil P levels by inoculating seedlings with an effective VAM fungus. Future research needs to demonstrate continuing positive growth benefits of VAM fungal inoculation after transplanting from the nursery to field conditions.  相似文献   

9.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg–1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg–1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg–1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

10.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi improve plant growth in marginal soils. This study was conducted to determine the effects of three species of VAM fungi on plant nutrition in two cultivars of corn (Zea mays L.) and one of sunflower (Helianthus annus L.). Plants were grown in pot cultures under controlled (greenhouse) conditions in a soil high in K, Mg, and P, and low in Ca and N, and were supplied with amounts of VAM-fungal inocula in which equal numbers of infective propagules had previously been determined. Analysis of variance showed highly significant main effects and interactions due to both factors (plant and fungus) for N, P, Ca, and Mg. For K, only plant effects were significant (P<0.043). The uptake of nutrients was selectively enhanced or inhibited by one or the other VAM fungus relative to non-VAM control plants. In sunflower, N concentration was markedly enhanced (73%) by the mixed inoculum of the three fungi, even though individual effects were not significant. Evaluation of leaf nutrient analyses by the Diagnosis and Recommendation Integrated System (DRIS) revealed the utility of this system to rank nutritional effects by VAM fungi in an order of relative nutrient deficiency. The DRIS therefore is seen as a useful tool in evaluating and selecting VAM fungi for the alleviation of specific nutrient disorders.Work was funded by the Program in Science and Technology Cooperation, Office of the Science Advisor, Agency for International Development, as Project No. 8.055, and was conducted in collaboration at the Colegio de Postgraduados and the Western Regional Research Center  相似文献   

11.
 The effect of the form of N nutrition on soil stability is an important consideration for the management of sustainable agricultural systems. We grew soybean [Glycine max (L.) Merr.] plants in pot cultures in unsterilized soil, and treated them by (1) inoculating them with Bradyrhizobium japonicum, fertilizing with (2) nitrate or (3) ammonia, or (4) by providing only minimum N amendment for the controls. The soils were sampled at 3-week intervals to determine changes in water-stable soil aggregates (WSA), soil pH, the development of roots, arbuscular mycorrhizal (AM) soil and root colonization, and selected functional groups of soil bacteria. The soil fauna was assayed at the end of the experiment (9 weeks). WSA was correlated positively with root and AM soil mycelium development, but negatively with total bacterial counts. Soil arthropod (Collembola) numbers were negatively correlated with AM hyphal length. Soils of nodulated and ammonia-fertilized plants had the highest levels of WSA and the lowest pH at week 9. Sparse root development in the soils of the N-deficient, control plants indicated that WSA formation was primarily influenced by AM hyphae. The ratio of bacterial counts in the water-stable versus water-unstable soil fractions increased for the first 6 weeks and then declined, while counts of anaerobic bacteria increased with increasing WSA. The numbers of soil invertebrates (nematodes) and protozoans did not correlate with bacterial counts or AM soil-hyphal lengths. Soil pH did not affect mycorrhiza development, but actinomycete counts declined with decreasing soil pH. AM fungi and roots interacted as the factors that affect soil aggregation, regardless of N nutrition. Received: 20 December 1997  相似文献   

12.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In the past century, the excessive exploitation of the environment by human beings has resulted in the depletion of valuable broadleaf hardwood trees in Italian forests, creating a need for re-forestation. The aim of this research was to verify whether a vescicular-arbuscular mycorrhizal (VAM) fungus is able to colonise the root of valuable hardwood trees and to evaluate the impact of the VAM fungus on growth and macroelement nutrition of its plant hosts.Four species of valuable broadleaf hardwood trees, Prunus avium L., Fraxinus excelsior L., Acer pseudoplatanus L., and Juglans nigra L., were inoculated with Glomus mosseae, a VAM fungus, and cultivated in a greenhouse. Infection after inoculation and root colonization by the fungus, tree growth, and macro-element nutrition were evaluated two-years after inoculation. G. mosseae formed mycorrhizae on all plants. However, different morphological aspects - predominantly the formation of Arum type arbuscles in P. avium and F. excelsior - were observed. A general improvement of macro-element nutrition from species to species characterised an enhanced growth of mycorrhizal plants. Therefore, it is plausible that the association of VAMs with these broadleaf trees, could overcome the difficulties encountered in the transplanting and the slow growth typical of these tree species.Although numerous articles have reported the beneficial effects of ectomycorrhizal fungi on trees, there is a sparse literature on the association of VAM with tree species. Therefore, this study contributes to the understanding of the role of the symbiosis between valuable broadleaf trees and VAM fungi in macroelement nutrition.  相似文献   

14.
To assess the effect of five vesicular arbuscular mycorrhizae (VAM) isolates of Glomus mosseae screened out from different farming situations, two pot experiments were conducted on maize and soybean in a phosphorus (P)–deficient Himalayan acid Alfisol. There was variation in VAM spore populations of Glomus mosseae isolates screened out from maize harvested fields, soybean fields, vegetable fields, tea orchard, and citrus orchard. Glomus mosseae isolate from vegetable-based cropping system exhibited maximum root colonization at flowering in maize (32%) and soybean (28%), followed by Glomus mosseae isolate from soybean fields, and exhibited the lowest in Glomus mosseae isolate from tea farm. Glomus mosseae isolate from vegetable-dominated fields was at par with Glomus mosseae isolate from soybean-based cropping system, again resulting in significantly high root biomass, nitrogen (N)–P–potassium (K) uptake, and grain and straw productivity both in maize and soybean crops besides the greatest Rhizobium root nodule biomass in soybean. There was a considerable reduction in soil fertility with respect to NPK status over initial status in pot soils inoculated with Glomus mosseae isolate from vegetable-dominated ecosystem, thereby indicating greater nutrient dynamics by this efficient VAM strain in the plant–soil system and greater productivity in a P-deficient acidic Alfisol. Overall, VAM isolates from different cropping systems and farming situations with variable size and composition of VAM mycoflora resulted in differential effects on growth, productivity, and nutrient dynamics in field crops. Overall, Glomus mosseae isolates from vegetable and soybean fields proved to be superiormost in terms of root colonization, growth, and crop productivity as well as nutrient dynamics in above study. Thus, isolation, identification, and selection of efficient VAM strains may prove as a boon in low-input intensive agriculture in P-deficient Himalayan acidic Alfisol.  相似文献   

15.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg?1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg?1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg?1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

16.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

17.
 The effect of inoculating wheat (Triticum aestivum L.) with the PO4 3–-solubilizing microorganisms (PSM) Bacillus circulans and Cladosporium herbarum and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus sp. 88 with or without Mussoorie rock phosphate (MRP) amendment in a nutrient-deficient natural sandy soil was studied. In the sandy soil of low fertility root colonization by VAM fungi was low. Inoculation with Glomus sp. 88 improved root colonization. At maturity, grain and straw yields as well as N and P uptake improved significantly following inoculation with PSM or the VAM fungus. These increases were higher on combined inoculation of PSM and the VAM fungus with MRP amendment. In general, a larger population of PSM was maintained in the rhizosphere of wheat in treatments with VAM fungal inoculation and MRP amendment. The results suggest that combined inoculation with PSM and a VAM fungus along with MRP amendment can improve crop yields in nutrient-deficient soils. Received: 4 September 1997  相似文献   

18.
Com plants were grown in a non‐sterile soil in a greenhouse or in hydroponic culture in a growth chamber. We studied the influence of chitinolytic, pectinolytic, P‐solubilizing bacterial isolates, and a collection of bacterial strains on the development of native vesicular‐arbuscular mycorrhizal (VAM) populations, colonization of roots by the VAM fungus Glomus fasciculatum and their influence on the phosphorus (P) nutrition and growth of plants. As compared with VAM native control, the most potent stimulants for root colonization of soil‐grown plants by the VAM native population was a strain of Agrobacterium radiobacter and isolate H30. All bacteria used significantly supressed shoot fresh weight of mycorrhizal plants (‐13% up to ‐37%), with the exception of Agrobacterium. Under hydroponic conditions, the P‐solubilizing isolate F27 significantly stimulated the intensity of mycorrhiza, the number of arbuscules in roots, and increased both the P concentration and P content in corn shoots (+30% and +35%), than did the VAM fungus alone. Isolate F27 significantly increased shoot dry weight as compared with the mycorrhizal control. The other bacteria did not influence biomass production of corn.  相似文献   

19.
Comparative performance of five geographical isolates of Glomus mosseae screened from maize fields, soybean fields, vegetable fields, tea orchard, and citrus orchard was assessed in three major field crops (wheat, maize, and soybean) under low-input management in three glass-house pot experiments in a phosphorus (P)–deficient acid Alfisol. These geographical isolates of Glomus mosseae varied with respect to vesicular arbuscular mycorrhizal (VAM) spore count and root colonization in these crops with greatest spore count (240 per 250 g soil) and root colonization (28–34%) using previously screened local Glomus mosseae culture (VAML) of CSK Himachal Pradesh Agricultural University, Palampur, India, followed in order by VAM isolate from vegetable-based cropping system, Glomus mosseae isolate from soybean fields, and Glomus mosseae isolate from tea farm. Glomus mosseae isolate from vegetable-based cropping system remaining at par with local VAM culture (VAML), resulting in significantly greatest grain productivity in these field crops under low-input management. There was a considerable reduction in soil fertility with respect to NPK status over the control and initial status in pot soils inoculated with Glomus mosseae isolate from vegetable-based cropping system followed by local VAM strain (VAML), thereby indicating greater nutrient mobilization and productivity as well through this efficient Glomus mosseae strain in P-deficient acid Alfisol. In addition, Glomus mosseae isolates from different farming situations resulted in differential productivity and soil fertility under these field crops. Overall, Glomus mosseae isolate from vegetable-based cropping system proved its superiority in realizing greater productivity and nutrient mobilization compared to local Glomus mosseae VAM culture under low-input management in P-deficient acid Alfisol.  相似文献   

20.
Yield responses of wheat (Triticum aestivum L.) to elemental sulfur (S), mycorrhizae (mycorrhizal fungus, Glomus mosseae), and phosphorus (P) alone and collectively in two different soils were investigated. Plants were grown on calcareous sterilized Karaburun and Menek?e soils (sub-group of Typic Xerorthent). In the all treatments mycorrhizae inoculation alone compared to the control treatment increased shoot and root yields. The yield responses to S alone, P alone, and combined application of S and P in mycorrhizal and non-mycorrhizal treatments in two different soils were interestingly fluctuating. The findings obtained in this study indicated that S tended to increase the efficiency of mycorrhizae in the well aerated Karaburun soil in comparison to a less aerated (heavier textured) Menek?e soil. This potential to increase the efficiency of mycorrhizae on the root growth indicate that yield increase of shoot and grain can occur being an important finding for ecological agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号