首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amounts of P applied cumulatively to a neutral arable soil (pH 7.1–7. in 0.01M CaCl2) at Rothamsted, as farmyard manure, alone or with superphosphate, which were converted to organic P in 100 years ranged from 18 to 44 μg P/g of soil (0–23 cm). Superphosphate alone (3300 kg P/ha) slightly lessened the total organic P in the soil. Neither farmyard manure nor super-phosphate significantly changed the amounts (38 to 42 μg P/g) of inositol penta- and hexaphosphate in these soils. In the surface layers (0–7.5 cm) of soils from permanent grassland at Rothamsted, superphosphate (3370kg P/ha) increased organic P by 134 μg P/g at pH 4.5 and 19 μg P/g at pH 6.5, about 6 and 1 per cent respectively of the P remaining from superphosphate applied cumulatively since 1858. In the sub-surface layers (7.5–23 cm) superphosphate increased organic P by 93 μg P/g at pH 4.5 and 62 μg P/g at pH 6.2, about 18 and 10 per cent respectively of the P remaining from superphosphate. The sum of inositol penta- and hexaphosphates accounted for 32 per cent at pH 4.5 and 21 per cent at pH 6.5 of the increases in organic P in the surface layers and 45 per cent and 26 per cent in the sub-surface layers at pH 4.5 and 6.5 respectively. Superphosphate (1260–2100 kg P/ha) applied intermittently or cumulatively increased total organic P by 19 to 52 μg P/g and inositol penta- and hexaphosphates by 13 to 17 μg P/g in acid tea soils (pH 3.2–3.4) from Georgia, U.S.S.R. Rock phosphate (510–1020kg P/ha) applied cumulatively had no effect on either the total organic P or the inositol P in acid tea soils (PH 3.6–3.7) from Ceylon.  相似文献   

2.
Soils of the Countesswells and Insch series incubated with 14C labelled glucose or plant materials have been separated into clay (< 2 μm), silt, (2–20 μm), fine sand (20–250 μm) and coarse sand (>250μm) fractions and the distribution of individual labelled and unlabelled sugars was determined in each fraction. Both soils contained about 10–15 per cent clay, 18–23 per cent silt and about 60 per cent fine and coarse sand. For all soil samples the concentrations of sugars were usually greatest in the clay, slightly less in the silt, with values in the sand fractions being five or ten times lower, except when fresh plant material was present. In 14C glucose amended Insch soil, 55 per cent of the radioactivity in sugars (predominantly hexoses) occurred in the clay, 36 per cent in the silt, 3 per cent in the fine sand and 6 per cent in the coarse sand after 28 days incubation. For the Countesswells soil the values were 55, 42, 2 and 1 per cent respectively. In 14C ryegrass amended soil before incubation. 77 per cent of the radioactivity in sugars (predominantly glucose, arabinose and xylose) was in the coarse sand. After one year's incubation this had fallen to 59 per cent. In soil amended with 14C cereal rye straw the distribution of radioactivity in sugars after four years incubation was: clay, 21 per cent; silt, 43 per cent; fine sand, 21 per cent; coarse sand, 4 per cent. These distributions were compared with that of the naturally occurring sugars: clay, 31–42 per cent; silt, 40–43 per cent; fine sand, 3–11 per cent; coarse sand, 12–20 per cent.  相似文献   

3.
THE HIGH- AND LOW-ENERGY PHOSPHATE ADSORBING SURFACES IN CALCAREOUS SOILS   总被引:2,自引:0,他引:2  
The two-surface Langmuir equation was used to study P adsorption by 24 calcareous soils (pH 7.2-7.6; 0.8-24.2 per cent CaCO3) from the Sherborne soil series, which are derived from Jurassic limestone. High-energy P adsorption capacities (xm) ranged from 140–345 μg P/g and were most closely correlated with dithionite-soluble Fe. Hydrous oxides therefore appear to provide the principal sites, even in calcareous soils, on which P is strongly adsorbed (xm 6–51 ml/μg P). The low-energy adsorption capacities (xm) ranged from 400–663 μg P/g and were correlated with organic matter contents and the total surface areas of CaCO3 but not with per cent CaCO3, pH, or dithionite-soluble Fe. Total surface areas of CaCO3 in the soils ranged from 4.0 to 8.5 m2/g soil. Low-energy P adsorption capacities agree reasonably with values (100 pg P/m2) for the sorption of phosphate on Jurassic limestones but phosphate was bonded much less strongly by soil carbonates (k″= 0.08–0.45 ml/μg P) than by limestones (k~10.0 ml/μg P). Low-energy P adsorption in these soils is tentatively ascribed to adsorption on sites already occupied by organic anions (and probably also by bicarbonate and silicate ions) which lessen the bonding energy of co-adsorbed P.  相似文献   

4.
Cadmium sorption was measured in 10 agricultural soils with pH ranging from 4.5 to 7.9, and total Cd content from 0.27 to 1.04 μg g?1 dry soil. With initial Cd concentrations of 0.5 to 100.0 μM, sorption from 0.002 M CaCl2 was described by the Freundlich adsorption equation but the gradients of the isotherms increased when the initial concentrations were below 0.5 μm. This indicates that there are specific sites of differing sorption energy; differences between soils in the gradients of the isotherms at low initial concentration could largely be accounted for by their contents of ‘free’ Fe2O3. When initial concentrations were below 0.5 μm there was a linear relationship between the quantity of Cd sorbed and the final concentration in solution. This relationship held with all soils except that of lowest pH from which there was a net loss of Cd to the solutions. Desorption was measured from three soils with contrasting pH. With the soil of lowest pH, over 80 per cent of sorbed Cd was desorbed to 0.002 m CaCl2 and up to 30 per cent to 100 or 500 μm solutions of heavy metal chlorides. In contrast, only very small proportions (<1.25 per cent) were desorbed from the other soils with pH 6.7 and 7.8. The results indicate that Cd is strongly sorbed by soils of pH of above 6.0 when added in amounts comparable to additions in sewage sludges or phosphatic fertilizers, and illustrate the importance of liming as a means of reducing the mobility of this metal in soils.  相似文献   

5.
Ancient valley agriculture in the northern Negev highlands was based on the principle of directed collection of water and eroded material from the slopes and their consequent flow towards the valleys. The stones on these slopes were therefore removed and/or collected into piles known as ‘grape mounds’. The aim of this study was to understand the contribution of stone cover and slope‐facing to biological activity in soil. Soil samples from a depth of 0–5 mm from the soil surface were collected during the study period (December 1994–March 1996) from northern and southern hill slopes, from under limestones and between stones. Soil moisture, organic matter, chlorophyll‐a and soil respiration were determined. The results obtained in field and laboratory studies demonstrated differences between the northern and southern slopes. The stone cover on the northern slope made up 33 per cent and in the southern slope 23 per cent, stone size ranging from 15–50 cm2 and 15–35 cm2, respectively. Soil moisture content varied from 12 per cent in December 1994 on both slopes to one‐quarter of the initial value during the dry period. Organic matter content reached a maximal level of 14 per cent and 16 per cent on the northern and southern slopes, respectively. Values of chlorophyll‐a on both the northern and southern slopes were 0.38 μg g−1 dry soil during the wet season, decreasing to 0.05 μg g−1 dry soil during the dry period. Soil samples from under the stones on both slopes produced high levels of CO2, ranging between 50 and 100 μg CO2 g;−1 dry soil h−1, whereas in the control samples the levels ranged between 30 and 70 μg CO2 g−1 dry soil h−1. In conclusion, the stone cover apparently plays an important role in the maintenance of biological activity through its contribution to slope biotope stability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to examine the influence of land cover changes on soil organic carbon (SOC) and soil total nitrogen (STN) in the Daqing Prefecture of China, where heavy industrialisation in the form of dense oil wells has impacted the environment. Time‐series presentations for the period 1978 to 2008 of remotely sensed data and soil survey data were used to assess the extent of the changes. The study revealed soil degradation under all land cover types and in all soil types, grassland retreat (−15 per cent), swampland retreat (−45 per cent) and increases in the area of farmland (+19 per cent), sand land (+1450 per cent) and alkaline land (+52 per cent). Depletion of the SOC pool occurred in swampland (−64 per cent) both because of the decrease in the area of swampland and because of a decrease in SOC density (−34 per cent). An increase in the SOC pool occurred in alkaline land because of the increase in the area and also because of an increase in SOC density (+297 per cent), but there was little change in the SOC pool in farmland because the increase in area was largely offset by a decrease in SOC density (−14 per cent). The decrease in the STN pool was substantial (−44 per cent), with the largest contributor being the decrease in swamplands (−74 per cent), partly because of the decrease in the area of swampland and partly because of a decrease in STN density (−52 per cent). Large decreases in the STN pool also occurred in farmland (−22 per cent) and grassland (−41 per cent). The direct impacts of construction associated with the expansion of the oil industry were overshadowed by indirect impacts such as interference with water flows and water levels resulting in salinisation of soil. The study also revealed that land cover changes are much more dynamic than a simple analysis would reveal, and because of lag times in the loss of SOC, soil degradation will continue even if land cover changes cease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Experiments with wheat grown in nutrient solution and in a sandy soil showed that 32P activity, supplied as 32P-myoinositol hexaphosphate (IH 32P), was translocated to the tops of aseptic plants. The proportion of the added 32P activity recovered in the tops of solution grown plants was influenced by the concentration of IH 32P, decreasing from 8 per cent with 10 μg P/ml to 0.4 per cent with 0.2 μg P/ml.With concentrations of IH 32P equivalent to 0.2 parts/106 P, inoculation of the root zone of soil grown plants with soil bacterial isolates shown to possess phytase activity, or with a mixed rhizosphere flora had no effect on the incorporation of 32P into the wheat plants. It is considered unlikely, with the concentration of inositol hexaphosphates normally present in soil solution, that soil microflora will increase the dephosphorylation of these compounds at root surfaces above the activity due to plant enzymes.  相似文献   

8.
Field estimates of silt and clay contents were compared statistically with the silt (2-60 μm) and clay (<2 μm) contents determined by the pipette method of 184 soil horizons from a large range of west Midland soils (clay contents 1–81 per cent and silt contents 3–71 per cent). Regression equations were calculated (a) for each of four surveyors using combined topsoil and subsoil data and (b) for surface and subsoils separately using combined data for the four surveyors. There is slight evidence of ‘operator bias’ and a tendency for all four surveyors to underestimate clay in surface horizons though these conclusions have limited significance because of the small number and the distribution of some of the sample populations. Single equations for the combined data from all operators and all horizons explained 75.5 per cent of the variation in field estimates of silt content and 85.4 per cent of the variation of clay estimates. For silt, the regression line almost passes through the origin with a slope not significantly different from unity, whilst for clay, the line intercepts the y-axis close to zero and has a slope of 0.904. The results show that, with experience and adequate reference samples, surveyors can confidently estimate the particle-size distribution of a wide range of soils. These studies were done during soil mapping in Staffordshire, Hereford and Worcester, and Salop using the newly introduced soil classification (Avery, 1973) and revised Handbook (Hodgson, 1974) of the Soil Survey of England and Wales.  相似文献   

9.
A study was made of the qualitative and quantitative distribution of aerobic heterotrophic bacteria in the two mineral horizons of a developing podsol soil under Pinus. There was no significant difference in the total numbers or in the kinds of bacteria between the two horizons. In the acidic A1 horizon (pH, 3.6) Bacillus spp. comprised 58 per cent of the population, the remainder being composed of Gram-negative rods (15 per cent), pleomorphic rods (14 per cent), Gram-positive cocci (10 per cent) and streptomycetes (3 per cent). The corresponding figures for the C horizon (pH, 8.6) were Bacillus (23 per cent), Gram-negative rods (37 per cent), pleomorphic rods (10 per cent), Gram-positive cocci (17 per cent) and streptomycetes (13 per cent). These differences in distribution could not be related to any one environmental factor. The data from this investigation lend support to the view that different soil types can be distinguished by their bacterial floras. Bacillus subtilis, B. cereus and the Gram-positive cocci were biochemically and fermentatively active and many of the streptomycetes were able to degrade complex organic molecules. The Gram-negative and pleomorphic forms were apparently metabolically inactive.  相似文献   

10.
Rice‐straw amendment increased methane production by 3‐fold over that of unamended control. Application of P as single superphosphate at 100 μg (g soil)–1 inhibited methane (CH4) production distinctly in flooded alluvial rice soil, in the absence more than in the presence of rice straw. CH4 emission from rice plants (cv. IR72) from alluvial soil treated with single superphosphate as basal application, in the presence and absence of rice straw, and held under non‐flooded and flooded conditions showed distinct variations. CH4 emission from non‐flooded soil amended with rice straw was high and almost similar to that of flooded soil without rice‐straw amendment. The cumulative CH4 efflux was highest (1041 mg pot–1) in rice‐straw‐amended flooded soil. Appreciable methanogenic reactions in rice‐straw‐amended soils were evident under both flooded and non‐flooded conditions. Rice‐straw application substantially altered the balance between total aerobic and anaerobic microorganisms even in non‐flooded soil. The mitigating effects of single‐superphosphate application or low‐moisture regime on CH4 production and emission were almost nullified due to enhanced activities of methanogenic archaea in the presence of rice straw.  相似文献   

11.
Iodine, as potassium iodide in solution, was added to samples of 24 surface soils, 15 subsoils and 16 mixtures of sand with other materials representing soil components, at 10 μg iodine/g soil. The extent of volatilisation of the added iodine was measured after 30 days' exposure in a well-ventilated room. With many of the surface soils volatilisation was negligible although with an acid sandy podsol it amounted to 57 per cent of the iodine added. Eleven of the subsoils induced volatilisation amounting to > 10 per cent of that added. With sand alone, having a pH of 5.7, volatilisation amounted to 100 per cent, and with the mixtures it ranged from nil to 100 per cent. Organic matter reduced volatilisation, probably by retaining the iodine in bound form. Montmorillonite, kaolinite and ferric oxide also reduced volatilisation in comparison with sand alone, but had less effect than did organic matter. Calcium carbonate, although in general reducing volatilisation, probably through its influence on pH and hence on retention by other materials, caused no reduction when added to sand alone.  相似文献   

12.
A loam from the Frilsham and one from the Wickham Series were incubated at 50 and 90 per cent of their water contents at saturation with 100 μg NH4NO3-Ng?1 soil in the presence and absence of C2H2 (0.5 per cent, v/v). Acetylene inhibited nitrification in both soils, but had no effect on mineralization of N. No denitrification (measured as the production of N2O in the presence of C2H2) occurred during incubation at 50 per cent saturation. At 90 per cent saturation, denitrification resulted in a loss of 28.4 and 36.7 μg Ng?1 after 48 h from the Frilsham and Wickham soils, respectively. The concurrent inhibition of nitrification had no effect on the extent of denitrification at this time. In the Wickham soil, NO3? was exhausted after 168 h incubation in the presence of C2H2 and denitrification was underestimated by 13 μg Ng?. The data suggested that concurrent inhibition of nitrification during measurement of denitrification using the C2H2 inhibition technique is most likely to affect the estimate of denitrification loss when NO3?supply is limited by the inhibition of nitrification.  相似文献   

13.
In the deserts of Kuwait in general and in Al‐Salmi area in particular, soil compaction and sealing are the most significant mechanisms of land degradation. In the present study, soil compaction and sealing in the Al‐Salmi area are assessed. The study is based on analysis of satellite images and aerial photographs, besides field measurements and laboratory investigations. Based on this study, a recent map is prepared for the concerned area. It shows three different soil classes. These are highly compacted (8\8 per cent), slightly compacted (1\7 per cent), and almost non‐compacted or natural (89\5 per cent). Soil compaction in Al‐Salmi area causes adverse changes in soil physical properties, e.g. infiltration rate, bulk density and soil strength. The infiltration capacity of the compacted soils has decreased by 18\46 to 91\96 per cent in comparison with non‐compacted soils. The bulk density for the compacted soil varies between 1\6 and 1\7 g cm−3, whereas it varies between 1\2 and 1\35 g cm−3 in the non‐compacted soils, that is an increased of 29\97 per cent. In some sites, the physical properties show small or no difference between compacted and natural soils due to the effect of soil sealing (crustation). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Sixteen topsoils from Denmark and the UK were subjected to two wetting and drying treatments: (i) moist incubation (wet), (ii) eleven wetting and drying cycles (W/D). The W/D treatment resulted in larger P adsorption and resin extraction of soil P than the wet treatment. The differences in P adsorption at the final concentration of 800 μM P were mainly above 20 per cent, whereas the differences in amount of resin-extracted P were mainly less than 20 per cent. The effects were positively correlated with the cation exchange capacity of inorganic components. Furthermore, the increase in rapidly released P was positively correlated with pH. It is suggested that wetting and drying effects on P adsorption and desorption are associated with changes in soil structure caused by rewetting of dry samples.  相似文献   

15.
The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley‐cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and (iii) barley‐cultivated land without soil bund (Bc). For 3 years (2007–2009), the effect of soil bunds on runoff, losses of soil and nutrients, and crop productivity was studied. Daily runoff and soil and nutrient losses were measured for each treatment using standard procedures while barley yield was recorded from the cultivated plots. The results showed that Sb brought about significant reduction in runoff and soil losses. Plots with Sb reduced the average annual runoff by 28 per cent and the average annual soil loss by 47 per cent. Consequently, Sb reduced losses of soil nutrients and organic carbon. However, the absolute losses were still high. This implies the need for supplementing Sb with biological and agronomic land management measures to further control soil erosion. Despite these positive impacts on soil quality, Sb do not increase crop yield. Calculated on a per‐hectare basis, Sb even reduce crop yield by about 7 per cent as compared with control plots, which is entirely explained by the reduction of the cultivable area by 8·6 per cent due to the soil bunds. Suitable measures are needed to compensate the yield losses caused by the construction of soil bunds, which would convince farmers to construct these land management measures that have long‐term beneficial effects on erosion control. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Iodine in each of the forms iodide, elemental iodine, and iodate was added, at a rate of 5 mg/kg to a sandy loam and to mixtures of the soil with composted grass roots, chalk and sesquixoides, and its solubility determined after various periods of incubation. With iodide, solubility in both 0.01 M CaCl2 and 1.0 M NK4 acetate (pH 4.8) declined rapidly over the period o to 3 days and subsequently reached approximate equilibrium levels of 2.8 per cent solubility in CaCl2 and 7.8 per cent in NH4 acetate, these values being the means of samples incubated for 48, 103, and 160 days. The partial (5 per cent) replacement of the soil by composted grass roots had no appreciable effect on the solubility of added iodide, while chalk, incorporated at a rate of 5 per cent, depressed the solubility of iodide in CaCl2 to 1.8 per cent but caused a slight increase in solubility in NH4 acetate. The incorporation of 2 per cent hydrated ferric oxide or of 2 per cent hydrated aluminium oxide reduced the solubility of iodide in CaCl2 to 0.1 and 0.3 per cent, and in NH4, acetate to 3.8 and 5.7 per cent respectively. Elemental iodine was similar to iodide in its solubility in the two extractants and in its response to the various soil treatments. Iodate, however, differed considerably from the other two forms of iodine. With soil alone, and with the soil/chalk mixture, its decline in solubility with increasing incubation time was relatively slow, although after 160 days its solubility was similar to that of iodide and elemental iodine. The incorporation of composted grass roots caused a rapid reduction in iodate solubility, suggesting that the organic matter accelerated the reduction of iodate to elemental iodine or iodide. With the treatments involving the incorporation of ferric and aluminium oxides, there appeared to be considerable sorption of iodate during the 16 h extraction period and the effects of these materials on iodate solubility during incubation were therefore difficult to assess.  相似文献   

17.
STUDIES ON SOIL COPPER   总被引:1,自引:0,他引:1  
A method based on that used by McAuliffe et al. (1948) for phosphorus was developed for determining isotopically exchangeable copper in soils using the radioisotope 64Cu. The authors are confident that, with a few exceptions, isotopic equilibrium in soil/solution systems is attained rapidly enough to overcome possible difficulties resulting from the short half-life of this isotope. For the twenty-four soils examined, amounts of isotopically exchangeable copper were found to be between 0.19 and 12-24 μg g-I and represented between 2 and 21 per cent of the total soil copper. A correlation test and an experiment involving fractionation of labelled soils both demonstrated that the bulk of the isotopically exchangeable copper was located in the organic-bound fraction. Not all copper specifically adsorbed by organic matter was readily exchangeable with 64Cu : for one sample of organic material examined only 20 per cent of the adsorbed copper was isotopically exchangeable after 24 hours equilibration. The corresponding figures for clay materials and oxide material were found to be between 75 and 60 per cent.  相似文献   

18.
Large‐scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non‐disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105·97 g m−2 and 3·356 g m−2, respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0–20 cm depths of the control had an average 1606 g m−2 and 30·36 g m−2, respectively. Root C and N content in the rehabilitation treatments were in the range of 26–36 per cent and 35–53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0–20 cm was 11 307 g m−2 and 846 g m−2, respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20 cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Adsorption-desorption and isotopic-exchange isotherms for acids soils of known clay mineralogy indicated that when all the surfa? P accessible to the solution was considered, the bonding energy for phosphate decreased exponentially with site coverage. The soils differed markedly in the quantities of surface P held at sites of very high bonding energy, defined as those in equilibrium with a solution concentration < 1 μM; the values ranging from 9 μmol g?1 in a soil with 40 per cent gibbsite in the clay fraction, to 1 μmol g?1 in a soil with only 1 per cent gibbsite and no interlayered material. The reversibility of current P adsorption on soil surfaces depended on the immediate history of the soil sample. Complete reversibility occurred when soil, previously enriched with soluble P and stored for 4 to 5 months at constant temperature, was suspended in solutions of constant pH and ionic strength. It is suggested that irreversibility occurs due to incomplete attainment of equilibrium during the adsorption phase, a condition predisposed by high initial P concentrations (>1mM), and the use of soils that are naturally in dis-equilibrium because of recent fertilizer additions or severe depletion of P by plant uptake.  相似文献   

20.
A study of the A horizons of cultivated soils from Saskatchewan, Canada showed that the organic carbon contents were in the sequence semi-arid Dark Brown soils (1.7 per cent), < Black soils (2.55–2.8 per cent), < sub-humid Dark Gray soils (4.5 per cent). The relative proportions of humic acids and the ratios of humic acid: fulvic acid increased in a similar sequence. There were accompanying increases in extinction values at 280 nm, and in levels of nonhydrolyzable nitrogen suggesting more extensive polycondensation of humic materials. These observations are discussed in terms of a working hypothesis for humus formation and transformations, that gives particular emphasis to the soil environment and to interactions between organic and inorganic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号