首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted to examine feed intake, apparent digestibility, nitrogen balance, ruminal fermentation and blood components of wethers fed diets containing increasing levels of wet green tea grounds (WGTG). The experimental design was a 4 × 4 Latin square with four wethers in four 15‐day periods. Wethers were allowed access to diets ad libitum, and allotted to one of four treatments in which WGTG replaced 0% (no WGTG added, CTG), 5% (low level, LBG), 10% (medium level, MTG), and 15% (high level, HTG) of total mixed ration (TMR) dry matter (DM) as wet brewers grains (WBG). All TMR silages were ensiled for 120 days and, irrespective of the WGTG addition, they were well preserved with a high lactic acid content, low pH and ammonia‐N contents. There were no differences among treatments in feed intake, with the exception of ether extract intake (P = 0.032). Digestibilities for LTG and MTG treatments were not different from CTG. However, the organic matter, crude protein, acid detergent fiber and energy digestibilities for HTG treatment were lower than the CTG (P < 0.05). As the level of WGTG increased, nitrogen intake did not differ, but fecal nitrogen increased (P = 0.002), while urinary nitrogen decreased (P < 0.001). No differences among treatments were found in pH level and volatile fatty acids concentrations. However, the ruminal ammonia‐N of the HTG silage was lower than for the CTG silage at all times (P < 0.05). Increasing concentrations of WGTG in the TMR silage decreased (P = 0.019) plasma urea nitrogen content. Therefore, the possible mixing proportion of WGTG for TMR silages can be 10% of the diet DM.  相似文献   

2.
Four wethers were used in a 4 × 4 Latin square design experiment to evaluate in vivo digestibility of total mixed ration (TMR) silage with food by‐products for dairy cows, and the ruminal condition and nitrogen (N) balance were examined. Five by‐products (i.e. potato waste, noodle waste, soybean curd residue, soy sauce cake and green tea waste) were obtained. Four types of TMR silage were used: control (C) containing roughage and commercial concentrate, T1:20% and T1:40% containing the five by‐products replacing 20% and 40% of the commercial concentrate on a dry matter (DM) basis, respectively, and T2:40% containing three by‐products (potato waste, noodle waste and soybean curd residue) replacing 40% of the commercial concentrate on a DM basis. The ingredients were mixed and preserved in oil drum silos for 4 months. The TMR silages showed 4.02–4.44% and 1.75–2.19% for pH and lactic acid contents, respectively. The digestibility of DM and neutral detergent fiber, and total digestible nutrient content were higher (P < 0.05) for T2:40% feeding than for C feeding. Urinary nitrogen excretion tended to be lower (P = 0.07) for T2:40% than for C. The results suggested 40% replacing of commercial concentrate by using the three food by‐products can be most suitable for TMR silage.  相似文献   

3.
Four wethers were used in a 4 × 4 Latin square to study the feed intake, apparent digestibility, nitrogen balance and ruminal fermentation characteristics when fed total mixed ration (TMR) silages which included wet barley tea grounds (WBTG). The TMR silages were prepared using compound feed including wet brewers' grains (WBG), corn, oat hay, alfalfa hay, dried beet pulp, salt and vitamin-mineral supplement in a ratio of 30.7:15:8:24:10:12:0.15:0.15, respectively, on a dry matter (DM) basis. The WBTG and soybean meal mixture (7:3 on DM basis) were substituted for WBG at ratio of 0% (Control), 5% (LTG), 10% (MTG), and 15% (HTG) on DM of TMR. WBTG addition to the TMR silages increased lactic acid concentration, decreased pH, acetic acid and ammonia-N ( P  < 0.001). Feed intakes and digestibilities for LTG and MTG (except ether extract (EE) digestibility) treatments were not different from the control ( P  > 0.05). However, EE and neutral detergent fiber (NDF) intake, crude protein, EE and NDF digestibility was lower, but the DM and gross energy digestibility was higher for the HTG treatment compared to control ( P  < 0.01). With progressive increases in WBTG concentrations, nitrogen intake, fecal nitrogen and retention nitrogen did not differ, but the urinary nitrogen for MTG and HTG treatments were lower than that of the control ( P  = 0.001). The ruminal total volatile fatty acid concentration and the molar ratios of propionate and butyrate were higher, but the acetate, ratio of acetate to propionate and ammonia-N content were lower for the HTG treatment compared with the control ( P  < 0.05). Therefore, the possible proportion of replacing WBG with WBTG for TMR silage can be 10% or less of the diet DM.  相似文献   

4.
The effects of inclusion of persimmon peel (PP) in total mixed ration (TMR) silage on its nutrient composition, tannin content, and in vitro ruminal fermentation were studied. Four types of TMR silages containing 0, 50, 100, and 150 g/kg of PP on a dry matter basis were prepared. The dietary contents of non‐fiber carbohydrate (NFC) decreased, while soluble protein fraction increased after ensiling of the TMR. In the TMR silages, the content of insoluble tannin increased (p < .05) with increasing PP level. The fraction of soluble protein decreased linearly (p < .01), while that of neutral detergent insoluble protein increased linearly (p < .01) with increasing the PP level in the TMR silages. The total gas and methane yields from the in vitro rumen fermentation of the TMR silages were lower (p < .01) than those of pre‐ensiled TMR and declined linearly (p < .01) with increasing PP level. These results indicate that adding PP to TMR silage may resist the breakdown of dietary protein during the ensiling process, although the ruminal fermentability of TMR possibly decreased after ensiling due to the loss of NFC.  相似文献   

5.
The objective of this experiment was to evaluate the effects of replacement of whole‐plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration (TMR) silage in Tibet. Four TMR that varied in the forage sources on dry matter basis were used: (i) 52% whole‐plant corn (Control); (ii) 43% oat + 12% common vetch (OC3.6); (iii) 38% oat + 18% common vetch (OC2.2); and (iv) 33% oat + 23% common vetch (OC1.5). Silos were opened on day 45 and then subjected to an aerobic stability test for 12 days. The results showed that all silages were well preserved with low pH and NH3‐N, and high lactic acid and V‐scores. With the increasing proportion of common vetch, crude protein, ether extract increased (P < 0.05), and neutral detergent fiber and acid detergent fiber decreased (P < 0.05). Under aerobic conditions, treated silages were more stable than the control silage as indicated by lower (P < 0.05) pH and yeast population. It was concluded that replacement of whole‐plant corn with oat and common vetch had no unfavorable effects on the fermentation quality and improved crude protein content and aerobic stability of TMR silage. OC2.2 silage was the best among three treated TMR silages.  相似文献   

6.
Four cattle were used in a 4 × 4 Latin square design experiment to study digestibility, ruminal fermentation, nitrogen retention and preference of ensiling pruned persimmon branch (PPB) chips treated with urea. After 60 days of ensiling, urea‐treated PPB showed higher (P < 0.05) pH, acetic acid and ammonia‐N levels than no‐urea PPB. Both urea‐treated PPB and rice straw diets showed higher (P < 0.05) apparent digestibility and digestible nutrient content in cattle than no‐urea PPB diet. Neither mold nor yeast was detected in any urea‐treated PPB. Urinary and fecal excretion as well as nitrogen retention in cattle fed urea‐treated PPB were higher (P < 0.05) than in those fed no‐urea PPB and rice straw. With the exception that ruminal ammonia‐N levels in cattle fed urea‐treated PPB were higher (P < 0.05) than in those given no‐urea PPB and rice straw, ruminal pH, volatile fatty acid concentrations, and the acetic : propionic acid ratio of rumen content were unaffected by diets. The rank order of preference was rice straw > low‐urea > no‐urea > high‐urea. The results suggested that urea treatment of PPB inhibited growth of mold and yeast during silage storage, enhanced its digestibility and had nutritive value almost equivalent to that of rice straw.  相似文献   

7.

The goal of this study was to determine the effects of the fermented juice of epiphytic lactic acid bacteria (FJLB) on the quality of total mixed ration (TMR) silage containing agricultural by-products, its digestibility, rumen fermentation, and nitrogen balance in ewes. TMR was prepared from rice straw, corn stover silage, brewer grain, tofu waste, steam-flaked corn, and a mineral mixture. The treatments consisted of silage additives added to TMR: CON (no silage additive), FJLB, COM (commercial additive), and MIX (FJLB + COM). Four cannulated ewes were assigned to the 4 × 4 Latin square design. The MIX treatment produced a lower (P < 0.01) pH than did the CON and FJLB treatments and a higher (P < 0.01) lactic acid concentration than did the other treatments. The fiber content in the COM treatment was lower (P < 0.05) than that in the other treatments. The FJLB treatment had similar fermentation quality and chemical composition to those of the CON and COM treatments in all parameters observed. Although the silage quality index (Fleig point) was higher in the MIX and COM treatments than in the CON treatment, all silages had good quality. No silage additives affected intake, digestibility, rumen fermentation, or nitrogen balance. In conclusion, the TMR silage prepared from agricultural by-products mixed with wet-type food by-products with or without FJLB added resulted in well-preserved fermentation, and this product might be used as a ruminant feed.

  相似文献   

8.
This study aimed to investigate the fermentation quality and nutritive value of total mixed ration (TMR) silages based on desert wormwood (DW) combined with early stage corn (ESC) as forage and determine an optimum formula. Desert wormwood and ESC were harvested, chopped, and mixed with other ingredients according to a formula, packed into laboratory silos at densities of 500–550 g/L, and stored in the dark for 60 days. The DW proportions in the forage of TMR were 1, 0.75, 0.50, 0.25 and 0, based on fresh weight. As the proportion of DW decreased, the pH also decreased (< 0.05), while lactic acid, lactic acid/acetic acid, crude protein, starch, and the in vitro digestibility of dry matter and neutral detergent fiber increased (< 0.05). Ammonia nitrogen/total nitrogen in the TMR silages with DW proportions of 0.75, 0.25 and 0 in the forage was more than 10%. These results indicated that the quality of the TMR silage containing DW alone as forage was poor, TMR silages containing DW proportions of 0.75 and 0.25, and ESC alone, in the forage were not well preserved. The optimum TMR silage formula contained a DW proportion of 0.5 in the forage.  相似文献   

9.
Six Wagyu (Japanese Black) steers fitted with a ruminal cannula were used in a split‐plot design experiment comprising a 3 × 3 Latin square design (whole plot) and a randomized blocks design (subplot) to determine the effect of the treatment of potato pulp (PP) with urea and the effect of inclusion levels of PP silage in feed supplement on digestibility, ruminal in situ degradation and ruminal fermentation. The whole plot consisted of 20%, 50% and 80% PP silage (dry matter (DM) basis), with PP silage replacing formula feed. The subplot included untreated or 0.5% (on an as‐fed basis) urea‐treated PP. The treatment of PP with urea showed no effect on DM intake and digestibility. The percentage of the rapidly degradable DM fraction of the urea‐treated PP silage was higher (P < 0.01) and the percentage of its slowly degradable DM fraction was lower (P < 0.01) than for the untreated PP silage. Ruminal ammonia concentration was greater (P < 0.01) for steers fed urea‐treated PP silage than that for steers fed the untreated PP silage. The treatment of PP with urea caused a decrease in the molar proportion of acetate and an increase in the proportion of propionate in ruminal fluid after feeding. The rate of DM degradations in hay (linear, P < 0.01) and in PP silage decreased (linear, P < 0.01) as the inclusion level of PP silage increased. Increasing the inclusion level of PP silage in supplement decreased the effective degradability of DM in hay (linear, P < 0.05) and in PP silage (linear, P < 0.05). An increase in the amount of PP silage increased the molar proportion of acetate (linear, P < 0.01) and decreased the butyrate proportion (linear, P < 0.05) in ruminal fluid. The results suggest that urea treatment of PP facilitates microbial access to starch of PP silage in the rumen and that surplus level of PP silage in supplement have adverse effect on ruminal digestion.  相似文献   

10.
To evaluate the feasibility of bamboo shoot shell (BSS) application in total mixed ration silage (TMR) production, the effects of BSS substitution for whole-crop corn on the fermentation characteristics, nutritive value, aerobic stability and in vitro parameters of TMR silage were studied. Four TMR formulations were designed based on dry matter: (1) 0% bamboo shoot shell + 23% whole-crop corn (BSS0); (2) 4% bamboo shoot shell + 19% whole-crop corn (BSS4); (3) 8% bamboo shoot shell + 15% whole-crop corn (BSS8); and (4) 12% bamboo shoot shell + 11% whole-crop corn (BSS12). After 90 days of ensiling, the silos were opened and sampled for fermentation characteristics, nutritive value and in vitro analyses, and subsequent 14-day aerobic stability test. All TMR silages were well preserved except BSS12, characterized by high lactic acid content and V-score, low pH and NH3-N and butyric acid content. With increasing proportion of BSS, crude protein increased (p <.05), and water soluble carbohydrate decreased (p < .05). Under aerobic exposure, BSS-substituted (BSS4, BSS8 and BSS12) silages were more stable than BSS0 silage, as characterized by relatively low silage temperature and high water soluble carbohydrate content. No obvious (p> .05) difference of BSS substitution was observed on in vitro ruminal gas production, digestibility, metabolizable energy and net energy for lactation. The substitution of whole-crop corn with 4% BSS and 8% BSS had no undesired effect on the fermentation characteristics and in vitro digestibility, and efficiently improving the aerobic stability of TMR silages. The BSS8 substitution level is recommended to maximize the BSS utilization.  相似文献   

11.
The objective of this study was to determine the effect of ensiling different ratios of whole crop oat to lucerne on fermentation quality, aerobic stability and in vitro digestibility of silage on the Tibetan plateau. Four experimental treatments were produced varying in the ratio of forages on a fresh matter (FM) basis: 1) 100% oat (control, dry matter (DM) content: 317 g/kg), 2) 90% oat + 10% lucerne (OL10, DM content: 316 g/kg), 3) 80% oat+ 20% lucerne (OL20, DM content: 317 g/kg) and 4) 70% oat+ 30% lucerne (OL30, DM content: 318 g/kg). All treatments were packed into laboratory‐scale silos and ensiled for 60 days and then subjected to an aerobic stability test for 15 days. Further, the four experimental treatments were incubated in vitro with buffered rumen fluid to study the nutrient digestibility. All silages were well preserved with low pH and NH3‐N contents, and high lactic acid contents and V‐scores (evaluation of silage quality). Increasing the lucerne proportion increased (p < 0.05) crude protein (CP) content of silage, whereas neutral (NDF) and acid (ADF) detergent fibre contents were not affected. Under aerobic conditions, the control silage showed higher (p < 0.05) yeast counts (>10cfu/g FM) followed by OL10 silage, and OL10 silage improved aerobic stability for 74 h. OL20 and OL30 silages showed fewer (p < 0.05) yeasts (<105 cfu/g FM) and markedly (p < 0.05) improved the aerobic stability (>360 h). After 48‐h incubation, OL30 silage increased (p < 0.05) in vitro dry matter digestibility (IVDMD) and neutral detergent fibre digestibility (IVNDFD) compared with the control silage. These results suggest that replacing oat with lucerne had no unfavourable effects on fermentation quality of silage, but improved CP content, aerobic stability IVDMD and IVNDFD. OL30 silage was the best among the three mixed silages.  相似文献   

12.
To examine the effects of inclusion levels of pelleted silvergrass (PS) in the diet on digestibility, ruminal fermentation and nutrient status of breeding Japanese Black cows, four cows were allotted to a 4 × 4 Latin square design experiment. Treatments were control fed a diet consisting of 89.4% Sudangrass hay and 10.6% soybean meal on a dry matter (DM) basis, and PS18, PS27 and PS45 fed the diet replaced with 18%, 27% and 45% of control with PS, respectively. The total digestible nutrients (TDN) content of PS was 45.6% on a DM basis. The TDN intakes were significantly decreased by increasing PS level in the diet (P < 0.05), but were higher than the TDN requirement of maintenance cows in all treatments. The total chewing time was decreased significantly by increasing PS level in the diets (P < 0.05). However, the pH and concentration of volatile fatty acid in the ruminal fluid and serum metabolite concentrations were not significantly different among the treatments. The results suggested that including PS up to 45% in the diet did not have adverse effects on the ruminal fermentation and nutrient status in breeding Japanese Black cows at the maintenance stage.  相似文献   

13.
In order to improve the silage fermentation of stylo (Stylosanthes guianensis ) in tropical areas, stylo silages were prepared with commercial additives Lactobacillus plantarum Chikuso‐1 (CH 1), L. rhamnasus Snow Lact L (SN ), Acremonium cellulase (CE ) and their combination as SN +CE or CH 1 + CE , and the fermentation quality, chemical composition and ruminal degradation of these silages were studied. Stylo silages treated with lactic acid bacteria (LAB ) or cellulase, the pH value and NH 3‐N ? total‐N were significantly (<  0.05) decreased while the ruminal degradability of dry matter (DM ), crude protein (CP ), neutral detergent fiber (aNDF om) and acid detergent fiber (ADF om) were significantly (<  0.05) increased compared to control. Compared to LAB or cellulase‐treated silages, the DM , CP contents and relative feed value (RFV ), and the ruminal degradability in LAB plus cellulase‐treated silages were significantly (<  0.05) higher, but the aNDF om content was significantly (<  0.05) lower. CH 1 + CE treatment was more effective in silage fermentation and ruminal degradation than SN +CE treatment. The results confirmed that LAB or LAB plus cellulase treatment could improve the fermentation quality, chemical composition and ruminal degradation of stylo silage. Moreover, the combined treatment with LAB and cellulase may have beneficial synergistic effects on ruminal degradation.  相似文献   

14.
This study was conducted to evaluate effects of traditional Chinese medicine formula (TCMF) combined with several herbs on ruminal fermentation, enzyme activities and nutrient digestibility. Twenty finishing bulls were assigned to control or different TCMFs (Yufeisan‐1, ‐2, ‐3; 2.5% dry matter (DM) in concentrate). Results showed that DM intake was higher (< 0.05) in the Yufeisan‐3 group than others. Compared to control, apparent digestibility of crude protein and neutral detergent fiber were increased (< 0.05) by Yufeisan‐3. No changes were observed in ruminal pH, concentrations of ammonia‐N, microbial crude protein and total volatile fatty acid, whereas ratio of acetate to propionate was lower (< 0.05) and propionate proportion tended to be higher (< 0.1) in three TCMFs than control. Ruminal xylanase (= 0.061) and carboxymethylcellulase (< 0.05) activities were higher in Yufeisan‐3 than control. No changes were observed in abundance of total bacteria, fungi and protozoa, whereas Fibrobacter succinogenes (= 0.062) and Ruminococcus flavefaciens (< 0.05) were increased and total methanogens was reduced (= 0.069) by Yufeisan‐3 compared to control. Yufeisan‐3 improved nutrient digestibility and ruminal enzyme activity, and modified fermentation and microbial community, maybe due to the presence of Herba agastaches, Cortex phellodendri and Gypsum fibrosum.  相似文献   

15.
Our objective was to determine the effect of forage ensiling and ration fermentation on total mixed ration pH, ruminal fermentation and animal performance. Thirty Holstein‐Zebu cross steers were allotted to feeding treatments for 188 days in a randomized complete block design including: fresh grass‐total mixed ration (GTMR; pH 4.7), grass silage‐TMR (STMR; pH 4.0) and fermented‐TMR (FTMR; pH 3.5). Average daily gain for STMR was greatest during the first 3 months period; however, that for FTMR tended to be greater than GTMR during the second 3 months period (< 0.10). During the second period dry matter intake for STMR was the greatest (< 0.01), but feed conversion ratio (< 0.01) and cost per gain (< 0.01) were the least for FTMR. Protein digestibility tended (< 0.10) to be greater for FTMR than STMR and fat digestibility was greater (< 0.05) for GTMR and FTMR than STMR. FTMR had less (< 0.01) ruminal NH3‐N content than STMR. Total volatile fatty acids post‐feeding was greatest for GTMR (< 0.01). Ruminal proportions of acetic and butyric acids were greater for FTMR than GTMR (< 0.05); in contrast, propionic acid was greater for GTMR (< 0.05). Utilizing silage or total ration fermentation did not negatively impact on ruminal pH. STMR and FTMRs can be used to maintain performance of growing crossbred Holstein steers.  相似文献   

16.
The objective of this study was to examine the conservation process and feed value of total mixed ration (TMR) silages. In exp. 1, we evaluated the fermentation pattern and aerobic stability of TMR silages containing different protein and lipid supplementations. In exp. 2, we compared the performance of finishing beef heifers fed those TMR silages. In both experiments, treatments were as follows: ensiled TMR with urea (U); ensiled TMR without a protein supplement at ensiling, but soybean meal supplemented at feeding to balance diet crude protein (CP) in exp. 2 (SMnf; where the acronym nf indicates nonfermented); ensiled TMR with soybean meal (SM); and ensiled TMR with rolled soybean grain (SG). Thirty-two Nellore heifers (313 ± 8.8 kg shrunk body weight [SBW]) were blocked by initial SBW, housed in individual pens, and enrolled in exp. 2 for 82 d. In exp. 1, treatment without a protein supplement (SMnf) had a lower content of CP, soluble CP, NH3-N, pH, and Clostridium count compared with U (P ≤ 0.03). Lactic acid concentrations tended to be reduced for SMnf compared with U (P = 0.09). Ethanol concentration was reduced in SG compared with SM (P < 0.01). 1,2-Propanediol concentration was increased in SMnf compared with U (P < 0.01), reduced in SM compared with SMnf (P = 0.02), and increased in SG compared with SM (P = 0.02). Dry matter (DM) loss during fermentation was low and similar among treatments (~3.7%). All silages remained stable during 10 d of aerobic exposure after feed out. Considering fermentation traits, such as pH (≤4.72), NH3-N (<10% of N, except for U treatment), butyric acid (<0.05 % DM), and DM losses (<3.70% DM), all silages can be considered well conserved. In exp. 2, diets were isonitrogenous because soybean meal was added to SMnf before feeding. Compared with SM, cattle fed SG made more meals per day (P = 0.04) and tended to have a decreased intermeal interval (P = 0.09). DM intake, average daily gain, final SBW, hot carcass weight, Biceps femoris fat thickness, and serum levels of triglycerides and cholesterol were increased for SG compared with SM (P ≤ 0.05). In brief, TMR silages exhibited an adequate fermentation pattern and high aerobic stability. The supplementation of true protein did not improve animal performance, whereas the addition of soybean grain as a lipid source improved the performance of finishing cattle fed TMR silages.  相似文献   

17.
This study aimed to investigate the effects of replacing alfalfa hay (AH) with a mixture of cassava foliage silage and sweet potato vine silage (CSP) (1:1 on a dry matter (DM) basis) on ruminal and intestinal nutrient digestion in sheep. Four wethers were fed a control diet containing 35% of AH and two treatment diets containing 15% and 30% of the CSP as substitute for AH at 1.5 times the metabolizable energy required for maintenance. Replacing AH with the CSP silage did not affect DM intake, whereas it linearly increased (P < 0.05) the intake of ether extract and acid detergent insoluble nitrogen (ADIN). Increasing the CSP substitution linearly decreased (P < 0.05) ruminal DM and neutral detergent fiber (aNDFom) digestibility; however, it did not affect total tract aNDFom digestibility. The CSP substitution did not affect nitrogen (N) intake and duodenal total N flow, whereas it linearly increased duodenal ADIN flow (P < 0.01) and decreased ruminal ammonia‐N concentration (P < 0.01), and intestinal (P = 0.08) and total N digestibility (P < 0.01). These results indicate that replacing AH with the CSP reduced the ruminal N degradation as well as the digestion of ruminal aNDFom and intestinal N.  相似文献   

18.
We examined the in vitro fermentation characteristics and in situ dry matter (DM) and crude protein (CP) degradability of tamarind kernel powder extract residue (TKPER), a by‐product of polysaccharides thickener processing. Two types of TKPER (I and II), of which the CP and neutral detergent fiber organic matter basis contents (%) were 41.4 and 42.0 and 1.4 and 0.5, respectively, were compared with dry heat soybean (SB), soybean meal (SBM) and dry soybean curd residue (SBCR). The TKPERs had significantly lower in vitro gas production compared to the other products at each observation time (P < 0.05). The in vitro DM and CP digestibility (%) of TKPER I and II were 67.7 and 64.9, and 64.5 and 58.0, respectively, significantly lower than those of SB and SBM (P < 0.05). We used four wethers (55.6 ± 4.6 kg) with ruminal cannulas to investigate the in situ degradability of TKPER I, SB, SBM and SBCR. At the ruminal outflow rate of 0.05/h, the effective degradability (%) values of the DM and CP of TKPER I were 64.1 and 49.7, respectively, which were similar to those of SBM. In conclusion, TKPER had high CP and exhibited in situ degradability similar to that of SBM, suggesting that TKPER could be used as a protein source feed.  相似文献   

19.
Six wethers were used in a replicated 3 x 3 Latin square to study the fermentation quality and nutritive value of total mixed ration (TMR) silages that included wet coffee grounds (WCG). The TMR were prepared using a commercial compound feed, timothy hay, alfalfa hay, dried beet pulp, and a vitamin-mineral supplement in a ratio of 36.5:30:20:12:1.5, respectively, on a DM basis, with timothy hay and alfalfa hay being replaced by WCG at 0, 10, or 20%. All TMR silages, irrespective of WCG addition, were well preserved, with a low pH and ammonia-N content and a high lactic acid content. Intakes by wethers of TMR silages containing 0 and 10% WCG were 96.6 and 94.8 g/kg of BW(0.75), and did not differ (P > 0.05). Intake of TMR silage containing 20% WCG was 76.8 g/kg of BW(0.75), which was equal to 80% of that of the TMR silage with no WCG (quadratic: P < 0.01). Increasing concentrations of WCG in the rations decreased the digestibility of DM, CP, ADF, NDF, and energy, and increased that of ether extract (P < 0.05). The TDN and DE contents of the TMR silages with 0 and 10% WCG were similar, but the TMR silage with 20% WCG was lower (P < 0.05). With progressive increases in WCG concentrations, N intake did not differ, but fecal and urinary N increased linearly (P < 0.001), and retained N decreased linearly (P < 0.001). This study demonstrated that the proportion of WCG to be incorporated into TMR silages should not exceed 10% of the DM.  相似文献   

20.
Six wethers were used in a digestibility experiment arranged as replicated 3 × 3 Latin square to evaluate the nutritive value of total mixed ration (TMR) silages that were made from ensiling of TMR containing 0, 6.5 and 13.0% (dry matter basis) of spent mushroom substrate (SMS) for 45 days (treatments denoted as CSMS, LSMS and HSMS, respectively). The amount of SMS replaced the same amount of timothy hay in the respective TMR. All TMR were well preserved as indicated by their low pH, low ammonia‐N and high lactic acid contents. Increasing levels of SMS in the TMR silage quadratically reduced (P < 0.05) nutrient digestibility with the exception of ether extract. The difference of total digestible nutrients and digestible energy contents between LSMS and CSMS TMR silage were less than those between LSMS and HSMS. Increasing concentration of SMS in the ration tended to decrease content of total volatile fatty acids in rumen fluid but increased the ratio of acetate to propionate and pH. The study suggests that a SMS level of 6.5% in the diet DM can be recommended for silage based TMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号