首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Four Holstein cows were used to determine the effect of timing of the feeding of a corn silage (CS)‐based supplement on the feed intake, milk production and nitrogen utilization of grazing dairy cows. The cows were fed the supplement 2 h before grazing (pre‐grazing) or immediately after grazing (post‐grazing). Cows were grazed for 5 h per day under a rotational grazing system. There was no difference in the herbage and total feed intake between treatments. The milk protein yield for pre‐grazing tended to be higher than that for post‐grazing, whereas the milk yield did not differ between treatments. The total nitrogen intake for pre‐grazing tended to be higher than that for post‐grazing (P = 0.06). There was no difference in the urinary nitrogen output between treatments, whereas the proportion of urinary nitrogen output : total nitrogen intake for pre‐grazing tended to be lower than that for post‐grazing (P = 0.06). The milk nitrogen output and nitrogen retention for pre‐grazing tended to be higher than that for post‐grazing (milk nitrogen, P = 0.06; nitrogen retention, P = 0.05). Nitrogen utilization of grazing dairy cows was improved by feeding a CS‐based supplement before grazing.  相似文献   

2.
Milk fatty acid (FA) profiles were determined in Holstein cows (n = 27) fed total mixed rations (TMR) ad libitum (G0) or diet composed by TMR (50% dry matter [DM] offered) plus grazing of pasture with 6 hr of access time to paddock in one session (G1) or 9 hr in two sessions (G2) at 45 days in milk (DIM). Moreover, milk FA was determined at 65 DIM when G0 cows turned out to G1 diet without adaptation period (Post‐G0), G1 remained as controls. Milk FA was quantified using gas chromatography and mass spectrometry. Preformed FA at 45 DIM was greater (+27%) for G2 than G0 cows (p < .05). Stearic acid (C18:0) was 30% greater for G2 cows (p < .05). De novo FA was lowest for G2 cows (p < .05). Conjugated linoleic acid (CLA) did not differ (p < .12), while vaccenic acid (C18:1trans) was twofold greater for grazing treatments (p < .01). Linolenic acid [C18:3(n‐3)] was greatest for G2 and lowest for G0 cows (p < .01). Omega 6 FA was greater for G0 than grazing cows, mainly due to linoleic acid [18:2cis(n‐6); p < .05]. These results determined that n‐6/n‐3 ratio was almost threefold greater for G0 than grazing cows (p < .001). When diet of G0 cows changed to include pasture (Post‐G0), preformed FA increased (p < .05), explained mainly by the increase (p < .05) of stearic (C18:0) and C18:1trans, while de novo FA tended to decrease (p < .1). Moreover, the amount of CLA and C18:3(n‐3) tended to increase (p < .1) in Post‐G0 cows. Offering 50% of dietary DM from pasture modified milk FA profile in early lactation potentially beneficial for human health. When TMR‐fed cows were turned out to 50% pasture, milk FA profile reflected dietary change without need of an adaptation period.  相似文献   

3.
The objective was to evaluate the provision of oat silage (Avena sativa) to supplement grazing dairy cows on pastures of perennial ryegrass (Lolium perenne), festulolium (Lolium multiflorum × Festuca pratense) and white clover (Trifolium repens) during the dry season when pasture growth is limited. The experimental design was a 3 × 3 Latin square replicated three times, with nine milking Holstein cows (mean live weight 496.2 ± 33.6 kg and daily milk yield 14.8 ± 2.8 kg cow?1) under on-farm participatory rural research. Experimental periods were 14 d. Simulated grazing samples of pasture herbage were analysed for chemical composition, sward height recorded and net herbage accumulation determined from exclusion cages. Treatments were the inclusion of oat silage at T0 = 0 kg DM cow?1 d?1 of oat silage, T3 = 3 kg DM cow?1 d?1 of oat silage, and T6 = 6 kg DM cow?1 d?1 of oat silage, plus 5.0 kg fresh weight commercial concentrate and 9 h of continuous grazing. Animal variables were milk yield and composition, live weight and body condition score. Feeding costs were calculated. Mean milk yield was 18.9 ± 0.27 kg cow?1 d?1 with no differences in animal variables (p > 0.05), but feeding costs per kilogram milk increased 25% for T3 and 50% for T6. Oat silage supplementation is only viable under difficult grazing conditions.  相似文献   

4.
The objective of this study was to assess the effects of restricting access time to pasture and time of grazing allocation on grazing behaviour, daily dry matter intake (DMI), rumen fermentation, milk production and composition in dairy cows. Twenty-one autumn-calving Holstein cows were assigned to one of the following 3 treatments: providing access to a daily strip of pasture for either 8 h between 07:00 and 15:00 h (T7–15), 4 h between 07:00 and 11:00 h (T7–11), or 4 h between 11:00 and 15:00 h (T11–15). The experimental period consisted of 3 weeks of adaptation and 6 weeks of measurements. Cows were offered a daily herbage allowance of 18 kg DM/cow to ground level, 6.1 kg DM/day of a ground sorghum grain-based supplement and 5.2 kg DM/day of maize silage. Milk yield was greater for cows with 8 h access time to the pasture (25.4 vs. 24.1 for 8 and 4 h access time, respectively). Milk yield was not different between cows that access early (T7–11) or late (T11–15) to the grazing session. Milk protein yield was greater for cows with 8 h access time (0.75 kg/d) vs. 4 h access time treatments (0.72 kg/d). Cows with late access time to grazing in the morning produce more protein (0.74 kg/d) than cows with early access to the pasture (0.70 kg/d). Duration of access had a significant effect on herbage DMI (8.3 vs. 6.6 kg/d, for 8 and 4 h access, respectively), but there was no significant effect of time of grazing allocation. Intakes of concentrate and maize silage DM did not differ between treatments.  相似文献   

5.
This study investigated the effects on embryo growth and survival rate of feeding heavily‐fertilised spring grass, containing high levels of quickly‐degradable nitrogen, to pregnant cows. Forty‐eight lactating Holstein cows between 2 and 8 weeks pregnant were turned‐out, after a one‐week transition period onto high‐ or low‐nitrate pasture and fed a high‐ or low‐concentrate supplement. Cows grazing the High nitrate pasture had significantly higher milk and plasma urea concentrations than cows grazing the Control pasture, while cows which were fed less concentrate had a notably higher plasma ammonia. However, there was no evidence that an increased quickly‐degradable nitrogen (QDN) intake from pasture affected embryo survival or growth from 20 days onwards. This suggests that the impact of turnout on fertility mainly affects ovulation, fertilisation and/or the early embryo.  相似文献   

6.
This study was carried out to evaluate the impact of including Acacia mearnsii tannin extract (TA) as a feed additive on nutrition and productive performance of dairy cows grazing a high‐quality temperate pasture and receiving supplementation with a concentrate feedstuff. Fourteen multiparous Holstein cows were assigned to either of the following treatments: concentrate without or with 20 g TA/kg dry matter (DM). Concentrate intake accounted for 32% of the total DM intake. Tannin addition increased the herbage DM intake by 22% (p < .05). There was no effect of TA inclusion on milk yield, milk composition, milk nitrogen (N) excretion, milk and plasma urea‐N concentration, urinary excretion of total N, urea‐N, and purine derivatives. However, TA inclusion increased the N intake and retention, total N excretion in manure, fecal N to urine N ratio, and decreased the dietary N efficiency for milk production and the percentage of ingested N excreted in urine (p < .05). In conclusion, supplementing dairy cows grazing a high‐quality temperate pasture with a concentrate containing 20 g TA/kg DM showed the potential of decreasing the proportion of ingested N excreted in urine without affecting the productive performance.  相似文献   

7.
Abstract

Herbage intake (HI), milk production and sward utilization of Norwegian Red Cattle dairy cows in mid-lactation, rotationally grazing grass/white clover swards at low, medium and high allowances (HA), were examined in three experiments (I, II and III). The daily target allowances per cow were 18 and 36 kg DM in Experiment I and 12, 18, and 24 kg DM in Experiments II and III. The cows were grazing in groups of seven (Experiments II and III) to ten (I) individuals. The proportions of white clover in the swards averaged 12%, 40% and 46% in Experiments I, II and III, respectively. In addition to pasture, the cows were fed concentrate mixtures in varying amounts (0–6.8 kg) with the highest amounts offered to the highest yielding cows. HI was estimated using the n-alkane technique. No effect of HA on HI was obtained in Experiment I. In Experiment II, and for II and III combined, there was a significant positive effect of HA on HI. The average increase in HI was 0.24 kg DM per extra kg DM on offer. The utilization of the sward (measured at 3 cm above ground level) decreased from 72% at the lowest HA to 51% at the highest HA in Experiment II and III. HA did not affect milk yield or milk composition significantly (P>0.05).  相似文献   

8.
The effects of supplementary corn silage (CS) of either 2 or 4 kg of dry matter (DM; S + 2 and S + 4, respectively) above the energy requirement for milk production and maintenance for grazing dairy cows (S) were determined. Time‐restricted grazing was used to compare the feed intake, milk production, and nitrogen and energy use of lactating cows. The experiment was carried out on two different pastures using a 3 × 3 Latin square design for each pasture. Cows were grazed for 5 h on a rotational grazing system and were fed concentrate (1 kg per 5 kg of milk yield). Herbage intake was measured using a weighing technique. To calculate the energy and nitrogen use, whole feces and urine were collected. There was no statistical effect of the pastures. Herbage intake decreased by the addition of CS (P = 0.02). The reduction of herbage DM intake per unit consumption of supplementary CS towards the S group were 0.80 and 0.45 kg for the S + 2 and S + 4 groups, respectively. The total DM intake for the S + 4 group was higher than that for the S and S + 2 groups (P = 0.02). Milk yield did not differ among treatments, even though the total DM intake for the S + 4 group was higher than that of the S and S + 2 groups. Nitrogen and energy use did not differ with the addition of CS.  相似文献   

9.
The present study investigated the effects of adaptation to grazing in early spring on the herbage intake, milk production, and body weight changes in lactating dairy cows. The experiment included 12 Holstein lactating cows during early spring. Six cows were allowed to gradually adapt to grazing (ADP) over 10 days. They were allowed to graze on a pasture for 4 h during the first week and for 19 h during the remaining 3 days (adaptation period). During the 10-day period, the remaining six cows were housed in a barn (CON). Cows in both groups received adequate silage, hay, and concentrate during the adaptation period. Subsequently, cows in both groups were allowed to graze together for 19 h for 4 weeks (experimental period). No cow received supplements during the experimental period. In the first week of the experimental period, the ADP cows showed a higher herbage intake than the CON cows. During the subsequent weeks, there were no differences in herbage intake between the two groups. At the start of the experimental period, milk production and body weight of the ADP cows were higher than those of the CON cows, and this difference lasted until the end of the experiment.  相似文献   

10.
Citrus pulp is known to contain a functional molecule of beta‐cryptoxanthin which is one of the carotenoids showing anti‐oxidative capacity. Influences of citrus pulp silage feeding to dairy cows on beta‐cryptoxanthin concentration in plasma, other blood properties and milking performances were investigated. Four Holstein cows were fed total mixed ration (TMR) containing citrus pulp silage 20% dry matter (DM) for 2 weeks with free access to the TMR. Dry mater intake, milk production and milk components 2 weeks later were not altered compared with those of the control group without citrus pulp silage. Activities of aspartate aminotransferase, alanin aminotransferase and gamma‐glutamyltranspeptidase in plasma were not affected by feeding of citrus pulp silage. Concentrations of protein, albumin, sulfhydryl residue, ascorbic acid, thio‐barbituric acid reactive substance and urea nitrogen in plasma were also not altered by citrus pulp silage feeding. Concentration of beta‐cryptoxanthin in plasma was increased approximately 20‐fold compared with the control group (P < 0.05). Content of beta‐cryptxanthin in pooled milk fat fraction was also increased approximately three times compared with that of the control group. Feeding of TMR containing citrus pulp silage 15% DM for 30 days to eight dairy cows also increased plasma beta‐cryptoxanthin concentration 30‐fold compared with that before feeding.  相似文献   

11.
The milking of Salers cows requires the presence of the calf. The removal of the calf would simplify the milking routine, but it could also modify the milk yield and the milk and cheese composition. Therefore, the aim of this experiment was to evaluate the effect of calf presence during milking during sampling period (winter or grazing periods), on dairy performance, milk fatty acid (FA) composition, lipolysis and cheese yield and composition. Nine and 8 Salers lactating cows were milked in the presence (CP) or absence (CA) of their calves respectively. During winter, the cows were fed a hay‐based diet and then they only grazed a grassland pasture. Calf presence during milking increased milk yield and milk 16:0 concentration and decreased milk fat content and milk total odd‐ and branched‐chain FA (OBCFA) concentrations. Calf presence only increased initial lipolysis in milk collected during the winter season. Milk from CP cows compared to CA cows resulted in a lower cheese yield and ripened cheeses with lower fat content. Milk from the grazing season had lower saturated medium‐chain FA and OBCFA concentrations and higher 18:0, cis‐9‐18:1, trans‐11‐18:1 and cis‐9, trans‐11‐CLA concentrations than that from the winter season. Initial milk lipolysis was higher in the winter than in the grazing season. These variations could be due to seasonal changes in the basal diet. Furthermore, the effect of calf presence during milking on milk fat composition was lower than that on dairy performance, cheese yield and composition. Removing the calf during the milking of Salers cows seems feasible without a decrease in milked milk, and with a positive effect on cheese yield and fat content, under the condition that we are able to select cows having the capacity to be milked easily without the calf.  相似文献   

12.
The objective was to determine the effect of including silages of annual ryegrass (Lolium multiflorum) intercropped with winter vetch (Vicia villosa) (ARG-VV) or with common vetch (Vicia sativa) (ARG-VS) compared with maize silage (MS) on milk yield and milk composition of dairy cows grazing cultivated perennial ryegrass–white clover pastures with supplemented concentrate during the dry season. Six Holstein dairy cows with a mean yield of 19.0 kg/cow/day at the beginning of the experiment were randomly assigned to a 3 × 3 repeated Latin square. Treatments were: 8 h/day intensive grazing, 3.6 kg of dry matter (DM) per cow per day of concentrate plus MS, and ARG-VV or ARG-VS ad libitum at a stocking rate of 3.0 cows/ha for three experimental periods of 3 weeks each. Milk yield (MY) and milk composition, live weight and body condition score as well as silage and concentrate intakes were recorded during the third week of each experimental period, and pasture intake was estimated indirectly from utilised metabolisable energy. Economic analysis was obtained by preparing partial budgets. There were no statistical differences (P > 0.10) in MY, milk fat or protein content nor for live weight, but there was significant difference (P < 0.10) in body condition score. There were non-statistical differences in silage DM intake (P < 0.11); however, significant differences (P < 0.10) were obtained for estimated grazed herbage intake whilst no differences for total DM intake. Slightly higher economic returns (10%) were obtained with ARG-VS over MS, and this was 7% higher than ARG-VV. It is concluded that ARG-VS could be an option for complementing grazing for small-scale dairy production systems in the dry season as it is comparable to MS in animal performance and slightly better in economic terms.  相似文献   

13.
研究不同放牧制度和强度对在“多年生禾草+紫花苜蓿(Medicago sativa)”人工草地上放牧奶牛的采食量、产奶量、乳成分及体重和体况分的影响。结果表明:轮牧制奶牛的采食量低于连续放牧制,中度放牧低于轻度放牧。轻度轮牧有较高的体增重和较小的体况分损失,连续放牧则相反。轮牧制奶牛的产奶量显著高于连续放牧制,中牧高于轻牧。不同放牧处理对乳成分的影响不显著,轻度轮牧的乳脂率低于中度轮牧和连续放牧,轻度轮牧的乳蛋白最高,乳糖和乳干物质含量则无显著变化。  相似文献   

14.
Abstract

Grazing Norwegian Red dairy cows were offered one of two roughage supplements ‘baled silage (S) or ryegrass (R)’ on an ad libitum basis for a limited period daily. A third group received concentrate (C). Milk and FCM yields were significantly (P<0.05) influenced by treatment (23.65 and 22.81, 23.20 and 22.05 and 22.58 and 22.73 kg d?1, for S, C and R, respectively). Milk composition was unaltered. The cattle offered ryegrass consumed significantly (P<0.05) more supplementary feed and less pasture, and spent less time grazing and more time ruminating than the other two groups. Cattle with high initial yields, despite higher intakes of both pasture and supplement, had reduced liveweight gains and a faster decline in milk production in comparison with low yielders.  相似文献   

15.
The effects of corn dried distillers grains with solubles (DDGS) feeding on rumen fermentation and milk production in cows were evaluated using diets high in neutral detergent fiber (NDF, 45.9–46.6%). The control diet (Control) consisted mainly of hay, corn silage and concentrates. In the experimental diets, the concentrates were replaced with DDGS as 10% dry matter (DM) (10%DDGS) and 20% DM (20%DDGS). Eight cows were used for each 14‐day treatment period. Effect of DDGS feeding on DM intake was not significant. Ruminal volatile fatty acids and ammonia‐N at 5 h after feeding of 20%DDGS were decreased compared to Control, whereas protozoal count at 2 h after feeding of 20%DDGS was higher than that of 10%DDGS. Milk yield of cows fed DDGS diets was greater than that of Control, although percentages of milk protein and solids‐not‐fat were decreased by DDGS diets. The proportions of C10:0, C12:0, C14:0 and C16:0 in the milk fat decreased, and those of C18:0, C18:1, C18:2 and cis‐9, trans‐11 conjugated linoleic acid (CLA) increased markedly with elevated DDGS. Increase in trans‐11 C18:1 was observed in the rumen fluid at 5 h after feeding. These findings suggest that DDGS feeding enhanced milk yield, as well as CLA synthesis under a high dietary NDF condition.  相似文献   

16.
Milk produced by the grazing system, referred to as “grazing milk” contains many components required for human health. The milk fatty acid (FA) profile is strongly associated with the diet on the farms. In the present study, based on the FA profile of farmer's bulk milk, we determined how to discriminate between milk produced on grazing and on a confinement system. A field survey was conducted four times (grazing and confinement season) in the Konsen (29 farms) and Okhotsk (25 farms) area in Hokkaido. Farmer's bulk milk samples and details of feeding management were collected and the FA profile of milk was measured. Milk produced during the grazing season contained less C16:0 and cis‐9 C16:0, and more C18:0, cis‐9 C18:1, trans‐11 C18:1, cis‐9,12 C18:2, cis‐9,trans‐11 C18:2 and cis‐9,12,15 C18:3 than milk produced during the confinement season. Discrimination analysis using 16 FA revealed that almost all milk samples were discriminated correctly (confinement season: 90% correct and 10% borderline, grazing season: 88% correct, 9% borderline and 3% incorrect). For farmers that were categorized incorrectly and were considered borderline in the grazing season, the dependency on pasture was low compared with that for farmers correctly discriminated. Therefore, to claim “grazing milk”, a high dependency on pasture is required for grazing dairy farmers.  相似文献   

17.
Economic and performance characteristics of a low cost grazing system based on annual ryegrass vs a total mixed ration (TMR) for cows during mid through late lactation were evaluated. Cattle used in the trial (28 Holstein and 12 Jersey cows) were blocked by parity, lactation number, days in milk, projected mature equivalent milk yield, and current milk yield, and cows were assigned to two treatments in a randomized complete block design. For 10 wk (March through May 1998), cows either received a corn silage-based TMR or grazed annual ryegrass and received no supplemental concentrates. Changes in feed composition, milk yield, milk composition, BW, condition score, and income over feed costs were examined. Cows on Treatment 1 were fed the TMR twice daily and were housed together in a free-stall barn. Cows assigned to grazing were allowed ad libitum access to annual ryegrass in a rotational 12-paddock system. Loose mineral was provided for ad libitum consumption, but no supplemental concentrate was offered. Daily milk production by the TMR cows was consistent, ranging between 22.5 and 27.2 kg per cow throughout the study. By contrast, daily milk production of the grazing cows declined from 26.6 to 15.9 kg per cow as lactation progressed. Ryegrass grazing reduced milk fat content during wk 4 and 8 of the study and increased MUN content during wk 2 but had no effect on milk protein content or somatic cell count. The BW, body condition score, and estimated DMI of grazing cows were less than they were for TMR cows. Milk income for the grazing cows was less than that for the TMR cows throughout the study. However, feed cost for grazing cows was substantially lower than that for the TMR cows. Hence, income over feed cost (IOFC) was greater for grazing cows than for TMR cows in all but the last 2 wk of the study. These results indicated that annual ryegrass grazing was more profitable than feeding a TMR to cows in mid to late lactation. However, grazing cows did lose body condition, which could have a negative effect on milk production in the subsequent lactation.  相似文献   

18.
This study aimed to evaluate the feeding choice, dry matter (DM) intake, and milk production of dairy cows that strip grazed on a mixed perennial species pasture receiving different supplementation strategies. The treatments were without supplementation (WS) or with supplementation of either corn silage (CS) or a total mixed ration (TMR) based on CS and concentrates, in a subtropical area. The supplements were provided ad libitum after the afternoon milking. Twelve Holstein × Jersey cows in mid-lactation (133 ± 43 days in milk) were divided into six groups (two cows/group) and distributed in accordance with a replicated 3 × 3 Latin square design, with three 21 day periods (15 adaptation days and 6 evaluation days). The total DM intake, milk production, milk fat, and milk protein production were greater in the TMR treatment than in the WS and CS treatments and were similar between the WS and CS treatments. The herbage DM intake and proportion of time spent grazing were greater in the CS treatment than in the TMR treatment. CS supplementation did not affect the total DM intake or milk production/cow, whereas TMR supplementation greatly improved the total DM intake and milk production of the dairy cows grazing on mixed perennial species.  相似文献   

19.
Two short-term grazing experiments were conducted with Norwegian Red cows. In Exp 1, 24 cows were randomly assigned to one of the following three pasture allocation methods (PAM): weekly pasture allowance (7RG), grazing 1/7 of 7RG each day (1SG), or grazing as 1SG but had access to grazed part of the paddock within one week (1FG). In Exp 2, 7RG was shortened to 5 days (5RG). We hypothesized that PAM will affect sward quality, quantity, intake and production differently. Pasture chemical composition changed with advancing grazing days but were not different between treatments. Pasture intake, milk yield, and methane emission were not affected by PAM. In Exp 1, 7RG cows spent less time on grazing, whereas in Exp 2, 1FG cows spent longer on grazing than others. Patterns observed in sward quality, and behavioural and physiological adaptations of cows to short-term changes in nutrient supply may explain the observed effects.  相似文献   

20.
John R. Roche   《Livestock Science》2007,110(1-2):12-24
Sixty-eight multiparous grazing dairy cows were randomly allocated to two precalving pasture allowances to achieve differential dry matter intakes (DMI) for 29 ± 7.7 d precalving (Low or High DMI; 4.8 or 11.9 kg DM). At calving, cows within each precalving treatment were randomly allocated to one of two levels of feeding (Low or High DMI; 8.6 or 13.5 kg DM) for 35 d postcalving in a completely randomized design and a 2 × 2 factorial arrangement of treatments. Following treatments all cows grazed together and were fed pasture and pasture silage. Daily milk yields were recorded, and fat, protein and lactose concentrations determined weekly for 15 weeks. Blood was sampled weekly pre- and postcalving and analysed for indicators of energy status, growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Body condition score (BCS) at calving was reduced by precalving restriction (P < 0.001; 2.8 and 3.0 for precalving Low and High treatment groups, respectively). Precalving restriction reduced milk fat production by 8.4% during the first 5 weeks postcalving, but differences were not significant subsequently. Postcalving feed restriction reduced yield of fat corrected milk (FCM), fat and protein by 23, 21 and 28%, respectively, during the first 5 weeks postcalving. Decreased (P < 0.05) yields of FCM, fat and protein (11, 10 and 9%, respectively) were also evident for 10 weeks after the feed restriction finished. There was a tendency (P < 0.1) for a precalving × postcalving DMI interaction in milk protein yield during the first 5 weeks of lactation with no effect of precalving level of feeding in cows that were restricted postcalving. The plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyrate (BOH) and GH were elevated in restricted cows precalving, and IGF-1 concentration was reduced. Plasma NEFA and BOH concentrations were elevated postcalving in restricted cows, but no effect of postcalving DMI on GH or IGF-1 concentration was evident. Results suggest that under grazing systems milk production responses to precalving DMI are small, but energy restrictions in early lactations result in significant carryover effects in milk production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号