首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To control the spread of bovine viral-diarrhoea virus (BVDV), test-and-cull schemes have been used in Scandinavian countries, with success, when combined with strict control of new animal introductions into herds. In situations where BVDV reintroduction is likely to occur, it is necessary to assess precisely the expected efficiency of test-and-cull schemes. The objective of this study was to compare, by simulation, the persistence and consequences of BVDV infection in a fully susceptible dairy herd with either a test-and-cull scheme or no control action. We used a stochastic individual-based model representing the herd structure as groups of animals, herd dynamics, the contact structure within the herd and virus transmission. After an initial introduction of the virus into a fully susceptible herd, the frequency of purchases of animals that introduced the virus was simulated as high, intermediate or null. Virus persistence and epidemic size (total number of animals infected) were simulated over 10 years. The test-and-cull reduced the epidemic size and the number of days the virus was present except in herds with complete prevention of contact between groups of animals. Where no virus was reintroduced, virus persistence did not exceed 6 years with a test-and-cull scheme, whereas the virus was still present 10 years after the virus introduction in some replications with no control action (<2%). Where frequent purchases were made that led to virus introduction (6 within 10 years), with an intermediate virus transmission between groups, the probability of virus persistence 10 years after the first virus introduction fell from 31% to 8% with the test-and-cull scheme (compared to the do-nothing strategy). Within the newly infected herd, the test-and-cull scheme had no effect, on inspection, on the number of PI births, embryonic deaths or abortions over 10 years. Given this, the economic efficiency of the test-and-cull scheme should be further investigated.  相似文献   

2.
Models have been developed to represent the spread of bovine viral diarrhoea virus (BVDV) in cattle herds. Whereas the herd dynamics is well known, biological data are missing to estimate the parameters of the infection process. Our objective was to identify the parameters of the infection process that highly influence the spread of BVDV in a dairy herd. A stochastic compartmental model in discrete time represented BVDV infection in a typical Holstein dairy herd structured into five groups (calves, young versus older heifers, lactating versus dry cows). Model sensitivity was analysed for variations in the probability of birth of persistently infected (P) calves (b(P)), mortality of P animals (m(P)), within- and between-group transmission rates for P and transiently infected (T) animals (respectively, beta(w)(P),beta(b)(P),beta(w)(T),beta(b)(T)). Three to five values were tested per parameter. All possible combinations of parameter values were explored, representing 3840 scenarios with 200 runs for each. Outputs were: virus persistence 1 year after introduction, time needed to reach a probability of 80% for the herd to be virus-free, epidemic size, mean numbers of immune dams carrying a P foetus, of P and of T animals in infected herds. When considered together, m(P) and beta(b)(P) accounted for 40-80% of variance of all outputs; b(P) and beta(w)(T) accounted each for less than 20% of variance; beta(b)(T) and beta(w)(P) accounted for almost no percent of variance of the outputs. Parameters beta(w)(T) and b(P) needed to be more precisely estimated. The influence of m(P) indicated the effectiveness of culling P calves, the influence of beta(b)(P) indicated the role of the herd structure in BVDV spread, whereas the influence of b(P) indicated the possible role of vaccination programs in controlling within-herd BVDV spread.  相似文献   

3.
A spreadsheet model using Monte Carlo simulation was designed to evaluate the introduction of bovine viral diarrhea virus (BVDV) to cow-calf farms and the effect of different testing strategies. Risks were modeled to include imports to the cow-calf herd and stocker calves imported to adjacent pastures. The number of persistently infected (PI) animals imported and the probability of BVDV introduction were monitored for three herd sizes, four import profiles, and six testing strategies. Importing stockers and importing pregnant heifers were the biggest risks for introduction of BVDV. Testing for PI animals in stockers decreased the risk they posed, but testing pregnant heifers was not sufficient to decrease risk unless their calves were also tested. Test sensitivity was more influential than PI prevalence on the likelihood of BVDV introduction, when all imports were tested. This model predicts the risk of BVDV introduction for individual herds based on management decisions, and should prove to be a useful tool to help cow-calf producers in controlling the risk of importing BVDV to a na?ve herd.  相似文献   

4.
Viet AF  Fourichon C  Seegers H 《Preventive veterinary medicine》2005,72(1-2):99-102; discussion 215-9
The efficiency of a test-and-cull programme to control BVDV spread within a dairy herd was assessed using a stochastic model. A single virus introduction by a non-PI dam carrying a PI foetus was simulated in a typical western-France dairy herd. Herd monitoring in test-and-cull programme enabled us to detect virus spread within 1 year after introduction in 87% of the replications. The test-and-cull programme reduced the length of the virus persistence. The extent of infection was moderately reduced.  相似文献   

5.
Moen A  Sol J  Sampimon O 《Preventive veterinary medicine》2005,72(1-2):93-8; discussion 215-9
In a closed dairy herd all animals were tested serologically for BVD antibodies twice a year during a 6-year period. Seroconversions were detected every year. At the start of the 6-year monitoring period blood samples from all animals were examined by virus isolation. No persistently infected animals were identified. Entire-herd culturing for BVDV was repeated at the end of the third year. Samples from all newborn female calves were examined for BVDV at approximately 2 months of age and older. During the entire monitoring period BVDV was isolated in one newborn calf twice with an interval of 3 weeks. The mother had seroconverted during pregnancy. Five congenitally infected non-PI calves were identified, the mothers of which had seroconverted during late pregnancy; repeated sampling proved the calves to remain seropositive in a seronegative age cohort. Although direct and indirect introduction of BVDV from outside the herd can never be excluded it seems highly unlikely in this closed herd. The findings indicate that transmission of BVDV can take place over a long period of time in the absence of PI animals. This observation may have serious consequences for control programmes.  相似文献   

6.
In 1992, significant calf losses occurred between birth and weaning in a 650-cow Saskatchewan beef herd. These losses occurred subsequent to ill-thrift and disease, and every calf necropsied was found to be persistently infected with bovine viral diarrhea virus (BVDV). The objectives of this study were to describe the losses associated with fetal infection with BVDV in this herd and to determine why they occurred. For investigative purposes, blood samples were collected from the entire cow herd and the surviving calves at pregnancy testing in 1992, and tested by virus isolation for BVDV. Between 51 and 71 persistently infected calves were born in 1992. Bovine viral diarrhea virus was only isolated from calves. The only confirmed fetal infections with BVDV were recorded as the birth of persistently infected calves. However, abortions, reduced pregnancy rates, and delayed calvings were also recorded in the cow herd and may have been the result of fetal infections. The herd was monitored again in 1993. Fetal infections with BVDV were recorded as the birth of stunted, deformed, and persistently infected calves. The greatest losses due to fetal infection with BVDV in the 2 years of this study occurred in cows that were 3-years-old at calving (second calves). Bovine viral diarrhea virus appears to have remained endemic in this herd by transmission from persistently infected calves on young 3- and 4-year-old cows to naive calved 2-year-old cows that were mingled with them annually for rebreeding. Significant numbers of the 2-year-old cows remained naive to BVDV, because they were segregated from persistently infected calves at weaning, preventing cross-infection with BVDV.  相似文献   

7.
Persistently infected (PI) animals play a significant role in spread and transmission of bovine virus diarrhoea virus (B VD V) (Duffell & Harkness 1985). The identification and removal of PI cattle from the herd is of great importance in the control of BVDV. Although PI animals often show various degrees of growth retardation and unthrifty appearance, a significant proportion is clinically normal. PI animals are often seronegative (Duffell & Harkness 1985), but calves may be tested seropositive because of the presence of maternal immunity (Meyling & Jensen 1988). The passively derived BVDV antibodies may interfere with the ability to detect virus. Considering the importance of early recognition of PI calves, it is essential to determine the earliest time when PI animals can safely be diagnosed in the herd.  相似文献   

8.
Reproductive efficiency is imperative for the maintenance of profitability in both dairy and cow-calf enterprises. Bovine viral diarrhea virus is an important infectious disease agent of cattle that can potentially have a negative effect on all phases of reproduction. Reduced conception rates,early embryonic deaths, abortions, congenital defects, and weak calves have all been associated BVDV infection of susceptible females. In addition, the birth of calves PI with BVDV as a result of in utero fetal exposure is extremely important in the perpetuation of the virus in an infected herd or spread to other susceptible herds. Bulls acutely or PI with BVDV may bea source of viral spread through either natural service or semen used in artificial insemination. Management practices including elimination of PI cattle, biosecurity measures and strategic use of vaccination can be implemented to reduce the risk of BVDV related reproductive losses.Development of vaccines and vaccine strategies capable of providing better protection against fetal infection would be of benefit.  相似文献   

9.
Knowing how bovine viral diarrhoea virus (BVDV) infection spreads via indirect contacts is required in order to plan large-scale eradication schemes against BVDV. In this study, susceptible calves were exposed to BVDV by an unhygienic vaccination procedure, by ambient air and from contaminated pens. Primary BVDV infection was observed in two calves vaccinated with a vaccine against Trichophyton spp that had been contaminated by smearing nasal secretion from a persistently infected (PI) calf on the rubber membrane and penetrating it twice with a hypodermic needle. Four other calves, housed in pairs in two separate housing units near a PI calf for one week--at distances of 1.5 and 10 m, respectively--became infected without having direct contact with the PI calf. Furthermore, two of the three calves housed in a pen directly after removal of a PI calf, but without the pen being cleaned and disinfected, also contracted primary BVDV infection, whereas two calves that entered such a pen four days after removal of another PI calf, did not. In herds where most animals are seronegative to BVDV, indirect airborne transmission of BVDV or contact with a contaminated housing interior may be an important factor in spreading of the virus, once a PI animal is present. However, the spreading of BVDV within herds can be stopped by identifying and removing PI animals and also by ensuring that susceptible breeding animals do not become infected during this procedure. In contrast, injectables contaminated with BVDV may prove to be a significant vector for spreading the infection, not only within an infected herd but, most importantly, also between herds. In our opinion, it is questionable whether medicine bottles, once opened and used within an infected herd, should be used in other herds. In any case, prior knowledge of a herd's BVDV status will help practising veterinarians and technicians to undertake appropriate hygienic measures.  相似文献   

10.
A herd is a population structured into groups not all equally in contact, which may influence within-herd spread of pathogens. Herd structure varies among cattle herds. However, published models of the spread of bovine viral diarrhoea virus (BVDV) assume no herd structure or a unique structure chosen as a representative. Our objective was to identify--for different index cases introduced into an initially BVDV--free dairy herd - risky (favourable) herd structures, which increased (decreased) BVDV spread and persistence compared to a reference structure. Classically, dairy herds are divided into calves, young heifers, bred heifers, lactating cows and dry cows. In the reference scenario, groups are all equally in contact. We evaluated the effect of isolating or merging groups. Three index cases were tested: an open persistently-infected (PI) heifer, an open transiently-infected heifer, an immune heifer carrying a PI foetus. Merging all groups and merging calves and lactating cows were risky scenarios. Isolating each group, isolating lactating cows from other groups, and merging calves and young heifers were favourable scenarios. In most structures, the most risky index cases were the following: first, the entry of a PI heifer; second, the birth of a PI calf; last, the entry of a transiently-infected heifer. Recommendations for dairy herds are to raise young animals together before breeding and to isolate lactating cows from others as much as possible. These recommendations will be less efficient if a PI adult enters into the herd.  相似文献   

11.
In 5 herds in which bovine virus diarrhoea virus (BVDV) had been isolated, all animals were bled for virological and serological examination. After the herd blood test, follow up blood tests were made on calves born up to 6 months later in 1 herd, 9 months later in 1 herd and up to 12 months later in 3 herds. Persistently infected animals (PI animals) were removed and after a time period a small herd sample of 10 animals that were born after removal of the PI animals were examined for BVDV antibodies.At the herd blood test a total of 21 PI animals were detected. During the follow up period another 25 PI animals were born.Among animals in the small herd samples collected after removal of the PI animals, antibody positive animals were found in the 2 herds with the shortest follow up period. In the 3 herds with a 1 year follow up period there were no antibody carriers in the herd sample.It seems possible to prevent further spread of infection with BVDV if all animals in the herds as well as animals born during the following year are examined and PI animals removed.  相似文献   

12.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

13.
Bovine viral diarrhea virus (BVDV) infections resulting in clinical disease developed in calves, despite vaccination of dams and high maternal BVDV antibody titers in calves. Eight persistently infected (PI) calves born to immunocompetent dams were identified in the herd. Neutralizing BVDV antibody titers of PI calves had decreased greatly by the time the calves were 1 to 2 months old. Antibody titers of PI calves decreased more rapidly than antibody titers of calves that were not PI. Reduced antibody titers in PI calves allowed detection of BVDV in serum specimens of all PI calves by the time they were 8 weeks old. Persistent infection in suspect calves was detectable serologically and was confirmed by virologic examination of serum specimens 4 months after weaning, when the calves were 9 months old. Growth rates were reduced in viremic calves.  相似文献   

14.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

15.
ABSTRACT: Epidemiological models enable to better understand the dynamics of infectious diseases and to assess ex-ante control strategies. For Mycobacterium avium subsp. paratuberculosis (Map), possible transmission routes have been described, but Map spread in a herd and the relative importance of the routes are currently insufficiently understood to prioritize control measures. We aim to predict early after Map introduction in a dairy cattle herd whether infection is likely to fade out or persist, when no control measures are implemented, using a modelling approach. Both vertical transmission and horizontal transmission via the ingestion of colostrum, milk, or faeces present in the contaminated environment were modelled. Calf-to-calf indirect transmission was possible. Six health states were represented: susceptible, transiently infectious, latently infected, subclinically infected, clinically affected, and resistant. The model was partially validated by comparing the simulated prevalence with field data. Housing facilities and contacts between animals were specifically considered for calves and heifers. After the introduction of one infected animal in a naive herd, fadeout occurred in 66% of the runs. When Map persisted, the prevalence of infected animals increased to 88% in 25 years. The two main transmission routes were via the farm's environment and in utero transmission. Calf-to-calf transmission was minor. Fadeout versus Map persistence could be differentiated with the number of clinically affected animals, which was rarely above one when fadeout occurred. Therefore, early detection of affected animals is crucial in preventing Map persistence in dairy herds.  相似文献   

16.
Infection of cattle with BVDV results in a variety of clinical illnesses costly to the cattle industry worldwide. The reservoir and primary source of transmission is cattle born PI with BVDV after transplacental infection in early gestation. It is a challenge to determine with certainty whether or not BVDV is circulating among a herd of cattle. If the virus is present in a herd,then biocontainment strategies are used to eliminate the virus by testing to removing PI cattle, preventing exposure of pregnant cattle to the virus, and increasing resistance to infection using vaccination. If it is clear that the virus is not present in a herd then, biosecurity actions must be taken to prevent introducing the virus into the herd.  相似文献   

17.
In the summer of 1996, we screened 18,931 calves in 128 beef herds located in five US states for persistent bovine viral diarrhea virus (BVDV) infection. Of these, 76 herds were randomly selected from the client database of collaborating veterinary practices, and 52 herds were suspected by the collaborating veterinarians to have BVDV infection based on history or clinical signs. Serum was obtained from each calf in the cooperating herds prior to 4 months of age and tested for the presence of BVDV by microtiter virus isolation. Information about each of the herds (including management practices, vaccination history, and breeding- and calving-season production measures) were collected by the collaborating veterinarians using standardized questionnaires. A total of 56 BVDV-positive calves in 13 herds were identified on initial screening. Ten (19%) of the BVDV-suspect herds and three (4%) of the randomly selected herds had > or = 1 BVDV-positive calf at initial screening. Multiple BVDV-positive calves were identified in 10 of those 13 herds. Follow-up information was obtained for 54 of the 56 positive calves. Ten out of 54 (18%) died prior to weaning, and 1 (2%) was sold because of unusually poor growth. Thirty-three out of 54 (61%) of the initially positive calves remained BVDV positive at 6 months of age - confirming persistent-infection (PI) status. Dams of 45 of the 56 positive calves were tested, with 3 (7%) identified as positive - indicating most PI calves were products of acute dam infection during gestation. The proportion of cows that were pregnant at the fall 1995 pregnancy examination was 5% lower in herds with PI calves born during the 1996 calving season than in randomly selected herds without PI calves. Most of the calves we identified with persistent BVDV infections survived to weaning, and could provide a constant source of virus to the herd throughout the breeding season and early gestation.  相似文献   

18.
Previous reports on the spread of bovine virus diarrhoea virus (BVDV) from animals primarily infected with the agent are contradictory. In this study, the possibility of transmission of BVDV from calves simultaneously subjected to acute BVDV and bovine coronavirus (BCV) infection was investigated. Ten calves were inoculated intranasally with BVDV Type 1. Each of the 10 calves was then randomly allocated to one of two groups. In each group there were four additional calves, resulting in five infected and four susceptible calves per group. Virulent BCV was actively introduced in one of the groups by means of a transmitter calf. Two calves, susceptible to both BVDV and BCV, were kept in a separate group, as controls. All ten calves actively inoculated with BVDV became infected as shown by seroconversions, and six of them also shed the virus in nasal secretions. However, none of the other eight calves in the two groups (four in each) seroconverted to this agent. In contrast, it proved impossible to prevent the spread of BCV infection between the experimental groups and consequently all 20 study calves became infected with the virus. Following infection, BCV was detected in nasal secretions and in faeces of the calves and, after three weeks in the study, all had seroconverted to this virus. All calves, including the controls, showed at least one of the following clinical signs during days 3-15 after the trial started: fever (> or =40 degrees C), depressed general condition, diarrhoea, and cough. The study showed that BVDV primarily infected cattle, even when co-infected with an enteric and respiratory pathogen, are inefficient transmitters of BVDV. This finding supports the principle of the Scandinavian BVDV control programmes that elimination of BVDV infection from cattle populations can be achieved by identifying and removing persistently infected (PI) animals, i.e. that long-term circulation of the virus without the presence of PI animals is highly unlikely.  相似文献   

19.
The prevalence of bovine viral diarrhea virus (BVDV) in persistently infected (PI) cattle in beef breeding herds was determined using 30 herds with 4530 calves. The samples were collected by ear notches and tested for BVDV antigens using immunohistochemistry (IHC) and antigen capture enzyme-linked immunosorbent assay (ACE). Animals with initial positives on both IHC and ACE were sampled again using both tests and serums were collected for viral propagation and sequencing of a viral genomic region, 5′-untranslated region (5′-UTR) for viral subtyping. Samples were also collected from the dams of PI calves. There were 25 PI calves from 4530 samples (0.55%) and these PI calves were from 5 of the 30 herds (16.7%). Two herds had multiple PI calves and 3 herds had only 1 PI calf. Only 1 of the 25 dams with a PI calf was also PI (4.0%). The subtype of all the PI isolates was BVDV1b. Histories of the ranches indicated 23 out of 30 had herd additions of untested breeding females. Twenty-four of the 30 herds had adult cowherd vaccinations against BVDV, primarily using killed BVDV vaccines at pregnancy examination.  相似文献   

20.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号