首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exchange reactions between 0.0in AlCl3 solutions of different pH and Ca-saturated montmorillonite, vermiculite, illite, and soils from the Park Grass Experiment at Rothamsted and the Deerpark Experiment, Wexford, Ireland, showed that Al3+ and Al(OH)2+ were adsorbed from solutions of pH > 4.0 and Al3+ and H+ from solutions of pH < 3.0. When Al was adsorbed, the cation exchange capacity of Ca-saturated soils and clays increased. Conventional Ca: Al exchange isotherms showed that Al3+ was strongly preferred to Ca2+ on all soils and clays. The equilibrium constant for Ca: Al exchange, K, was identical for soils before and after oxidizing their organic matter and did not vary, for any exchanger, with Al-saturation or the initial pH of the AlCl3 solution. This proved the validity of the procedure used for calculating exchangeable Al3+. K values for Ca:Al exchange favoured Al3+ in the order: vermiculite > Park Grass soil > Deerpark soil > illite > montmorillonite. The influence of surface-charge densities of the clay minerals on this order is discussed and a method proposed and tested for calculating the K value of a soil from its mineralogical composition.  相似文献   

2.
Theoretical relationships between pH, CO2 partial pressure and alkalinity (bicarbonate + carbonate concentrations) have been shown to apply to solutions and calcite and soil suspensions. The exchange of Na onto three Ca clays shows that Ca is preferred but with negative free energies of exchange. With decreasing total electrolyte concentration, the preference for Ca increases, so that only when the concentration is above 10-3M will significant amounts of exchangeable Na be found in soils. The preference for Ca is illite > montmorillonite > vermiculite. Dilution of the mixed Na-Ca clay suspensions causes exchange, desorption of Na and. in some cases Ca. This desorbed or ‘alkaline’ Na (and Ca) is replaced by H some of which attacks the clays. The apparent hydrolysis coefficient, KG = H adsorbed (Na)/Na adsorbed (H), varies between 5 and 9 × 105, increases with increase in electrolyte concentration and varies in the order vermiculite > illite > montmorillonite. The concentration of alkaline Na + Ca increases with increasing ESP, and with clay type in the same order as the KG values. The pH calculated from the alkaline Na + Ca, assumed equal to the alkalinity was equal to measured values except for montmorillonite where the calculated values were low. Magnesium release by acid attack of the montmorillonite may explain the differences. Vermiculite rich soils will be most likely to accept exchangeable Na and to hydrolyse and develop alkalinity.  相似文献   

3.
Abstract

Solubility and kinetic data indicated that concentrations of aluminum (Al) extracted with 1 M KCl are determined by the solubility of a precipitated A1(OH)3 phase in soils dominated by variable charge minerals. Kinetic studies examining the release of Al on non‐treated and KCl treated residues indicated the precipitation of an acid‐labile Al phase during the extraction procedure. The log ion activity products estimated for the KCl extracts ranged between 8.1–8.6 for the reaction Al(OH)3 + 3H+ < = > Al3++ 3H2O, which was similar to the solubility product of several Al(OH)3phases. The mechanism proposed for Al precipitation indicated that Al released by exchange with added K+ hydrolyzed and released H+ that was readily adsorbed on surfaces of variable charge minerals. The increased ionic strength of the extracting solution further increased the amount of H+adsorbed to the variable charge surface and reduced the H+ concentration in the aqueous phase. Consumption of H+ induced further hydrolysis of Al, resulting in supersaturation of the extracting solution and formation of polynuclear hydroxy Al species. It was concluded that the 1 M KCl extraction does not quantitatively extract salt exchangeable Al from variable‐charge soils.  相似文献   

4.
Two sequential extractions with unbuffered 0.1 m BaCl2 were done to study the release of salt-exchangeable H+ and Al from mineral horizons of five Podzols and a Cambisol. Released Al was found to have a charge close to 3+ in all horizons and in both extractions. This finding was supported by the near-equality of the titrated exchangeable acidity (EAT) and the sum of exchangeable acids (EA = He + 3Ale, calculated from the pH and Al concentration of the extract). The ratio between EA of the second and the first extraction was over 0.50 in the Bs2 and C horizons and smaller in the other horizons. H+ was assumed to be in equilibrium with weak acid groups, and the modified Henderson–Hasselbach equation, pKHH = pH ? n log (α/(1 ? α)), was used to explain pH of the extract. The degree of dissociation (α) was calculated as the ratio between effective and potential cation exchange capacity. Value of the empirical constant n was found to be near unity in most horizons. When the monoprotic acid dissociation was assumed in all horizons, pKHH had the same value in both extractions. For Al3+, two equilibrium models were evaluated, describing (i) complexation reactions of Al3+ with soil organic matter, and (ii) equilibrium with Al(OH)3. Apparent equilibrium constants were written as (i) pKo = xpH ? pAl3+, and (ii) log Qgibbs= log Al3+ ? 3log H+. The two extractions gave an average reaction stoichiometry x close to 2 in all horizons. Results suggest that an equilibrium with organic Al complexes can be used to express dissolved Al3+, aluminium being apparently bound to bidentate sites. The value of log Qgibbs was below the solubility of gibbsite (log Kgibbs = 8.04) in many horizons. In addition, log Qgibbs of the second extraction was greater than that of the first extraction in all horizons except the C horizon. This indicates that equilibrium with Al(OH)3 cannot explain dissolved Al3+ in the soils. We propose that the models of pKHH and pKo can be used to simulate exchangeable H+ and Al3+ in soil acidification models.  相似文献   

5.
Pig slurry in quantities of 200, 400, 500, 600, 800, and 1000 m3 ha-1 year-1 was added to two calcareous soils, which differed in concentration and type of clay minerals. The soils were cultivated with two successive crops of pepper and tomatoes grown in containers. A control was given no slurry. The soils were analysed after harvesting for exchangeable K+. Differences in exchangeable K+ were studied in relation to the concentration and type of clay minerals. The soil with the higher clay content and of the illite type retained K in the exchangeable form to a much greater extent than the soil with the low clay content. In the soil with the lower clay content, of the interstratified illitic — montmorillonite type, very little K was incorporated into the exchange complex. The exchange capacity being low, the amount of K added had little effect on the level of exchangeable K+.  相似文献   

6.
Heats of adsorption and adsorption isotherms of ammonia gas were measured at 300 K (27 °C) on outgassed soil saturated with Na+, K+, NH4+, Ca2+, or Mg2+ ions. The Ca and Mg soils adsorbed apparently one more NH2 molecule per exchangeable ion than the Na and K soils, mostly in the relative pressure range o to 0.005, but not much more than the NH4 soil. The initial heat of adsorption was c. 75 kJ mol-1 on the Ca and Mg soils and c. 60 kJ mol-1 on the other soils. The results suggest that most NH, is sorbed on these soils through reactions not involving exchangeable cations.  相似文献   

7.
Abstract

The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non‐exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2∶1 clay minerals and High Terrace with predominantly 1∶1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl‐Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10 mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h?1 to examine the release of Kex and Knex. In the untreated soils, NH4 + and Ca2+ released the same amounts of Kex from Caribia, whereas NH4 + released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4 + (0.54 nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2∶1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4 +. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.  相似文献   

8.
胡敏酸对铵钾在粘土矿物上交互作用的影响   总被引:1,自引:0,他引:1  
Interaction of ammonium (NH+4) and potassium (K+) is typical in field soils. However, the effects of organic matter on interaction of NH+4 and K+have not been thoroughly investigated. In this study, we examined the changes in major physicochemical properties of three clay minerals (kaolinite, illite, and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH+4 and K+on clay minerals using batch experiments. After HA coating, the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly, while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite. Humic acid coating significantly increased cation adsorption and preference for NH+4, and this effect was more obvious on clay minerals with a lower CEC. Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH+4 and the organo-mineral complexes. HA coating increased cation fixation capacity on montmorillonite and kaolinite, but the opposite occurred on illite. In addition, HA coating increased the competitiveness of NH+4 on fixation sites. These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH+4 and K+with clay minerals, which might influence the availability of nutrient cations to plants in field soils amended with organic matter.  相似文献   

9.
Data from two Podzol O and E horizons, sampled in 1-cm layers at 13 points within 2 m × 2 m plots, were used to test the hypothesis that the composition of hydrogen ions (H) and aluminium (Al) adsorbed to the solid-phase soil organic matter (SOM) determines pH and Al solubility in organic-rich acidic forest soils. Organically adsorbed Al was extracted sequentially with 0.5 m CuCl2 and organically adsorbed H was determined as the difference between total acidity titrated to pH 8.2 and Al extracted in 0.5 m CuCl2. The quotient between fractions of SOM sites binding Al and H (NAl/NH) is shown to determine the variation in pH and Al solubility. It is furthermore shown that models in which pH and Al solubility are linked via a pH-dependent solubility of an Al hydroxide and in which cation exchange between Al3+ and Ca2+, rather than cation exchange between Al3+ and H+, is the main pH-buffering process cannot be used to simulate pH or Al solubility in O and E horizons. The fraction of SOM sites adsorbing Al increased by depth in the lower O and throughout the E horizon at the same magnitude as sites adsorbing H decreased. The fraction of sites binding the cations Ca2+ + Mg2+ + K+ + Na+ remained constant. It is suggested that a net reaction between Al silicates (proton acceptors) and protonated functional groups in SOM (proton donors) is the long-term chemical process determining the composition of organically adsorbed H and Al in the lower part of the O and in the E horizon of Podzols. Thus, in the long term, pH and Al solubility are determined by the interaction between organic acidity and Al alkalinity.  相似文献   

10.
Adsorption mechanisms of thiazafluron in mineral soil clay components   总被引:1,自引:0,他引:1  
The adsorption of the herbicide thiazafluron, 1,3-dimethyl-1-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)urea, by three smectites, illite, kaolinite, ferrihydrite and the clay fraction of an illitic soil (54.9% illite, 17.0% montmorillonite and 24.9% kaolinite) and a montmorillonitic soil (33.9% illite, 55.0% montmorillonite and 11.1% kaolinite) has been determined. Thiazafluron adsorbed on neither kaolinite nor iron oxide. The adsorption isotherms on smectites and illite conformed to the Freundlich equation. Values of Kf-obtained for smectites were larger than for the illite and increased as the layer charge of the smectite decreased. Desorption of thiazafluron on smectites was shown to be highly irreversible. Adsorption isotherms of thiazafluron on different homoionic montmorillonite samples suggest an important role of the exchangeable cations in the adsorption. Infrared spectra and X-ray diffraction analysis of the complexes of thiazafluron with homoionic montmorillonites indicated that thiazafluron adsorbs in the interlamellar space of the smectites, mainly by substitution of water molecules associated with the exchangeable cations through the carbonyl-amide group and formation of H-bonds or waterbridge between the NH group of the amide and the basal oxygens of the montmorillonite. The illitic soil clay adsorbed more of the herbicide than the montmorillonitic one did, suggesting that illite and montmorillonite may be present in soils in altered forms giving rise to different adsorption capacities from those of the pure minerals.  相似文献   

11.
The Gaines–Thomas selectivity coefficient, K, was used to express the relation between the cations in solution and the cations in exchange sites in podzolic forest soils. Soil solution was obtained by centrifuging a fresh bulked soil sample. Exchangeable cations HX, AlX, CaX, MgX and KX and effective cation-exchange capacity, CECe, were determined with 0.1 m BaCl2. Apparent values of K indicated a preference of Ca2+ over Mg2+ and over Al3+ in O, A and B horizons (log KAl–Ca < 0 and log KMg–Ca < 0), whereas log KK–Ca and log KH–Ca exceeded zero. The horizons were similar with respect to log KH–Ca, and the differences in log KMg–Ca were small. Log KK–Ca and log KAl–Ca increased in the horizons in the order O < A < B. Log KAl–Ca was not significantly correlated with the fraction AlX/CECe. Log KMg–Ca was positively correlated with the fractions HX/CECe and AlX/CECe, and negatively correlated with log (CaX/MgX). The selectivity coefficient of binary cation exchange seemed to be applicable to in situ soil solutions. However, the fraction of each cation on exchange sites should be based on the CECe rather than on the sum of the two cations. The latter, also, seemed to be acceptable in cases of exchangeable cations with a large relative content in soil, e.g. in Al3+–Ca2+ exchange in A and B horizons, and in H+–Ca2+ exchange in O and A horizons.  相似文献   

12.
Abstract

Fifteen acid soils of Mizoram representing Ultisols and Inceptisols, and Madhya Pradesh, representing Alfisols, were studied to characterize the nature of acidity in relation to different forms of iron (Fe) and aluminum (Al). The mean contents of Fe and Al were extracted by various extracting reagents and were found to be in descending order as followed: dithionite>oxalate>pyrophosphate>ammonium acetate>KCl. The electrostatically bonded EB‐H+ and EB‐Al3+ acidity comprised 28.3 and 71.7% of exchangeable acidity whereas EB‐H+, EB‐Al3+, exchangeable, and pH‐dependent acidities comprised 9.8, 30.7, 40.5, and 59.5% of total potential acidity. All forms, of acidity showed significant correlation with pHk and organic carbon. Among the different forms, Fe and Al caused most of the variations in different forms of soil acidity but the effect of different forms of Al are more active and directly participate in the formation of EB‐H+, EB‐Al3+, and exchangeable acidity.  相似文献   

13.
The prediction of the mobility of arsenic (As) is crucial for predicting risks in soils contaminated with As. The objective of this study is to predict the distribution of As between solid and solution in soils based on soil properties and the fraction of As in soil that is reversibly adsorbed. We studied adsorption of As(V) in suspensions at radiotrace concentrations for 30 uncontaminated soils (pH 4.4–6.6). The solid–liquid distribution coefficient of As (Kd) varied from 14 to 4430 l kg?1. The logarithm of the concentration of oxalate‐extractable Fe explained 63% of the variation in log Kd; by introducing the logarithm of the concentration of oxalate‐extractable P in the regression model, 85% of the variation in log Kd is explained. Double labelling experiments with 73As(V) and 32P(V) showed that the As to P adsorption selectivity coefficient decreased from 3.1 to 0.2 with increasing degree of P saturation of the amorphous oxides. The addition of As(V) (0–6 mmol kg?1) reduced the Kd of 73As up to 17‐fold, whereas corresponding additions of P(V) had smaller effects. These studies suggest that As(V) is adsorbed to amorphous oxides in soils and that sites of adsorption vary in their selectivity in respect of As and P. The concentration of isotopically exchangeable As in 27 contaminated soils (total As 13–1080 mg kg?1) was between 1.2 and 19% (mean 8.2%) of its total concentration, illustrating that a major fraction of As is fixed. We propose a two‐site model of competitive As(V)–P(V) sorption in which amorphous Fe and Al oxides represent the site capacity and the isotopically exchangeable As represents the adsorbed phase. This model is fitted to 73As adsorption data of uncontaminated soils and explains 69% of the variation of log Kd in these soils. The log Kd in contaminated soils predicted using this two‐site model correlated well with the observed log Kd (r = 0.75). We conclude that solubility of As is related to the available binding sites on amorphous oxides and to the fraction of As that is fixed.  相似文献   

14.
Potassium (K) exchange isotherms (quantity–intensity technique, Q/I) and K values derived from the Q/I relationship provide information about soil K availability. This investigation was conducted to study Q/I parameters of K, available K extracted by 1 N ammonium acetate (NH4AOc) (exchangeable K plus solution K), K saturation percentage (K index, %), and the properties of 10 different agricultural soils. In addition, the relationship of mustard plant yield response to the K requirement test based on K exchange isotherms was investigated. The Q/I parameters included readily exchangeable K (ΔK0), specific K sites (KX), linear potential buffering capacity (PBCK), and energy of exchange of K (EK). The results of x-ray diffraction analysis of the oriented clay fractions indicated that some mixed clay minerals, illite clay minerals, along with chlorite/hydroxy interlayered vermiculite and kaolinite were present in the soils. The soil solution K activity ratio at equilibrium (AR0) ranged from 8.0 × 10?4 to 3.1 × 10?3 (mol L?1)0.5. The readily exchangeable K (ΔK0) was between 0.105 to 0.325 cmolckg?1 soil, which represented an average of 88% of the exchangeable K (Kex). The soils showed high capacities to maintain the potential of K against depletion, as they represented high linear potential buffering capacities (PBCK) [13.8 to 50.1 cmolc kg?1/(mol L?1)0.5. The EK values for the soils ranged from ?3420 to ?4220 calories M?1. The percentage of K saturation (K index) ranged from 0.7% to 2.2%. Analysis of variance of the dry matter (DM), K concentrations, and K uptake of mustard plants indicated that there were no significant differences among the adjusted levels of K as determined by the exchange-isotherm curve.  相似文献   

15.
Summary Methods of determining exchangeable K+ of soil by mixing extracting solutions and analysing the soil suspension with ion‐selective electrodes were developed and evaluated on 30 samples of soils. From preliminary comparisons of the K+ extracted by BaCl2 and NH4OAc solutions and by batch and leaching treatments of soils, we established that suspensions of 5 g soil in 100 ml 0.5 m BaCl2 and single batch treatments of 1 h should be used. The exchangeable K+ was determined with a K‐selective, valinomycin‐based PVC membrane electrode and electrochemical cells that did or did not include a liquid junction (the reference electrode being a double‐junction reference electrode assembly with a 10 m LiOAc salt bridge solution or a Cl‐selective electrode, respectively). The Ba‐exchangeable K+ values were sensibly the same whether a liquid junction was involved or not, a result that can be attributed to the beneficial effects of the salt bridge and the ionic strength of the extractant. Comparisons of these Ba‐exchangeable results with those obtained by various combinations of batch or leaching treatments, BaCl2 or NH4OAc extractants and filtrate analysis by the ion‐selective electrode method or atomic absorption spectrometry showed they were all highly correlated (r≥ 0.996). The selectivity of the K+‐selective electrode (kpotKNH4 = 0.004) significantly reduced the interference from indigenous soil NH4+ in the BaCl2 suspensions. Overall, the results show potentiometric measurements of K+ in soil suspensions can provide a simple, rapid, and reliable means of determining exchangeable K+ in soils.  相似文献   

16.
It has been suggested that additions of organic residues to acid soils can ameliorate Al toxicity. For this reason the effects of additions of four organic residues to an acid soil on pH and exchangeable and soil solution Al were investigated. The residues were grass, household compost, filter cake (a waste product from sugar mills) and poultry manure, and they were added at rates equivalent to 10 and 20 t ha?1. Additions of residues increased soil pH measured in KCl (pH(KCl)) and decreased exchangeable Al3+ in the order poultry manure > filter cake > household compost > grass. The mechanism responsible for the increase in pH differed for the different residues. Poultry manure treatment resulted in lower soil pH measured in water (pH(water)) and larger concentrations of total (AlT) and monomeric (Almono) Al in soil solution than did filter cake. This was attributed to a soluble salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. The considerably larger concentrations of soluble C in soil solution originating from the poultry manure may also have maintained greater concentrations of Al in soluble complexed form. There was a significant negative correlation (r = ?0.94) between pH(KCl) and exchangeable Al. Concentrations of AlT and Almono in soil solution were not closely related with pH or exchangeable Al. The results suggest that although additions of organic residues can increase soil pH and decrease Al solubility, increases in soluble salt and soluble C concentrations in soil solution can substantially modify these effects.  相似文献   

17.
Effects of various aluminum (AlCl3) concentration and exposure times (6, 12, and 24 h and 3 d) on growth and potassium (K) transport were studied in two wheat species (Triticum aestivum L. cv. Jubilejnaja 50 and Triticum durum Desf. cv. GK Betadur) grown in low salt conditions hydroponically. In longer (3 d) Al exposure times at pH 4.1, the inhibition of root growth appeared at 10 μM Al3+ treatment in GK Betadur, and at 50 μM Al3+ treatment in Jubilejnaja 50. Shoot growth was not influenced by Al3+ treatment, except at 100 μM in 7 d experiments. In 6, 12, and 24 h Al3+ exposure times, at low pH, the K+(86Rb) influx in roots increased as the Al3+ concentration increased in the outer medium in both species. It also appeared in K+(86Rb) transport toward the shoots, except by higher Al3+ treatments of GK Betadur seedlings. At the same time, in longer‐term (3 d) Al3+ treatments, a striking inhibition were observed in K+(86Rb) influx and K+ concentration of roots and shoots. The K+concentration of roots and shoots measured at the end of 24 h Al3+ exposure times was significantly not affected by Al3+ treatment. Durum wheat proved to be more sensitive to the Al toxicity than common winter wheat.  相似文献   

18.
Four soils were treated with HNO3, CaCO3 and K2SO4 to enable observation of the response of the soil solution composition and the solution A1 ion activity (Al3+) to the treatments and to time. The clay fraction of three of the soils was dominated by illite, kaolinite and quartz. The fourth was minated by kaolinite and iron oxides. The initial pH in 0.01 M CaCl2 varied between 4.0 and 5.0 and the organic carbon content from 0.7 to 1.1%. The soil solutions from soils dominated by kaolinite, illite and quartz were generally supersaturated with respect to quartz and well ordered kaolinite, and unsaturated with respect to illite. The soil solutions from the soil dominated by kaolin and iron oxide were generally unsaturated with respect to quartz but still saturated with respect to ell crystallized kaolin. Within mineral groups such as Al2SiO5 compounds, A12Si2O5(OH)4 (kaolinite group), and Al(OH)3 (A1 oxide) minerals, the more soluble forms became less supersaturated or unsaturated with time for many treatments. Lime treatment usually increased the ion activity product of AI(OH)3 in all soils, and of minerals with the composition, Al2SiO5, in the illite/kaolinite soils. Acid treatment reduced the apparent solubility of Al(OH)3, and the A1 silicates in the Al2SiO5, and Al2, Si2, O5,(OH)4, mineral groups on all soils. These results are interpreted to indicate that lime treatment led to the formation of trace quantities of more soluble A1 minerals that subsequently controlled (Al3+), whereas acid treatment dissolved trace quantities of such minerals leaving less soluble minerals to control (Al3+). The results suggest that, in mineral soils such as these, (Al3+) is under the control of inorganic dissolution and precipitation processes. These processes conform to expectations given the free energy of various inorganic aluminium compounds. Furthermore the sequence of dissolution and formation processes appears to be governed by the Gay-Lussac—Ostwald step rule.  相似文献   

19.
Complexation with organic matter controls the activity of dissolved Al3+ in many soils. The buffering intensity of these soils is largely dependent on the H+/Al3+ exchange ratio, i.e. the number of protons consumed by the solid phase when one Al3+ is released. Here, the H+/Al3+ exchange ratio was determined from batch titrations using solutions of fulvic acid (FA) as a model for soil organic matter. Aluminium was added, from 1.04 to 6.29 mmol Al per g FA, which is within the range of humus‐bound Al found in the upper B horizon of podzolized soils. Furthermore, pH was varied with NaOH to give values between 3.5 and 5.0. The H+/Al3+ exchange ratio ranged between 1.49 and 2.23 with a mean of 1.94. It correlated positively with pH and the total concentration of Al present. Theoretically, this can be explained with a partial hydrolysis of bound Al. The slope of logAl (log10 of Al3+ activity) against pH generally underestimated the actual exchange ratio, which can partly be attributed to the systems being diluted (100 mg FA l?1). However, where 4 mmol Al or more had been added per g FA, the logAl slope gradually approached ?3 between pH 4.5 and 5.0. This might be the result of a shift from Al3+ activity control by humus complexation to control by Al(OH)3(s).  相似文献   

20.
Potassium (K) and nitrogen (N) are essential nutrients for plants. Adsorption and desorption in soils affect K+ and NH + 4 availabilities to plants and can be affected by the interaction between the electrical double layers on oppositely charged particles because the interaction can decrease the surface charge density of the particles by neutralization of positive and negative charges. We studied the effect of iron (Fe)/aluminum (Al) hydroxides on desorption of K+ and NH + 4 from soils and kaolinite and proposed desorption mechanisms based on the overlapping of diffuse layers between negatively charged soils and mineral particles and the positively charged Fe/Al hydroxide particles. Our results indicated that the overlapping of diffuse layers of electrical double layers between positively charged Fe/Al hydroxides, as amorphous Al(OH) 3 or Fe(OH) 3 , and negatively charged surfaces from an Ultisol, an Alfisol, and a kaolinite standard caused the effective negative surface charge density on the soils and kaolinite to become less negative. Thus the adsorption affinity of these negatively charged surfaces for K+ and NH + 4 declined as a result of the incorporation of the Fe/Al hydroxides. Consequently, the release of exchangeable K+ and NH +4 from the surfaces of the soils and kaolinite increased with the amount of the Fe/Al hydroxides added. The greater the positive charge on the surfaces of Fe/Al hydroxides, the stronger was the interactive effect between the hydroxides and soils or kaolinite, and thus the more release of K+ and NH + 4 . A decrease in pH led to increased positive surface charge on the Fe/Al hydroxides and enhanced interactive effects between the hydroxides and soils/kaolinite. As a result, more K+ and NH + 4 were desorbed from the soils and kaolinite. This study suggests that the interaction between oppositely charged particles of variable charge soils can enhance the mobility of K+ and NH + 4 in the soils and thus increase their leaching loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号