首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emissions of nitrous oxide (N2O) and nitrogen gas (N2) from denitrification were measured using the acetylene inhibition method on drained and undrained clay soil during November 1980-June 1981. Drainage limited denitrification to about 65% of losses from undrained soil. Emissions from the undrained soil were in the range 1 to 12 g N ha–1 h–1 while those from the drained soil ranged from 0.5 to 6 g N ha–1 h–1 giving estimated total losses (N2O + N2) of 14 and 9 kgN ha–1.
Drainage also changed the fraction of nitrous oxide in the total denitrification product. During December, emissions from the drained soil (1.8±0.6 gN ha–1 h–1) were composed entirely of nitrous oxide, but losses from the undrained soil (2.7 ± 1.1 g N ha–1 h–1) were almost entirely in the form of nitrogen gas (the fraction of N2O in the total loss was 0.02). In February denitrification declined in colder conditions and the emission of nitrous oxide from drained soil declined relative to nitrogen gas so that the fraction of N2O was 0.03 on both drainage treatments. The delayed onset of N2O reduction in the drained soil was related to oxygen and nitrate concentrations. Fertilizer applications in the spring gave rise to maximum rates of emission (5–12g N ha–1 h–1) with the balance shifting towards nitrous oxide production, so that the fraction of N2O was 0.2–0.8 in April and May.  相似文献   

2.
A capacity-type approximate leaching model (Addiscott et al., 1986) with a simple treatment of soil matrix permeability was tested, using field tracer experiments with CaBr2, on hydrologically isolated plots. The model predictions are sensitive to the value of the soil matrix permeability factor, a, and four methods of estimating this parameter were evaluated: (1) using a calibration based on soil texture; (2) least-squares fitting of the model to successive neutron probe measurements of the water content profile; (3) least-squares fitting to daily drainage outflow; (4) least-squares fitting to cumulative drainage outflow. The best independent method (method 3) led to slight (20–30%) under-prediction of leaching losses for two of the four experiments, but in one experiment leaching was much less than predicted. As a management model the approach seems promising but more attention needs to be paid to estimation of the value and variability of the permeability parameter, a. The convective-dispersion equation, using steady-state assumptions and a fitted dispersion length, gave as good a prediction of cumulative leaching losses as the approximate model studied here.  相似文献   

3.
Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field observations are available, this system has not yet been studied systematically. In this paper, we present a model with a steady-state water flow to which solutes are added as a pulse. The model predicts the flow through the distribution zone and through the finger in the water-repellent surface layer with a closed form solution and transport in the wettable subsoil numerically. Model calculations show that the travel time through the water-repellent surface layer and the thickness and hydraulic conductivity of the wettable soil have the strongest effect on the arrival time of the solute pulse at groundwater level. The calculations also show that, assuming transport in the wettable subsoil to take place in fingers, the travel time is considerably shorter than when the diverging flow in the wettable soil is included.  相似文献   

4.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The poor physical, chemical and biological properties make Stagnic Luvisol highly susceptible to water erosion on sloping terrains. The objective of this paper is to estimate the effect of different tillage treatments and crops (maize, soybean, winter wheat, spring barley, oilseed rape) on water erosion. The highest erosion in investigation period (1995–2014) was recorded in the control treatment with fallow, followed by the treatment that involved ploughing and sowing up and down the slope. Significantly, lower soil losses were recorded in no-tillage and treatments with ploughing and sowing across the slope. Regarding the crops significantly higher soil losses were recorded in spring row crops (maize and soybean) compared to high-density winter crops (wheat and oilseed rape) and double crop (spring barley with soybean). In the studied period, an average loss of 46 mm of the plough layer was recorded in the control treatment, while in treatment with ploughing and sowing up and down the slope average annual soil loss was 10 mm. According to the results of this study no-tillage and tillage across the slope are recommended as tillage which preserves soil for the next generations in agro-ecological conditions of continental Croatia.  相似文献   

6.
 N2O emission rates from a sandy loam soil were measured in a field experiment with 2 years of perennial forage crops (ryegrass, ryegrass-red clover, red clover) and 1 year of spring barley cultivation. Spring barley was sown after the incorporation of the forage crop residues. All spring barley plots received 40 kg N ha–1 N fertiliser. Ryegrass, ryegrass-red clover and red clover plots were fertilised with 350 kg N ha–1, 175 kg N ha–1 and 0 kg N ha–1, respectively. From June 1994 to February 1997, N2O fluxes were continuously estimated using very large, closed soil cover boxes (5.76 m2). In order to compare the growing crops, the 33 months of investigation were separated into three vegetation periods (March–September) and three winter periods (October–February). All agronomic treatments (fertilisation, harvest and tillage) were carried out during the vegetation period. Large temporal changes were found in the N2O emission rates. The data were approximately log-normally distributed. Forty-seven percent of the annual N2O losses were observed to occur during winter, and mainly resulted from N2O production during daily thawing and freezing cycles. No relationship was found between the N2O emissions during the winter and the vegetation period. During the vegetation period, N2O losses and yields were significantly different between the three forage crops. The unfertilised clover plot produced the highest yields and the lowest N2O losses on this soil compared to the highly fertilised ryegrass plot. Total N2O losses from soil under spring barley were higher than those from soil under the forage crops; this was mainly a consequence of N2O emissions after the incorporation of the forage crop residues. Received: 31 October 1997  相似文献   

7.
农田施肥过量导致氮磷养分淋溶引发的水体污染问题日益突出,冻融交替是中高纬度、高海拔和部分温带地区的自然现象,对冻土区农田生态系统的土壤生物地球化学过程有重要影响。了解冻融交替如何影响土壤氮磷养分淋溶,对建立阻控养分淋溶的措施至关重要。本文对国内外已有的研究结果进行归纳和梳理,从土壤物理、化学和生物学角度阐述了冻融交替对农田土壤氮磷淋溶的作用机制和影响因素。冻融交替主要是通过以下几个方面影响养分淋溶:1)土壤水的相变对土壤颗粒、孔隙结构、微生物细胞的破坏作用;2)对土壤微生物群落组成、结构及其参与的养分循环的影响; 3)最终导致土壤对养分和水分固持能力、可淋溶养分的含量和形态以及淋溶通道的改变。此外,气候因素包括气温和积雪覆盖对冻融模式的影响以及土壤自身的性质决定着冻融期间养分淋溶损失程度。基于冻融对养分淋溶的影响机制,阐述了增施生物炭、种植覆盖作物、采用免耕秸秆覆盖等耕作方式在减缓养分淋溶方面的研究进展和潜在机制,为今后相关研究工作提供了理论依据。最后简要指出当前研究的不足之处,提出未来相关研究的方向。  相似文献   

8.
Abstract. There is environmental concern about the increasing land application of dairy shed effluent in New Zealand. To minimize groundwater contamination by applied nutrients and pathogens it is desirable to avoid preferential flow through topsoils. Our objective was to determine an irrigation rate that retained applied effluent in the topsoil of two commonly irrigated New Zealand soils. In a field experiment, well drained Horotiu soils and poorly drained Te Kowhai soils were irrigated with a pyranine dye/KBr tracer solution at four rates (5, 10, 15, 20 mm/h) using a drip-type rainfall simulator. Twenty minutes after irrigation ceased the soil was excavated horizontally at 25 or 50 mm intervals, and photographed under UV light until no further fluorescence was vishle. Each layer was also analysed for bromide content, without subsampling. The wetting pattern was uneven in both soils as leachate moved preferentially through worm channels and structural cracks. Preferential flow was greatest in the Te Kowhai soil and increased at faster application rates. Dye fluorescence was curvilinearly related to bromide concentration. At both study sites, maintaining the irrigation rate at 10 mm/h minimized leachate movement into the subsoil. Pulsed irrigation at faster rates was not retained in the topsoil.  相似文献   

9.
Nitrate leaching from arable and horticultural land   总被引:7,自引:0,他引:7  
  相似文献   

10.

Purpose

Peatlands have an important role in methane cycling in the natural environment. Methane emissions as a result of methanogenesis and methanotrophy in soil are affected by several environmental factors such as temperature, oxygen and groundwater level. The objective of this study was to analyse methane cycling as a function of soil depth.

Materials and methods

In this study, methane cycling and soil organic matter mineralization were investigated in a drained fen grassland area of Ljubljana marsh, Slovenia that has been subjected to reclamation strategies for several centuries. Potential mineralization, methane production and methane oxidation rates were measured in slurry incubation experiments with soil samples from 10 sampling depths of a 1-m profile. In addition, the extent of iron reduction in the soil was determined.

Results and discussion

The potential for methane production was low in the investigated soil profile, even in constantly flooded layers below the water table fluctuations. During anaerobic incubations, the highest accumulated concentrations and production rates of methane were observed in the upper 10-cm layer and the lowest in deeper soil layers, indicating that plant exudates are the main source of energy for heterotrophic soil microbes and that methanogenesis in deeper layers is limited by the availability of appropriate organic substrates. Methane oxidation was on the other hand active throughout the soil profile, suggesting that the potentially active methane oxidizing community is present despite low methane production. The highest abundance and activity of methanotrophs was detected in the water table fluctuation layers.

Conclusions

Together, these findings have implications for understanding the biogeochemical function of drained peat soils and emphasize the influence of drainage on quality of soil organic matter and consequently on methane production even in flooded soils.
  相似文献   

11.
Abstract

Ferruginous deposits from the outfall and backfill of a newly‐installed drainage scheme in a poorly drained alluvial soil have been characterised using selective chemical dissolution, X‐ray diffraction, and chemical analysis and compared with the iron (Fe) deposits found in various micro‐environments within the soil profile. In the drainage ditch and on the permeable backfill around the drainage pipes, the mineralogy of the ferruginous deposits is dominated by the poorly ordered mineral, ferrihydrite, whereas within the soil environment the hydrous iron oxides display a wider range of structural order. It is probable that the initial precipitation product is poorly‐ordered material but that within the soil transformation to a more well ordered mineral, goethite, can occur.  相似文献   

12.
Relationships between soil pH and microbial properties in a UK arable soil   总被引:1,自引:0,他引:1  
Effects of changing pH along a natural continuous gradient of a UK silty-loam soil were investigated. The site was a 200 m soil transect of the Hoosfield acid strip (Rothamsted Research, UK) which has grown continuous barley for more than 100 years. This experiment provides a remarkably uniform soil pH gradient, ranging from about pH 8.3 to 3.7. Soil total and organic C and the ratio: (soil organic C)/(soil total N) decreased due to decreasing plant C inputs as the soil pH declined. As expected, the CaCO3 concentration was greatest at very high pH values (pH > 7.5). In contrast, extractable Al concentrations increased linearly (R2 = 0.94, p < 0.001) from below about pH 5.4, while extractable Mn concentrations were largest at pH 4.4 and decreased at lower pHs. Biomass C and biomass ninhydrin-N were greatest above pH 7. There were statistically significant relationships between soil pH and biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C (R2 = 0.83, p < 0.001) and total N (R2 = 0.83, p < 0.001), confirming the importance of soil organic matter and pH in stimulating microbial biomass growth. Soil CO2 evolution increased as pH increased (R2 = 0.97, p < 0.001). In contrast, the respiratory quotient (qCO2) had the greatest values at either end of the pH range. This is almost certainly a response to stress caused by the low p. At the highest pH, both abiotic (from CaCO3) and biotic Co2 will be involved so the effects of high pH on biomass activity are confounded. Microbial biomass and microbial activity tended to stabilise at pH values between about 5 and 7 because the differences in organic C, total N and Al concentrations within this pH range were small. This work has established clear relationships between microbial biomass and microbial activity over an extremely wide soil pH range and within a single soil type. In contrast, most other studies have used soils of both different pH and soil type to make similar comparisons. In the latter case, the effects of soil pH on microbial properties are confounded with effects of different soil types, vegetation cover and local climatic conditions.  相似文献   

13.
Effects of weed fallow and of three grasses and five leguminous cover crops were investigated on soil structure of an eroded Alfisol. Crop growth and yields of subsequently grown arable crops were assessed under strip-tillage through the mechanically or chemically suppressed sods. Cover crops and fallowing improved soil organic matter content, total N, water retention and transmission properties, and decreased bulk density only in the top 0–10 cm depth. The improvements rendered were, however, slight. Grasses were difficult to suppress with paraquat or mechanical mowing, which resulted in low or negligible yield of maize, cowpea, and cassava. Leguminous covers were easily suppressed with paraquat application, and resulted in good yield of maize and cowpea. Mechanical mowing was as successful as herbicide application for suppressing Stylosanthes guianensis and resulted in satisfactory yield of maize and cowpea. Yield of cassava tubers was extremely low due to shallow surface soil, compacted sub-soil horizons, and competition from weeds and regrown cover crops. Results are discussed in terms of the amelioration of eroded and degraded soil.  相似文献   

14.
To investigate the mechanisms by which rice plants growing in alternately flooded and drained soils absorb soil phosphate, we grew rice in moist, flooded and flooded then moist soils, and compared the measured uptake of phosphorus (P) with that calculated using a mathematical model of uptake allowing for solubilization by various means. The theory and equations for the model are given, together with a method for solving diffusion equations near roots in a root system of increasing density. The diffusion coefficients and buffer powers of P in the soil under the different water regimes are measured by following diffusion of P to a resin sink, and the parameters describing solubilization are estimated from previously published results. In all the water regimes studied, the plants relied upon solubilization for most of their P. The roots were not mycorrhizal, as they will often not be in intermittently flooded soils. In the flooded soil, uptake was three times that in the moist soil, and was consistent with solubilization by acidification caused by roots as a result of oxidation of iron and imbalance between the intake of cations and anions. In the moist soil, the uptake was consistent with solubilization by excretion of organic anions from the roots. In the flooded then moist soil, uptake declined sharply as the soil dried because P became immobilized in the soil. However, the final uptake was similar to that in the continuously moist soil, indicating that some of the immobilized P was re‐solubilized by roots, possibly by excretion of organic anions.  相似文献   

15.
Summary The effects of temperature, water potential and ammonium concentrations were studied in field and laboratory experiments on arable soil. The two field experiments used different sampling intervals, one at daily (short-term) and the other at monthly (long-term) intervals. In the short-term field experiment, the numbers and activities of nitrifiers were assessed before and after natural rain or irrigation. The nitrifiers were apparently outcompeted by heterotrophs during the first days after wetting the soil. Potential nitrification was affected only slightly by changes in water potential, whereas the numbers of ammonium and nitrite oxidizers appeared more sensitive to these changes. The numbers of ammonium and nitrite oxidizers correlated strongly during the daily samplings. The potential nitrite-oxidation rates correlated with water potentials whereas the potential ammonium oxidation rates did not. Extractable ammonium decreased in proportion to increasing nitrate concentrations in both the rain-fed and the irrigated plots. In the long-term field experiments, the numbers of ammonium oxidizers correlated with water potentials but not with in situ temperature or with ammonium concentrations. The potential ammonium-oxidation rates correlated with water potentials and with ammonium-oxidizer numbers. The potential nitrite-oxidation rates correlated strongly with the potential ammonium-oxidation rates. The field experiments implied that nitrite oxidizers obtained substrate from ammonium oxidizers but also from nitrate reduction. In laboratory experiments nitrate accumulated at a Q 10 of about 2 and the V max for nitrification was observed at a water potential of –0.11 MPa (65% of water-holding capacity). The K m for ammonium oxidation at pH 8.2 was 1.72 mg l–1 soil water.  相似文献   

16.
Since large amounts of nitrogen may be lost by leaching during the winter period, investigations have been carried out to find suitable crops for catching nitrogen during the autumn. The plant species phacelia, common sunflower and italian ryegrass were sown at three times during the late summer. The soil was analysed for mineral nitrogen at the end of November just before incorporation of the catch crops and in the middle of April the following year. The dry matter production and the uptake of nitrogen decreased as the establishment was postponed and the growth period thereby decreased. When sown in the middle of July or at the beginning of August phacelia and italian ryegrass accumulated 150 kg N per ha in the above ground plant parts. The content of soil mineral nitrogen in November was reduced by growing catch crops during the autumn. The content of soil mineral nitrogen increased as the growth period of the catch crops decreased. The content of mineral nitrogen in the upper 50 cm soil layer in April was, irrespective of plant species, increased by catch crops. When no crop was grown the difference between the content of soil mineral nitrogen measured before and after the winter period indicated a net loss of 144 kg of N per ha in 0–100 cm soil depth. When italian ryegrass was sown in the middle of July the previous year the content of soil mineral nitrogen found in April was 59 kg per ha higher compared to the content found in November.  相似文献   

17.
亚热带主要耕作土壤硝态氮淋失特征试验研究   总被引:6,自引:0,他引:6  
本文选取红壤、水稻土、潮土、黄棕壤和紫色土等我国亚热带地区的主要耕作土壤为研究对象,采用土柱模拟试验,研究了在这些土壤中,氮素累积与硝态氮迁移的动态特征,并对氮素的淋失风险进行了定量评价和预测。结果表明,硝态氮在土壤中的淋失过程可分为两个明显的阶段:高浓度快速降低阶段和低浓度缓慢降低阶段。硝态氮淋失过程存在明显的拐点,该点对应的累积入渗量(拐点入渗量)变化范围为38.1 - 219.7 mm,且随土壤硝态氮含量的增加呈幂函数关系增加,表明随硝态氮含量的增高,其淋失风险呈加速增大的趋势。硝态氮淋失强度随土壤硝态氮含量的增加呈显著的线性变化趋势。初步估测,我国亚热带地区年降水入渗量700 mm和土壤硝态氮累积水平为N 20 mg /kg条件下,表层土壤(0-20cm)的硝态氮年平均淋失量为N 484.9 kg /hm2,土壤间的变异系数(CV)分别为26.5%。土壤硝态氮含量是影响硝态氮淋失强度的决定性因素,其它土壤性质的影响均相对较小,因此,控制土壤氮素累积和化肥施用水平是降低其淋失风险的关键环节。  相似文献   

18.
The distribution, density and biomass of earthworms were investigated at the copper polluted site, Hygum (Denmark). In 1994, shortly after farming of the area was abandoned, only four earthworm species were present and their distribution was restricted to areas where copper concentration did not exceed 200 mg kg?1 dry soil. Sixteen years later (in 2010), without any agricultural activity, ten species of earthworms were found, in particular, epigeic species were present where soil copper concentrations reached >1000 mg kg?1 dry soil.  相似文献   

19.
Many studies on soil organic carbon (SOC) sequestration in perennial biomass crops are available for Atlantic and continental environments of North Central Europe, while there is insufficient information for Southern Europe. Therefore, we assessed SOC turnover under Mediterranean climate, after a 9-year-old conversion from two annual crop systems, continuous wheat and maize/wheat rotation, to Miscanthus (Miscanthus sinensis?×?giganteus) and giant reed (Arundo donax), respectively. The naturally occurring 13C signature down to 0.60 m was used to evaluate the total amount of SOC in annual vs perennial species and to determine the portion of SOC derived from perennial species. Soil organic C was significantly higher under perennial (average, 91 Mg C ha?1) than annual species (average, 56 Mg C ha?1), with a stronger accumulation in the topsoil (0–0.15 m). This difference was consistent with reduced soil disturbance associated with perennial crop management. After 9 years of Miscanthus plantation, the amount of C4-derived C was 18.7 Mg ha?1, mostly stored at 0–0.15 m, whereas the amount of C3-derived C under giant reed was 34.7 Mg ha?1 and was more evenly distributed through soil depths, probably due to its deeper root apparatus. It is suggested that both Miscanthus and giant reed have a remarkable potential for SOC sequestration also under Mediterranean conditions, while supporting the growing bioenergy sector with biomass supply.  相似文献   

20.
Nitrate leaching depending on N fertilization and different crop rotations was studied at two sites with sandy soils in N Germany between 1995 and 2000. The leaching of NO was calculated by using a numerical soil‐water and N model and regularly measured Nmin values as input data. Also the variability of Nmin values on the sandy soils was determined along transects. They reveal the high variability of the Nmin values and show that it is not possible to confirm a significant Nmin difference between fertilizer treatments using the normal Nmin‐sampling intensity. Nitrate‐leaching calculations of five leaching periods showed that even strongly reduced N‐fertilizer applications did not result in a substantially lower NO leaching into the groundwater. Strong yield reductions of even more than 50%, however, were immediately measured. Mean NO concentrations in the groundwater recharge are >50 mg L–1 and are mainly due to mineralization from soil organic matter. Obviously, the adjustment of the N cycle in the soil to a new equilibrium and a reduced NO ‐leaching rate as a consequence of lower N inputs need a much longer time span. Catch crops are the most efficient way to reduce the NO concentrations in the groundwater recharge of sandy soils. Their success, however, strongly depends on the site‐specific development possibilities of the catch crop. Even with all possible measures implemented, it will be almost impossible to reach NO concentrations <50 mg L–1 in sandy soils. The only way to realize this goal on a regional scale could be by increasing areas with lower nitrate concentrations in the groundwater recharge like grassland and forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号