首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The present research was conducted to determine the relationship between the degradation of rimsulfuron and soil microbial biomass C in a laboratory-incubated clay loam soil (pH=8.1; organic matter=2.1%) under different conditions and at different initial dosages (field rate, 10 and 100 times the field rate). The half-life values varied between 0.4 and 103.4 days depending on temperature, soil moisture and initial dose. Evidence suggested that rimsulfuron could pose environmental risks in cold and dry climatic conditions. Significant decreases in microbial biomass C content in rimsulfuron-treated soil, compared to untreated soil, were observed initially, especially at higher temperatures and low moisture levels, but never exceeded 20.3% of that in control soil. The microbial biomass C content then returned to initial values at varying times depending on incubation conditions. The relationship between herbicide degradation and microbial biomass C content gave parabolic curves (P<0.005 in all cases) under all conditions tested. Generally, maximum biomass C decrease coincided with the decrease in the concentration of rimsulfuron to about 50% of the initial dose, except at 10  °C and 100×, when biomass began to recover as early as 65–70% of the initial dose. The final equations could be useful to deduce the decrease of soil microbial biomass in relation to herbicide concentration. From the degradation kinetics of the herbicide, the time required to reach this decrease can also be calculated. Received: 19 July 1999  相似文献   

2.
 The effect of long-term waste water irrigation (up to 80 years) on soil organic matter, soil microbial biomass and its activities was studied in two agricultural soils (Vertisols and Leptosols) irrigated for 25, 65 and 80 years respectively at Irrigation District 03 in the Valley of Mezquital near Mexico City. In the Vertisols, where larger amounts of water have been applied than in the Leptosols, total organic C (TOC) contents increased 2.5-fold after 80 years of irrigation. In the Leptosols, however, the degradability of the organic matter tended to increase with irrigation time. It appears that soil organic matter accumulation was not due to pollutants nor did microbial biomass:TOC ratios and qCO2 values indicate a pollutant effect. Increases in soil microbial biomass C and activities were presumably due to the larger application of organic matter. However, changes in soil microbial communities occurred, as denitrification capacities increased greatly and adenylate energy charge (AEC) ratios were reduced after long-term irrigation. These changes were supposed to be due to the addition of surfactants, especially alkylbenzene sulfonates (effect on denitrification capacity) and the addition of sodium and salts (effect on AEC) through waste water irrigation. Heavy metals contained in the sewage do not appear to be affecting soil processes yet, due to their low availability. Detrimental effects on soil microbial communities can be expected, however, from further increases in pollutant concentrations due to prolonged application of untreated waste water or an increase in mobility due to higher mineralization rates. Received: 28 April 1999  相似文献   

3.
Effects of a sulfonylurea herbicide on soil microarthropods   总被引:4,自引:0,他引:4  
 The short-term effects on soil microarthropods of the herbicide triasulfuron, belonging to the chemical class of sulfonylureas, were evaluated in two fields which had never been treated with sulfonylureas, and were cultivated with winter wheat. In particular, the effects of single applications at rates corresponding to two- (rate 2) and sixfold (rate 6) the recommended agricultural rate (7.5 g active ingredient ha–1) were analysed and compared with controls. The changes in the populations of the main groups of microarthropods were evaluated. Rate 2 had very low effects, whereas rate 6 produced a significant decrease in the number of microarthropods, Acarina and Collembola in the surface soil layer (0–7.5 cm). The Collembola were analysed at the species level. Statistical analysis revealed significant differences only for a few species, and only after treatment with the highest rate of triasulfuron. Finally, the results of the field tests were compared to those of laboratory tests carried out previously, which examined the effects of the same herbicide on a collembolan species. Received: 11 November 1998  相似文献   

4.
 We studied the long-term effects (12 years) of municipal refuse compost addition on the total organic carbon (TOC), the amount and activity of the microbial biomass (soil microbial biomass C, BC and metabolic quotient qCO2) and heavy metal bioavaiability in soils as compared to manuring with mineral fertilizers (NPK) and farmyard manure (FYM). In addition, we studied the relationships between among the available fraction [Diethylenetriaminopentacetic acid (DTPA) extractable] of heavy metals and their total content, TOC and BC. After 12 years of repeated treatments, the TOC and BC of control and mineral fertilized plots did not differ. Soils treated with FYM and composts showed a significant increase in TOC and BC in response to the increasing amounts of organic C added. Values of the BC/TOC ratio ranged from 1.4 to 2, without any significative differences among soil treatments. The qCO2 increased in the organic-amended soil and may have indicated microbial stress. The total amounts of metals in treated soils were lower than the levels permitted by the European Union in agricultural soils. DTPA-extractable metals increased in amended soils in response to organic C. A multiple regression analysis with stepwise selection of variables was carried out in order to discriminate between the influence exerted on DTPA-extractable metals by their total content, TOC and BC. Results showed that each metal behaved quite differently, suggesting that different mechanisms might be involved in metal bioavailability Received: 31 October 1997  相似文献   

5.
 The effects of 5 years of continuous grass/clover (Cont grass/clover) or grass (Cont grass) pasture or 5 years of annual grass under conventional (Ann grass CT) or zero tillage (Ann grass ZT) were compared with that of 5 years of continuous barley (LT arable) on a site which had previously been under arable crops for 11 years. For added comparison, a long-term grass/clover pasture site (LT past) nearby was also sampled. Soil organic C (Corg) content followed the order LT arable=Ann grass CT<Ann grass ZT<Cont grass=Cont grass/clover<LTpast. Trends with treatment for microbial biomass C (Cmic), basal respiration, flourescein diacetate (FDA) hydrolytic activity, arginine ammonification rate and the activities of dehydrogenase, protease, histidase, acid phosphatase and arylsulphatase enzymes were broadly similar to those for Corg. For Cmic, FDA hydrolysis, arginine ammonification and the activities of histidase, acid phosphatase and arylsulphatase, the percentage increase caused by 5 years of continuous pasture (in comparison with LT arable) was 100–180%, which was considerably greater than that for organic C (i.e. 60%). The microbial metabolic quotient (qCO2) was higher for the two treatments which were mouldboard ploughed annually (LT arable and Ann grass CT) than for the undisturbed sites. At the undisturbed sites, Corg declined markedly with depth (0–15 cm) and there was a similar stratification in the size and activity of Cmic and enzyme activity. The microbial quotient (Cmic/Corg) declined with depth whilst qCO2 tended to increase, reflecting a decrease in the proportion of readily available substrate with depth. Received: 7 July 1998  相似文献   

6.
Short-term effects of tillage systems on active soil microbial biomass   总被引:5,自引:0,他引:5  
 Conservation tillage, and especially no-tillage, induce changes in the distribution of organic pools in the soil profile. In long-term field experiments, marked stratification of the total soil microbial biomass and its activity have been observed as consequence of the application of no-tillage to previously tilled soils. Our objective was to study the evolution of the total and active soil microbial biomass and mineralized C in vitro during the first crop after the introduction of no-tillage to an agricultural soil. The experiment was performed on a Typic Hapludoll from the Argentinean Pampa. Remaining plant residues, total and active microbial biomass and mineralized C were determined at 0–5 cm and 5–15 cm depths, at three sampling times: wheat tilling, silking and maturity. The introduction of no-tillage produced an accumulation of plant residues in the soil surface layer (0–5 cm), showing stratification with depth at all sampling dates. Active microbial biomass and C mineralization were higher under no-tillage than under conventional tillage in the top 5 cm of the profile. The total soil microbial biomass did not differ between treatments. The active soil biomass was highly and positive correlated with plant residues (r 2=0.617;P<0.01) and with mineralized C (r 2=0.732;P<0.01). Consequently, the active microbial biomass and mineralized C reflected immediately the changes in residue management, whereas the total microbial biomass seemed not to be an early indicator of the introduction of a new form of soil management in our experiment. Received: 23 February 1999  相似文献   

7.
以燕麦田土壤为研究对象,探讨了聚丙烯酸盐类土壤改良剂及其复配(聚丙烯酸钾、聚丙烯酰胺、腐植酸钾、聚丙烯酸钾+腐植酸钾、聚丙烯酰胺+腐植酸钾)对燕麦田土壤微生物量氮及土壤酶活性的影响。结果表明,不同土壤改良剂均能提高土壤有机质、碱解氮、速效磷和速效钾的含量,各指标分别比对照增加了8.24%~30.22%、7.60%~19.29%、5.15%~29.45%和27.86%~68.86%;土壤改良剂能促使燕麦全生育期内0~10、10~20和20~40 cm各土层的土壤微生物量氮含量显著提高,聚丙烯酸钾+腐植酸钾和聚丙烯酰胺+腐植酸钾复配处理较其各单施效果显著,随土壤深度的增加土壤微生物量氮逐层递减;与对照相比,土壤改良剂能显著提高燕麦全生育期各土层过氧化氢酶活性,在抽穗期活性最高,且以聚丙烯酸钾+腐植酸钾较高;但对于脲酶,聚丙烯酸钾+腐植酸钾、聚丙烯酰胺+腐植酸钾和腐植酸钾3个处理在苗期显著低于对照,在抽穗期和成熟期高于对照,两种酶活性均随土壤深度的增加逐渐降低。  相似文献   

8.
 An incubation experiment lasting 120 days was carried out to ascertain the effect on the soil microbial activity and organic matter mineralization of adding a sewage sludge compost contaminated with two different levels of Cd to an arid soil. Two composts, with a low (2 mg kg–1) and high (815 mg kg–1) Cd content, respectively, were used in this experiment. Both composts increased the total organic C, humic substance and water-soluble C contents, the beneficial effects still being noticeable after 120 days of incubation. The most labile C fraction (water-soluble C) was the most sensitive to the high Cd content. The high Cd concentration decreased soil microbial biomass C and stimulated the metabolic activity of the microbial biomass, the metabolic quotient (qCO2) revealing itself to be a very sensitive index of the stress that the incorporation of a Cd-contaminated sewage sludge compost causes in a soil. The effect of Cd contamination on enzyme activities (urease, protease that hydrolyse N-α-benzoil-l-arginamide, phosphatase, and β-glucosidase) depended on the enzyme studied. Received: 10 September 1997  相似文献   

9.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

10.
 A model describing the respiration curves of glucose-amended soils was applied to the characterization of microbial biomass. Both lag and exponential growth phases were simulated. Fitted parameters were used for the determination of the growing and sustaining fractions of the microbial biomass as well as its specific growth rate (μ max). These microbial biomass characteristics were measured periodically in a loamy silt and a sandy loam soil incubated under laboratory conditions. Less than 1% of the biomass oxidizing glucose was able to grow immediately due to the chronic starvation of the microbial populations in situ. Glucose applied at a rate of 0.5 mg C g–1 increased that portion to 4–10%. Both soils showed similar dynamics with a peak in the growing biomass at day 3 after initial glucose amendment, while the total (sustaining plus growing) biomass was maximum at day 7. The microorganisms in the loamy silt soil showed a larger growth potential, with the growing biomass increasing 16-fold after glucose application compared to a sevenfold increase in the sandy loam soil. The results gained by the applied kinetic approach were compared to those obtained by the substrate-induced respiration (SIR) technique for soil microbial biomass estimation, and with results from a simple exponential model used to describe the growth response. SIR proved to be only suitable for soils that contain a sustaining microbial biomass and no growing microbial biomass. The exponential model was unsuitable for situations where a growing microbial biomass was associated with a sustaining biomass. The kinetic model tested in this study (Panikov and Sizova 1996) proved to describe all situations in a meaningful, quantitative and statistically reliable way. Received: 19 July 1999  相似文献   

11.
 Extracts were prepared from soil using water, 50 mM citric acid (pH ∼2.3) or 0.5 M NaHCO3 (pH 8.5), and were incubated with excess phytase from Aspergillus niger to determine the amounts of labile P. Two A. niger phytase preparations were used: (1) a purified form which exhibited a narrow substrate specificity and high specific activity against phytate; and (2) a commercial preparation (Sigma) with activity against a broad range of P compounds. A comparatively large proportion (up to 79%, or 5.7 μg g–1 soil) of the organic P (Po) extracted with citric acid was hydrolysed by the commercial phytase, while between 28% and 40% (up to 3.1 μg g–1 soil) was hydrolysed using purified phytase. By comparison, only small quantities of the Po in water and NaHCO3 soil extracts were enzyme labile. While extractable Po was increased both with increasing concentrations of citric acid (up to 50 mM) and increasing pH (pH 2.3–6.0), enzyme-labile P increased only with citric acid concentration. The labile component of Po in citric acid extracts from soils with contrasting fertiliser histories indicated that enzyme-labile Po is a relatively large soil P pool and is potentially an important source of P for plants. Received: 29 October 1999  相似文献   

12.
 The impacts of crop rotations and N fertilization on different pools of urease activity were studied in soils of two long-term field experiments in Iowa; at the Northeast Research Center (NERC) and the Clarion-Webster Research Center (CWRC). Surface soil samples (0–15 cm) were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1, applied as urea before corn and an annual application of 20 kg P and 56 kg K ha–1. The urease activity in the soils was assayed at optimal pH (THAM buffer, pH 9.0), with and without toluene treatment, in a chloroform-fumigated sample and its nonfumigated counterpart. The microbial biomass C (Cmic) and N (Nmic) were determined by chloroform fumigation methods. The total, intracellular, extracellular and specific urease activities in the soils of the NERC site were significantly affected by crop rotation, but not by N fertilization. Generally, the highest total urease activities were obtained in soils under 4-year oats–meadow rotations and the lowest under continuous corn. The higher total activities under multicropping systems were caused by a higher activity of both the intracellular and extracellular urease fractions. In contrast, the highest values for the specific urease activity, i.e. of urease activity of the microbial biomass, were found in soils under continuous soybean and the least under the 4-year rotations. Total and extracellular urease activities were significantly correlated with Cmic (r>0.30* and >0.40**) and Nmic (r>0.39** and >0.44**) in soils of the NERC and CWRC sites, respectively. Total urease activity was significantly correlated with the intracellular activity (r>0.73***). About 46% of the total urease activity of the soils was associated with the microbial biomass, and 54% was extracellular in nature. Received: 25 May 1999  相似文献   

13.
 Microbial populations, biomass, soil respiration and enzyme activities were determined in slightly acid organic soils of major mountainous humid subtropical terrestrial ecosystems, along a soil fertility gradient, in order to evaluate the influence of soil properties on microbial populations, activity and biomass and to understand the dynamics of the microbial biomass in degraded ecosystems and mature forest. Although the population of fungi was highest in the undisturbed forest (Sacred Grove), soil respiration was lowest in the 7-year-old regrowth and in natural grassland (approximately 373 μg g–1 h–1). Dehydrogenase and urease activities were high in "jhum" fallow, and among the forest stands they were highest in the 7-year-old regrowth. Microbial biomass C (MBC) depended mainly on the organic C status of the soil. The MBC values were generally higher in mature forest than in natural grassland, 1-year-old jhum fallow and the 4-year-old alder plantation. The MBC values obtained by the chloroform-fumigation-incubation technique (330–1656 μg g–1) did not vary significantly from those obtained by the chloroform-fumigation-extraction technique (408–1684 μg g–1), however, the values correlated positively (P<0.001). The enzyme activities, soil respiration, bacterial and fungal populations and microbial biomass was greatly influenced by several soil properties, particularly the levels of nutrients. The soil nutrient status, microbial populations, soil respiration and dehydrogenase activity were greater in Sacred Grove, while urease activity was greater in grassland. Received: 14 October 1998  相似文献   

14.
不同有机堆肥对土壤性状及微生物生物量的影响   总被引:9,自引:0,他引:9  
研究不同种类有机堆肥对土壤性状及微生物生物量的短期影响。采用盆栽试验的方式,探讨了施用50 g/kg 的啤酒污泥堆肥(BSC)、 牛粪堆肥(DMC)和菇渣堆肥(SMC)对土壤有机质、 氮磷钾含量、 容重、 持水性、 土壤呼吸及微生物生物量碳、 氮、 磷(SMBC、 SMBN、 SMBP)的影响。结果表明, 与对照相比,施用啤酒污泥、 牛粪和菇渣3种有机堆肥后,土壤中有机质、 全氮、 碱解氮、 有效磷、 速效钾含量显著增加,并且显著降低土壤容重和增大土壤孔隙度(P0.05);经过1周土壤水分的变化,CK处理的土壤水分消耗率分别是BSC、 DMC和SMC处理的1.26、 1.24、 1.14倍;BSC、 DMC和SMC处理显著提高土壤呼吸(P0.05),半年后分别与CK相比增加了142.17%、 114.30%、 105.39%;施用啤酒污泥、 牛粪和菇渣3种有机堆肥后显著增加SMBC、 SMBN、 SMBP含量(P0.05),6个月后,SMBC含量分别是CK 的2.35、 1.84、 1.86倍,SMBN含量分别比 CK 高135.44%、 99.16%、 90.82%,SMBP含量分别是CK 的 2.76、 2.19、 2.04倍。啤酒污泥堆肥含有活性小颗粒对土壤性状和微生物生物量的影响最为明显,其次是牛粪堆肥,菇渣堆肥表现最差。  相似文献   

15.
 In New Zealand Hieracium is an opportunistic plant that invades high country sites more or less depleted of indigenous vegetation. To understand the invasive nature of this weed we assessed the changes in soil C, N and P, soil microbial biomass C, N and P contents, microbial C : N and C : P ratios, the metabolic quotient, and turnover of organic matter in soils beneath Hieracium and its adjacent herbfield resulting from the depletion of tussock vegetation. The amounts of soil organic C and total N were higher under Hieracium by 25 and 11%, respectively, compared to soil under herbfield. This change reflects an improvement in both the quantity and quality of organic matter input to mineral soil under Hieracium, with higher percentage organic C and a lower C : N ratio. The microbial biomass C, N and P contents were also higher under Hieracium. The amount of C respired during the 34-week incubation indicated differences in the nature of soil organic matter under Hieracium, the unvegetated "halo" zone surrounding Hieracium patches, and herbfield (depleted tussock grassland). Decomposition of organic matter in these zones showed that the Hieracium soil had the greatest rate of CO2 respired, and the halo soil had the lowest. We relate the enhanced organic C turnover to the invasive nature of Hieracium. Net N mineralization was significantly lower from the Hieracium soil (57 mg N g–1 soil N) than from herbfield and halo soils (74 and 71 mg N g–1 soil N, respectively), confirming that the nature of organic N in Hieracium soil is different from adjoining halo and herbfield soils. It seems plausible that specific compounds such as polyphenols and lignins released by Hieracium are not only responsible for increased organic N, but also control the form and amount of N released during organic matter transformations. We conclude that the key to the success of Hieracium in the N-deficient South Island high country of New Zealand lies in its ability to control and sequester N supply through modifying the soil organic matter cycle. Received: 1 December 1998  相似文献   

16.
 We investigated the soil organic C and N stocks, storage profiles and microbial biomass as influenced by different crop management systems in a tropical agricultural ecosystem. The different crop management systems significantly affected the C and N stocks and microbial biomass C and N at different soil depths. Amongst the systems evaluated, the rice-wheat system maintained a higher soil organic C content. Inclusion of legumes in the system improved the soil organic matter level and also soil microbial biomass activity, vital for the nutrient turnover and long-term productivity of the soil. Irrespective of the cropping system, approximately 58.4%, 25.7% and 15.9% of the C was distributed in 0–15, 15–30 and 30–60 cm depths, respectively. Received: 10 October 1999  相似文献   

17.
 Microwave irradiation was evaluated as a non-toxic alternate to chloroform fumigation for routine measurement of soil microbial biomass C. Microwave energy was applied to moist soil to disrupt microbial cells. The flush of C released was then measured after extraction or incubation. Microwave irradiation at 800 J g–1 soil was optimal because this level resulted in an almost instantaneous rise in soil temperature (≥80  °C), an abrupt reduction in microbial activity, maximal release of biomass C, and minimal solubilization of humic substances. Both incubation-CO2 titration and extraction-colorimetry methods were used on separate 20-g subsamples to compare the labile C in the microwave-treated and untreated soil samples. The incubation-titration method was also used to measure C in chloroform-fumigated soil samples. Averaged across soils, the chloroform fumigation yielded 123.3±5.1 mg CO2-C kg–1. Microwave irradiation yielded 93.6±3.9 mg CO2-C kg–1 soil determined by incubation and 52.4±2.4 mg C kg–1 soil determined by extraction, accounting for 76% and 42% of the net flush of C measured by the chloroform fumigation. Microwave-stimulated net flushes of C were correlated closely (r 2=0.974 for incubation or 0.908 for extraction) with microbial biomass C measured by the chloroform fumigation. Little correlation was found with the total soil organic C (r 2=0.241 for incubation or for 0.166 extraction). Mean efficiency factors for incubation (K MI) or extraction (K ME) were used to calculate microbial biomass C from net flushes of C between microwaved and unmicrowaved soils. Values of K MI and K ME were not affected by soil pH, bulk density or clay contents. Extraction of microwaved soil by 0.5M K2SO4 proved to be a simple, fast, precise, reliable, and safe method to measure soil microbial biomass C. Received: 12 September 1997  相似文献   

18.
 A greenhouse experiment was conducted to compare effects of different C and N sources applied to a flooded soil on soil microbial biomass (SMB) C and N, extractable soil organic N (NORG), and NH4 +-N in relation to plant N accumulation of rice (Oryza sativa L.). In addition to a control without inputs (CON), four treatments were imposed receiving: prilled urea (PU), rice straw (RS), RS and PU (RS+PU), or Sesbania rostrata as green manure (SES). Treatments were arranged according to a completely randomized design with four replicates and further consisted of pots with and without transplanted rice. While plant effects on the SMB were relatively small, the application of organic N sources resulted in a rapid increase in SMB until 10 days after transplanting (DAT) followed by a gradual decline until 73 DAT. Plant N accumulation data in these treatments clearly indicated that the SMB underwent a transition from a sink to a source of plant-available soil N during the period of crop growth. Seasonal variation of the SMB was small in treatments without amendment of organic material (CON, PU) presumably due to a lack of available C as energy source. Extractable NORG was significantly affected by soil planting status and organic N source amendment, but represented only a small N pool with little temporal variation despite an assumed rapid turnover. Among the three treatments receiving the same amount of N from different sources, the recovery efficiency of applied N was 58% for PU and 28% for both RS+PU and SES treatments at 73 DAT. The N uptake of rice, however, was not driven by N availability alone, as most evident in the RS+PU treatment. We assume that root physiological functions were impeded after application of organic N sources. Received: 1 June 1999  相似文献   

19.
 As part of a broader study, the aim of which is to identify soil factors that might be associated with yield decline of sugar cane, microbial biomass and protease activities were examined in soil samples collected from seven paired old and new land sites in three cane-growing districts of north Queensland. No consistent changes in soil protease activities were observed, although some sites exhibited specific effects, as a result of extensive periods of sugar cane monoculture. Soil microbial biomass, however, was significantly lower in those soils where sugar cane had been grown for extended periods. The implications of a lowering of soil microbial biomass on sugar cane yields and sustainability are discussed. Received: 24 June 1997  相似文献   

20.
 A chloroform-fumigation extraction method with fumigation at atmospheric pressure (CFAP, without vacuum) was developed for measuring microbial biomass C (CBIO) and N (NBIO) in water-saturated rice soils. The method was tested in a series of laboratory experiments and compared with the standard chloroform-fumigation extraction (CFE, with vacuum). For both methods, there was little interference from living rice roots or changing soil water content (0.44–0.55 kg kg–1 wet soil). A comparison of the two techniques showed a highly significant correlation for both CBIO and NBIO (P<0.001) suggesting that the simple and rapid CFAP is a reliable alternative to the CFE. It appeared, however, that a small and relatively constant fraction of well-protected microbial biomass may only be lysed during fumigation under vacuum. Determinations of microbial C and N were highly reproducible for both methods, but neither fumigation technique generated NBIO values which were positively correlated with CBIO. The range of observed microbial C:N ratios of 4–15 was unexpectedly wide for anaerobic soil conditions. Evidence that this was related to inconsistencies in the release, degradation, and extractability of NBIO rather than CBIO came from the observation that increasing the fumigation time from 4 h to 48 h significantly increased NBIO but not CBIO. The release pattern of CBIO indicated that the standard fumigation time of 24 h is applicable to water-saturated rice soils. To correct for the incomplete recovery of CBIO, we suggest applying the k C factor of 2.64, commonly used for aerobic soils (Vance et al. 1987), but caution is required when correcting NBIO data. Until differences in fumigation efficiencies among CFE and CFAP are confirmed for a wider range of rice soils, we suggest applying the same correction factor for both methods. Received: 1 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号