首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The native cacao trees (Theobroma cacao L.) in south-eastern French Guiana represent a noteworthy fraction of the genetic diversity of this species. Several scientific surveys have led to the collection of numerous accessions, which provides an opportunity for investigating the pattern of genetic diversity in natural populations. Using a capillary electrophoresis genotyping system, we fingerprinted 189 wild trees in 18 natural populations. Based on the 15 loci SSR profiles, we analyzed the intra- and inter-population variation and their relationship with control clones. The global allelic richness was 4.87 alleles per locus, but was 2.4 on average within individual populations; gene diversity was 0.368 and observed heterozygosity was low (0.160). Major structuring was discovered in the metapopulation of French Guianan wild cacao trees (Fst = 0.20), which could be explained by the biological characteristics of the cacao tree and the climatic events that affected the Guianan forests in the Quaternary period.  相似文献   

2.
Timber production and cocoa yields were studied (initial 10?C11?years) in two experimental plantations: a Cocoa-Legume system (CL, Erythrina poeppigiana, Gliricidia sepium or Inga edulis), and a Cocoa-Timber system (CT, Cordia alliodora, Tabebuia rosea or Terminalia ivorensis, plus I. edulis for inter-site comparisons). These trials had two major goals: (1) to evaluate the use of mono-specific timber shade canopies as an alternative to traditional, mono-specific, legume service shade tree canopies; and (2) to determine the production potential of ten cocoa clonal bi-crosses under these shade tree species. Within each site, shade tree species did not influence dry cocoa bean yield nor pod counts (total number of pods produced, number of healthy pods harvested, pod losses due to monilia [Moniliophthora roreri], black pod [Phytophthora palmivora] or other causes??birds and squirrels in this study-, and total pod losses). Significant differences were found between cocoa bi-crosses for both cocoa bean yield and pod counts. Sites differed only in terms of total pod losses (43% in CL; 54% in CT) and their causal factors (mainly monilia in CL; both monilia, squirrels and birds in CT). At CT, all timber tree species grew rapidly, reaching 30?C34?cm?dbh, 17?C25?m total tree height and 97?C172?m3?ha?1 total stem volume (age 10?years). Timber species should be promoted for the shade component of cacao plantations given their potential production and the fact that their presence did not negatively affect cocoa yields.  相似文献   

3.
The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.An early version of this review was presented at the CATIE-IUFRO meeting Los Arboles de Uso Multiple en Sistemas Agroforestales, June 1985, Turrialba, Costa Rica.  相似文献   

4.
In the Napu and Palolo Valleys of Central Sulawesi, Indonesia, a chronosequence sought to identify the relationship between tree age, nutrient dynamics and cocoa (Theobroma cacao L.) yield in association with gliricidia (Gliricidia sepium (Jacq.) Steud.). The chronosequence surveyed cocoa-gliricidia plantations with a maximum age of 8 and 15 years, respectively, in Napu and Palolo. The characteristics of the valleys were also quite different, with an altitude of 1,139–1,166 m a.s.l. in Napu and 592–651 m a.s.l. in Palolo. Annual rainfall was 1,543 mm in Napu and 1,811 mm in Palolo. The yield of cocoa increased fairly steadily, with growth rates higher in Palolo than in Napu. Whereas a higher level of bean P led to a higher single bean weight (g d.w.) in Napu, a higher level of bean K led to a lower single bean weight in Palolo. The relatively high level of K appeared to have coincided with immature growth stages of cocoa. As trees matured, their increased rate of C assimilation was seen in the form of higher single bean weight. We found no statistically significant change in the soil’s carbon-nutrient levels when viewed over the entire timeframe of 8 and 15 years in the 2 valleys. In addition, there was no correlation between the soil’s carbon-nutrient levels and the single bean weight. Nor did we find any correlation between the soil’s carbon-nutrient levels impacting the bean’s carbon-nutrient levels. Of regression lines, P had the steepest slope and was considered the most limited nutrient relative to the other nutrients although its correlation was insignificant. The farmers’ estimation of cocoa yield was about 68% less than our measured bean weight per area per year (kg d.w. ha?1 year?1), implying a more refined definition of ripeness. In a cocoa agroforest, income could be supplemented by durable tree crops instead of growing gliricidia which is removed after several years of growth. This removal and the shallow rooting of cocoa indicate that the cocoa production would be sustainable only in the immediate future.  相似文献   

5.
Terrestrial herbs are important ecological components in tropical agroforests, but little is known about how they are affected by agricultural management. In cacao agroforests of Central Sulawesi, Indonesia, we studied the change in herb species richness, cover, and biomass over 3?years in 86 subplots subjected to high and low weeding frequency as well as fertilized and non-fertilized treatments. We recorded 111 species with rapid changes in species composition between the 3?years. Species richness increased sharply in the 2nd year, presumably as a result of changes in the management with the experimental regimes, and decreased in the 3rd, probably due to competitive exclusion. Species richness, cover, and biomass were all significantly higher in the infrequently weeded plots than in the frequently weeded ones, but there were only slight responses to the fertilization treatment. An indicator species analysis recovered 45 species that were typical for a given year and a further eight that were typical for certain treatments, but these species showed no clear patterns relative to their ecology or biogeography. We conclude that the herb assemblages in cacao agroforests are quite resilient against weeding, but that the cover of species shifts rapidly in response to management.  相似文献   

6.
The cultural features, management practice, environmental sustainability, and economic profitability of smallholder cacao (Theobroma cacao)production in West and Central Africa are reviewed. The aim is tohighlight factors affecting the cacao production and marketing sectorand to propose appropriate strategies to ensure sustainable and profitable cacao production in the region. The cacao cultivation system causes minimum damage to soil resources. In terms of carbon sequestration and below- and above-ground bio-diversity, the cacao agroforest is superior to the alternative food crop production land use. The food crop production system is based on the practice of slash-and-burn farming, which, due to population pressure and reduced fallow cycle, is no longer sustainable. Economic profitability analysis of this system in Cameroon showed that, at current prices, even with no value assigned to the tree species, the sector could still be profitable. Based on the current review and our knowledge of West and Central Africa, there is an urgent need to: (a) rationalize and optimize arrangement of the various components in cacao agroforest, (b) domesticate high value and shade tolerant indigenous species such as Gnetum africanum and integrate into the system in order to enhance the system's diversity and profitability, (c) develop shade-tolerant and disease-resistant cacao varieties, (d) integrate small-stock production into the system, and (e) develop an enabling policy environment addressing cacao marketing, plant protection, land tenure and transformation of non-cacao primary products from the cacao agroforests. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
This study investigated the intercropping of rattan, an important non-timber forest product, in coffee and cacao agroforests in Sulawesi, Indonesia. The viability of producing seedlings from seeds and vegetative cuttings with the large-diameter rattan, Calamus zollingeri Beccari, and initial seedling survival, growth and response to light and soil drainage were investigated in village nurseries and perennial farms. Over 96% of seeds and 61% of vegetative cuttings were raised to transplanting size (25 cm with two to three leaves) over 20 months. One hundred C. zollingeri seedlings produced from cuttings were transplanted into each of three coffee or cacao farms and one primary forest site and exhibited an overall survival rate of 96%, 12.7 cm of height growth and the production of 0.8 new leaves per plant after eight months. No significant differences were observed between the four sites with respect to seedling survival, growth, or leaf production and no significant differences were found between seedling survival, growth or leaf production and light intensity (based on multiple PAR measurements). However, poorly drained sites exhibited significantly reduced C. zollingeri seedling survival and growth. The cultivation of C. zollingeri rattan in coffee and cacao agroforests represents a potential means of intensifying and diversifying perennial cash crop farming systems.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Pastures store over 90% of their carbon and nitrogen below-ground as soil organic matter. In contrast, temperate conifer forests often store large amounts of organic matter above-ground in woody plant tissue and fibrous litter. Silvopastures, which combine managed pastures with forest trees, should accrete more carbon and nitrogen than pastures or timber plantations because they may produce more total annual biomass and have both forest and grassland nutrient cycling patterns active. This hypothesis was investigated by conducting carbon and nitrogen inventories on three replications of 11 year-old Douglas-fir (Pseudotsuga menziesii)/perennial ryegrass (Lolium perenne)/subclover (Trifolium subterraneum) agroforests, ryegrasss/subclover pastures, and Douglas-fir timber plantations near Corvallis, Oregon in August 2000. Over the 11 years since planting, agroforests accumulated approximately 740 kg ha–1 year –1 more C than forests and 520 kg ha–1 year–1 more C than pastures. Agroforests stored approximately 12% of C and 2% of N aboveground compared to 9% of C and 1% of N above ground in plantations and less than 1% of N and C aboveground in pastures. Total N content of agroforests and pastures, both of which included a nitrogen-fixing legume, were approximately 530 and 1200 kg ha–1 greater than plantations, respectively. These results support the proposition that agroforests, such as silvopastures, may be more efficient at accreting C than plantations or pasture monocultures. However, pastures may accrete more N than agroforests or plantations. This apparent separation of response in obviously interrelated agroecosystem processes, points out the difficulty in using forest plantation or pasture research results to predict outcomes for mixed systems such as agroforests. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Agroforestry Systems - Inland waters such as streams that receive carbon from terrestrial landscapes usually have a net heterotrophic metabolism and emit significant amounts of CO2 to the...  相似文献   

10.
The distribution and composition of the tree component inside cocoa agroforests plays an important role in the economic and ecological services offered by these plantations. The presence of these plant components appears to be influenced by several factors controlling the introduction and management of associated plants inside cocoa agroforests. To date, few studies have tried to evaluate the horizontal and vertical distribution of plants inside cocoa plantations in Cameroon. This study determines the structure of cocoa plantations in Southern Cameroon. Field data were collected in 60 cocoa plantations belonging to 12 villages located along a contiguous gradient of market access, population density and resource use intensity in the humid forest zone of southern Cameroon. This study area comprises (i) the sub-region of Yaoundé, (ii) the sub-region of Mbalmayo, and (iii) the sub-region of Ebolowa. Market access, population density and resource use intensity all decreased from the first to the third sub-region. For cocoa and associated plants, we quantified (1) the density (2) the individual number, the species composition and the group uses of plants (edible, timber, medicinal, etc…) distribution across strata, and (3) the basal area in the 60 cocoa plantations located in the three main sub-regions. Results are presented for each sub-region and the whole study area. The paper develops cocoa agroforest typologies and discusses possible implications of cocoa agroforest structure diversity in the achievement of economic and ecological services.  相似文献   

11.
Little is known about the phosphorus (P) fractions and P lability of agroforest soils in tropical regions, particularly those of cacao (Theobroma cacao L.) agroforests. We hypothesized that the effect of P fertilization on the distribution of P fractions in the soil based on the source-sink relationship differs for different cacao agroforestry systems. The cacao agroforestry systems studied were the following: open cacao-cabruca, closed cacao-cabruca, cacao + erythrina, mixed cacao + rubber tree, and cacao + rubber tree intercropping. A natural forest and an unfertilized pasture were used as reference systems. The P fractions were determined using the Hedley sequential extraction method, and the P transformation processes were evaluated via structural equation modeling. The impact of low P fertilizer input on the P fractions varied according to the specific environmental conditions of each cacao production system. Consequently, there was high dissimilarity among all of the cacao sites. In all of the cacao agroforestry systems, there was an increase in inorganic P (Pi), especially the labile fraction (resin-Pi and NaHCO3-Pi), but organic P (Po) increased only in the cacao + erythrina system and in the rubber tree planting row of the cacao + rubber tree intercropping system. As a result, the fitted structural models indicated that the inter-relationships of the geochemical processes were more important for determining the P availability than the biological processes. However, the Po concentrations and relative proportion were high in all of the cacao agroforestry systems, thereby revealing the high potential of supplying P to plants via the mineralization process in the eventual removal of mineral fertilization.  相似文献   

12.
The hydrological balances for the agroforestry systems of Theobroma cacao with Cordia alliodora or Erythrina poeppigiana were calculated using measurements taken over four years (1983–1987) of the following parameters: climatic (precipitation, evaporation); edaphological (texture, soil moisture tension, hydraulic conductivity, variations in soil moisture content). Water fluxes (interception, simulation of transpiration and percolation) were estimated from one year of measurements (1986–1987). Weekly samples of percolated water were taken from March 1986 – March 1987 using lysimetric capsules at 100 cm soil depth. N, P, K, Ca and Mg concentrations were determined to calculate the annual leaching losses. Nutrient concentration values were extrapolated for the whole 4 years observation period, in order to calculate leaching losses for the whole study period. Precipitation samples were also taken to determine the corresponding annual nutrient inputs.  相似文献   

13.
以新化县森林资源为研究对象,基于2014年新化县森林资源二类调查数据,借助Arcgis空间分析,利用生物量转换因子连续函数法计算出不同树种组的碳储量以及碳密度。结果表明:(1)各树种组碳储量的大小排序为:杉木组马尾松组竹木组柏木组慢生阔叶树组中生阔叶树组灌木组国外松组果树组速生阔叶树组食用原料树种组药用树种组杨树组林化原料树种组;(2)各树种组碳密度的大小排序为:中生阔叶树组速生阔叶树组柏木国外松组竹木组杨树组杉木组慢生阔叶树组马尾松组果树组=食用原料树种组=林化原料树种组灌木组药用树种组。  相似文献   

14.
The agroforestry systems of cacao (Theobroma cacao) under laurel (Cordia alliodora) and cacao under poro (Erythrina poeppigiana) were studied at CATIE, Turrialba, Costa Rica. An inventory was taken of the organic matter and nutrients (N, P, K, Ca, and Mg) separating the species into their compartments (leaves, branches, trunks and roots). Studies of the litter and of the mineral soil (0–45 cm) yielded these results: Patterns of nutrient accumulation are discussed in relation to the characteristics of these agroforestry systems.  相似文献   

15.
16.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

17.
With increasing concerns raised by climate change, understanding biological processes within cocoa (Theobroma cacao L.) agroforest (CAF) and fallow systems is a prerequisite for developing actions related to emission reduction in the shifting agricultural landscape of Cameroon. Carbon (C) stocks and accretion were assessed and modeled in various C components (large trees, small trees, dead wood, litter, roots, soil, and total C) of fallow and CAF systems along a 50-year chronosequence. Several functions were empirically fitted to a time series of C stocks. Large tree, soil, and total C stocks were best described by a logistic growth function while that for small trees by a rational quadratic function. The best-fitted functions explained 72–96 % of C stock accumulation over time. Two metrics describing C stock accretion were derived from these functions: the point of maximum C growth and the C growth coefficient (GC). The rate of maximum growth of total C stock was reached after 12–13 years in both fallow and CAF, with maximum GCs of 6.9 and 6.3 Mg C ha?1 year?1, respectively. Over the 50-year period, the GCs of total C stocks varied between 0.2 and 6.9 Mg C ha?1 year?1, with quick accumulation within the first decade that then slowed until it levelled off after 45 years. Over a period of about 30 years, both systems sequestered a total of ~200 Mg C ha?1. This indicates that cocoa agroforests, a main source of income for local populations, can also provide significant climate change mitigation services.  相似文献   

18.
Maize/cassava were intercropped between hedgerows of Senna spectabilis [(DC.) Irwin and Barneby], Flemingia macrophylla [(Willd.) Merrill] and Dactyladenia barteri [(Hook f ex Oliv.) Engl.] for five consecutive years on an Ultisol in southern Cameroon. Crop yields and hedgerow biomass production in the third to fifth year of cropping are reported. S. spectabilis produced more biomass than F. macrophylla and D. barteri in all years. Cumulative maize grain and cassava tuber yields were highest in F. macrophylla alley cropping, outyielding the no-tree control consistently by 42 to 67% (average 56%). Between hedgerows of D. barteri and S. spectabilis, crops yielded 17% and 16% more than the no-tree control, respectively. However, between S. spectabilis hedgerows, yields were highly variable between years (–15% to +35% compared to the no-tree control) and thus the system is at risk of failure. F. macrophylla is recommended for continuous alley cropping of maize/cassava intercrop. The use of D. barteri may require fallow phases for biomass accumulation followed by cropping phases with rigorous pruning. Although this may lead to lower cumulative yields, the products of the fallow phase, such as stakes and firewood, may provide some compensation.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
The Cocoa Research Institute of Ghana has embarked on studies to support the replanting of cacao (Theobroma cacao L) in areas, which previously carried the crop but are now degraded. A key component of the studies is to identify fast growing tree species capable of ameliorating degraded soils and ultimately providing suitable shade for cacao. A screening trial involving ten Albizia species in a randomized complete block design experiment was therefore initiated in 1996 to evaluate growth rate, leaf biomass production, carbon and nitrogen contents and decomposition rates. Over a four-year period, Albizia adenocephala, A. guachapele, A. niopoides, A. plurijuga,A. saman and A. tomentosa showed promising results, with 12.2 to 14.5 m height and between 12.4 and 22.4 cm stem diameter (DBH). Crown diameter ranged between 6.1 and 10.1 m, with light transmission through crowns averaging 50–65% of full sunlight throughout the year. Half-yearly leaf biomass production ranged between 3and 10 t ha–1, yielding between 0.07 and 0.32 t N ha–1 from each coppicing. Half-life for carbon and nitrogen release from leaves of the six species averaged 31.0 and 32.0 days respectively. This short-term release of C and N is an indication of the quality of the leaf prunings. These species can provide early ground cover, appropriate shade, N and organic matter requirements for re-establishing cacao on denuded and degraded lands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号