首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of investigations on the impact of salinity on mineral ion transport in differentially salt susceptible soybeans (“Lee” and “Jackson”) short-term experiments were conducted to elucidate the distribution pattern of Na+ and some other cations. The results showed that low salinity (7.5 mM NaCl) did not induce varietal differences in Na+ content during a 30 hrs uptake period. At 66.5 mM NaCl, however, the Na+ contents increased more in the leaves of the salt sensitive variety “Jackson” than in “Lee”. Both soybean varieties retained Na+ in the proximal root and stem. Furthermore, they extruded considerable amounts of Na+ from the roots to the medium. Increasing the level of salinity in the solution substantially reduced the Ca2+ uptake of both soybean varieties. In an experiment with the salt sensitive variety under constant salinity but increasing Ca2+ concentration in the medium, the plants showed a reduction in Na+ uptake and translocation to stem and leaves and an enhanced Ca2+ uptake and translocation to the shoots. It is suggested that the injury observed in “Jackson” after salt treatment is not only related to the insufficient control of Cl? transport. At higher salinity levels the increasing accumulation of Na+ in the leaves and the varietally independant depression of Ca2+ uptake and translocation may enhance the development of leaf necrosis.  相似文献   

2.
Short-term tracer experiments (36Cl) were conducted with the differentially salt susceptible soybean cultivars “Lee” (moderately tolerant) and “Jackson” (sensitive) to elucidate the pattern of Cl? uptake and translocation in relation to the physiology of salt tolerance. Rates of Cl? uptake by excised roots of “Jackson” were much greater in the lower (0.1–0.5 mM NaCl) and particularly in the higher concentration range than by the more tolerant cultivar. The transfer rate to the shoot was significantly higher in “Jackson” than in “Lee” and increased with time of treatment. The cultivar “Lee” translocated a relatively high amount of Cl? during the onset of salt treatment, but in contrast to “Jackson” was then able to slow down Cl? translocation into the shoot to a degree about proportional to the increment of dry matter. In experiments on secondary translocation both cultivars extruded substantial amounts of 36Cl? to the nutrient solution during the period in inactive solution with constant salinity following labeling. Possibly, some Cl? that had moved into the leaves during labeling was retranslocated and extruded via the roots. The absolute efflux rate was presumably greater for “Jackson” than for “Lee” although it appeared not efficient enough to compensate for the high rate of influx into the root. After 5–6 days of secondary translocation a lesser amount of Cl? was shifted from the root to the shoot in “Lee” as compared with “Jackson”. Chloride accumulation in the upper root and lower stem, similar to that reported for Na+ in several Na+ excluding species, was not observed. From the results it may be concluded that the cultivar “Jackson” cannot sufficiently control the uptake of Cl? and its translocation, particularly into the mature leaves; this contributes causally to the development of severe injury under continuous salt stress.  相似文献   

3.
Abstract

The absorption mechanisms for Na, K, SO4 and Cl were tested in a salt tolerant (PVR 1) and a salt sensitive (GEB 24) rice varieties. The salt tolerant variety accumulated significantly larger amounts of Na than the salt sensitive variety. Further, PVR 1 absorbed SO4 from Na2SO4 in preference to that from K2SO4. The absorption patterns for K and Cl were similar in both the varieties. It is concluded that the capacity of plant species to accumulate greater amounts of Na is a reflection of their halophytic feature.  相似文献   

4.
The relation between activity of soluble acid invertase and sucrose content in leaves of young bushbeans (salt sensitive) and sugarbeets (salt tolerant) and ion‐specific effects of salinity environment were investigated. For comparison the response of isolated invertase from both plant species to ion combination and ion concentration was investigated. The plants were grown in water culture under controlled conditions.

In busbean leaves invertase activity decreased while sucrose increased. K+ with Cl as counterion was most effective “in vivo”;. However, there was little change in invertase activity or sucrose content in sugarbeet leaves. Independent of the origin of the enzyme, invertase activity was not affected by either ion concentration or ion combination “in vitro”;. Acid invertase might be a key enzyme in the utilization of carbohydrates. The ionic effect on acid invertase activity and carbohydrate content in intact plant tissue could be a possible indicator of salt tolerance of crops.  相似文献   


5.
Mineral regulation of two soybean varieties Jackson and Lee was investigated in long term water culture experiments using saline solutions. The effects of extreme K:Na ratios using chloride and sulfate as counterions were studied in the early stages of salinity.

The growth rates of both varieties were not affected by salinization. A K+ stimulated, intensive acropetal Cl translocation was observed in the salt sensitive variety Jackson. The varieties did not differ in Na+ translocation and in the suppression of Ca2+ and Mg2+ in the leaves. But the effect of the nature of salinization indicates already differences in Na uptake and translocation of the cultivars.

The avoidance of Cl, but also of Ha+, in connection with influences of the resulting ionic imbalance on metabolic pathways are probably the most causative factors for the different tolerance to salinity of the two soybean varieties.  相似文献   

6.
Abstract

Ion‐specific initial salt effects due to supply of extreme K+, Na+, Cl or SO4 2‐ combinations were studied on the carbohydrate pattern as well as on the activity of amylases, phosphorylase and invertase of two soybean varieties, Jackson and the more tolerant Lee.

Reducing sugars were little affected. Salinity increased leaf sucrose more in Jackson than in Lee, and more due to Cl? than to SO4 2‐ supply. Salinity increased the higher level of root sucrose in Lee less than the lower sucrose level in Jackson, independent of the nature of salination. Salinity increased leaf starch more in Jackson than in Lee. KCl increased leaf starch of Jackson most, Na2SO4. least. KCl increased leaf starch of Lee more than NaCl, while K2SO4 and Na2SO4 tended to decrease leaf starch. Only KCl stimulated amylases and phosphorylase in leaves of Jackson. Salinity changed amylases according to the starch content in leaves of Lee, while phosphorylase decreased independent of the ion combination supplied. Salinity decreased invertase in leaves of Jackson, it affected invertase in Lee only little.

It is suggested that the carbohydrate metabolism dependent and independent of ionic regulation contribute to physiological salt tolerance mechanisms of soybean varieties.  相似文献   

7.
K+/Na+ and Cl effects on activity of amylases as well as on their isoenzyme pattern in leaves of bushbeans and sugarbeets at the beginning of salinity stress were investigated, in plants grown in water culture under controlled environmental conditions. Alpha‐ and beta‐amylase activity in beans increased, particularly due to K+ and Cl supplied. In sugarbeets amylase activity remained unchanged as a result of K/Na treatment in combination with Cl and decreased using SO4 2‐ as counterion. A direct correlation of amylase activity to the starch content of both species was not detctable. Particularly α‐but also ß‐amylase was most strongly inhibited by KCl “in vitro”. Independent on their origin, amylases from bushbeans and sugarbeets did not show any differences in ionic inhibition “in vitro”. The isoenzyme pattern of the species was different, but no clear ionic effect was detectable. Amylolytic activity is evidently not a causative factor for restricted starch mobilization in leaves under an early salinity stress. It is suggested that amylases are indirectly involved in starch formation via degradation due to a lack of a carbohydrate sink under salinity stress. Differences in salt tolerance of the investigated crops are obviously not related to different “in vitro” properties of amylases.  相似文献   

8.
Wheat (Triticum aestivum L.) line, Saline Agriculture Research Center line 1 (SARC), was selected in a salinity tolerance improvement program at the University of Agriculture, Faisalabad, Pakistan. In this study we compared SARC with Pothowar which is a common wheat cultivar grown in the same region, in order to study the mechanism of salinity tolerance in the SARC line. Two wheat lines were planted in pots and were subjected to salt stress by daily application of a 200 mM NaCI solution for 30 d during the vegetative growth stage. Dry weight of plant parts, leaf area, leaf water status, and solute concentrations in the cell sap of the leaf tissues were determined at 13 and 30 d after initiation of the stress treatment. Decrease in the plant dry weight and leaf area due to salt stress was more pronounced in Pothowar than in SARC, indicating that SARC was more tolerant to salinity. SARC maintained a higher turgor at low leaf water potentials and showed a higher capacity of osmotic adjustment compared to Pothowar. Major osmotic a that increased by salinity in order to maintain a lower osmotic potential in the two lines were Na+, Cl-, K+, and glycinebetaine. Increase in the concentrations of Na+, Cl-, and glycinebetaine was much higher in SARC than in Pothower. These results suggested that the SARC line had a physiological mechanism that conferred a higher salinity tolerance.  相似文献   

9.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

10.
甜高粱耐盐材料的筛选及芽苗期耐盐性相关分析   总被引:13,自引:0,他引:13  
在0、200mmol·L-1NaCl盐浓度下对39个甜高粱材料进行了耐盐性鉴定,并探讨了甜高粱耐盐指标的相关性,以初步筛选的耐盐级别不同的10个甜高粱材料为对象,研究了0、70mmol·L-1、140mmol·L-1、210mmol·L-1NaCl盐浓度对甜高粱芽苗期形态指标及其盐害率的影响,最后利用盐害率的隶属函数值综合评价了10个甜高粱材料的耐盐性。结果发现,"丽欧"、"泰斯"耐盐性最强,"BJK236"、"Mer-72-2"对盐胁迫较敏感。盐胁迫下甜高粱发芽率、发芽指数、发芽势、活力指数、芽长、根长、芽鲜重、根鲜重8个指标均与对照差异显著(P0.05)。随着盐浓度增加,这8项指标的盐害率增大,且与盐浓度均极显著相关(P0.01);其中随着盐浓度的增大,发芽相对盐害率与发芽势、发芽指数、活力指数盐害率的相关性越来越大,由显著相关(P0.05)到极显著相关(P0.01)。综合评价10个甜高粱材料耐盐强弱顺序为:"泰斯""甜132""BJK19""BJK156""考利""吉甜3""威利""凯勒""戴尔""吉甜2"。  相似文献   

11.
The effects of salinity on carbohydrates in leaves and roots of different salt tolerant cotton genotypes Glza 45 (salt tolerant) and Dandara (salt sensitive) during the initial salinity stress are investigated. Changes of starch and sucrose in relation to soluble amylases, phosphorylase and invertase in young leaves are studied. The plants are grown in water culture under controlled conditions.

Starch and sucrose accumulation is rapidly stimulated in leaves of Dandara, particularly due to extreme potassium sulfate supply, while in Giza 45 the amount of starch and sucrose declines except for extreme potassium sulfate treatment. The low sucrose value in roots of Dandara increases extremely, especially as a result of potassium chloride treatment. In contrast, the higher sucrose content in roots of Giza 45 is little affected. Amylase activity changes considerably in positive correlation with the starch content, whereas the low specific activity of phosphorylase is little affected. The sucrose content in the leaves is directly controlled by a high level of invertase activity of both cotton varieties.

Possible interactions of carbohydrate metabolism and genotyplcal ion regulation in response to the different salt tolerance of the genotypes are discussed. It is concluded that genotypical differences in the carbohydrate metabolism could be effective mechanisms for salt tolerance in cotton.  相似文献   


12.
Abstract

Green manure legumes are often used to compare biomass production as well as nitrogen-fixing capacity. Mineral deficiency often limits the symbiotic nitrogen fixation of many legumes, thus limiting their productivity despite their high yielding potential (O’Hara et al. 1988; Flis et al. 1993). Leguminous species require large amounts of P for growth, nodulation, and nitrogen fixation. Consequently, they are often unable to grow in acid soils with low available P. The low P availability in tropical acid soils often arises from fixation of P by Al and Fe in soil. Generally, Al and Fe-phosphates are relatively unavailable to plants (McLachlan 1976; Ae et al. 1990).  相似文献   

13.
An inference technique is developed that allows estimation of the annual and monthly dry deposition of Ca2+, Mg2+, Na+, and K+. Conceptually, this technique is based on the premise that precipitation efficiently scavenges aerosols, resulting in a strong correlation between concentrations within precipitation and the surface-level air. Empirically, it is based on the linear relationship exhibited between the measured surface-level air and precipitation concentrations at 23 stations in Ontario, Canada, for the period 1983–1985. Correlations ranged from 0.513 for K+ to 0.946 for Mg2+. Because of the stochastic nature of such an approach, the assumptions inherent to the concept of scavenging ratios, and therefore this inference technique, must be carefully considered. Under such considerations, annual and monthly dry deposition of alkaline aerosols can be estimated at many locations across North America where precipitation concentrations are routinely measured.  相似文献   

14.
为研究不同生育期大豆品种的氮素积累特性,以10 个在黑龙江省哈尔滨地区生育期不同的大豆品种为试验材料,利用15N 示踪技术,在框栽条件下分析大豆植株全氮累积规律,以及不同氮素来源,即土壤氮、肥料氮和根瘤氮的积累和分配规律。结果表明:不同生育期大豆品种全株和各器官的全氮积累量,除了根部,均表现为晚熟品种>中熟品种>早熟品种,不同生育期品种间差异显著;不同生育期大豆品种土壤氮和肥料氮占全氮比例与生育期负相关,即早熟品种>中熟品种>晚熟品种,不同生育期品种营养器官中土壤氮和肥料氮比例高于荚皮和籽粒;不同生育期大豆品种根瘤固氮量和占全氮比例与生育期正相关,即晚熟品种>中熟品种>早熟品种,根瘤氮主要积累在大豆荚皮和籽粒中,分配到籽粒中的根瘤氮占全株根瘤氮积累量的76.38% ~ 92.25%。本研究为丰富不同生育期大豆品种氮素积累特性及氮肥调控提供数据支持。  相似文献   

15.
Na+,K+-ATPase调节肝再生增强因子促HepG2细胞增殖   总被引:1,自引:0,他引:1  
采用四甲基噻唑盐(M TT)法检验肝再生增强因子(ALR)对H epG 2细胞增殖作用;[3H]-T dR掺入测定细胞DNA合成;采用无机磷比色法测定细胞N a ,K -ATPase的酶活力。结果表明:ALR通过促进H epG 2细胞DNA合成,使细胞增殖,并存在剂量效应正相关性(P<0.01);ALR对N a ,K -ATPase酶活呈剂量时间依赖型影响;奎巴因可以通过抑制细胞N a ,K -ATPase影响ALR对H epG 2细胞增殖促进作用。因此,N a ,K -ATPase能参与调节ALR促进H epG 2细胞的增殖。  相似文献   

16.
Two cultivars of wheat (Triticum aestivum L.) with differential salinity tolerance were compared by evaluating the growth attributes, pigment composition and accumulation of Na+, K+, Zn2+, Fe 2+, Mn 2+ and proline. Wheat cultivars Al-Moiaya (AM) (salt tolerant) and Habbe-Druma (HD) (salt sensitive) were subjected to four levels of salinity (1.21 dS m?1, 4.4 dS m?1, 8.8 dS m?1 and 13.2 dS m?1) in factorial combinations with three drought stress (FC 30%, FC 60% and FC 90%) treatments in a randomized complete block design. Plant dry weight, leaf area ratio (LAR), soluble protein and total chlorophyll (Chl) content were higher in AM than HD. Salt-tolerant AM maintains a higher K+/ Na+ ratio and thereby is able to grow better than the salt-sensitive HD under both the stresses. The lower foliar Na+ in AM resulted in retention of higher Chl content, reflected in the strong positive correlations between plant ion status and Chl contents (Na+-Chl r2 = 0.83; Chl- Fe2+ r2 = 0.76; Zn2+ r2 = 0.93 and Mn2+ r2 = 0.88). In conclusion, our results suggested that the K+/Na+ ratio, exclusion of Na+ and ion homeostasis play much more important roles in the tolerance to salinity and drought stress than the compatible osmolyte, proline.  相似文献   

17.
Salt stress effects were investigated on growth, the carbohydrate levels and the activity of degradative enzymes amylases, phosphorylase and invertase of two soybean varieties, Jackson and the more salt tolerant Lee.

Stress depressed growth of Jackson more than of Lee. Salt stress increased leaf and root sucrose more in Jackson than it did in Lee. Root sucrose was higher in Lee. Stress reduced leaf starch in both. It decreased spec. invertase activity in close negative correlation with the sucrose. Independent from salt tolerance, increased spec. amylase activity was in some correlation with the declined starch level. Stress changed phosphorylase little in both varieties. It is concluded that salt stress‐induced restricted utilization of leaf sucrose, but not foliar starch, could partly be a result of ionic affected degradation, which may diminish survival value of soybean varieties.  相似文献   


18.
This study assessed the relationships between external K+ supply and K+ : Na+ ratios associated with Na+ toxicity in Jatropha curcas. Plants were exposed to increasing external K+ concentrations (6.25, 12.5, 25, 37.5, and 50 mM), combined with 50 mM NaCl in a nutrient solution. Photosynthesis progressively increased as the external K+ : Na+ ratios increased up to 0.75. The increase of photosynthesis and plant dry matter correlated positively with K+ : Na+ in xylem and leaves. The transport rates of K+ and Na+ from roots to xylem and leaves were inversely correlated. These ions presented an antagonistic pattern of accumulation in all organs. Maximum rates of photosynthesis and plant growth occurred with leaf K+ : Na+ ratios that ranged from 1.0 to 2.0, indicating that this parameter in leaves might be a good indicator for a favorable K+ homeostasis under salinity conditions. The higher K+ affinity and selectivity compared with Na+ in all organs associated with higher xylem flux and transport to shoots are essential for maintaining adequate K+ : Na+ ratios at the whole‐plant level. These characteristics, combined with adequate K+ concentrations, allow J. curcas to sustain high rates of photosynthesis and growth even under toxic NaCl levels.  相似文献   

19.
The effects of soybean growth on Cu speciation and distribution in two artificially Cu-contaminated soils (phaiozem, a Mollisol, and burozem, an Alfisol) were investigated using a rhizobox culture system followed by the sequential chemical extraction technique. The rhizosphere soils in the rhizobox were separated with nylon cloth into 11 sections: a central zone (4 mm in width) and ten side rhizosphere subzones (1 mm in width). The Cu fractions in Cu-contaminated phaiozem could be ranked as EXCH (exchangeable Cu)<ACID (HAc extractable Cu)< FeMnOX (bound to Fe–Mn oxides)<OM (bound to organic matter)<RES (residual Cu), and in Cu-contaminated burozem as EXCH< FeMnOX< OM< ACID< RES. Soybean growth resulted in an obvious increase of EXCH-Cu in the rhizosphere soil in the first 4 weeks of incubation, with the biggest increase in the central zone. Compared with the unplanted control soil, the content of ACID-Cu in soybean rhizosphere increased in the first 2–3 weeks of incubation and then decreased towards the end of the experiment (6 weeks). The increasing tendency was also observed in the FeMnOX-Cu fraction during the first 3 weeks and the OM-Cu fraction during the first 4 weeks, and their increments were obviously larger than those of the EXCH-Cu and ACID-Cu fractions. This suggested that more RES-Cu activated by the action of soybean roots was partitioned into the less phytoavailable forms, FeMnOX-Cu and OM-Cu. This may be of a benefit to the normal growth of soybean in Cu-contaminated soils. By the end of cultivation, the content of FeMnOX-Cu decreased, but only a small part of Cu was absorbed by soybean, being most of the Cu loss partitioned into the RES-Cu fraction.  相似文献   

20.
盐分胁迫对不同品种甘薯苗期离子吸收和分配的影响   总被引:1,自引:0,他引:1  
选取3种类型共6个甘薯品种(阜薯062-20,浙紫1号,徐薯18,白尾稍,烟薯25,徐菜1号),比较NaCl(0、85 mmol/L)处理20 d后,盐分对甘薯幼苗离子吸收和分配的影响。结果表明:盐分胁迫抑制甘薯幼苗的生长,以阜薯062-20、浙紫1号、徐薯18受影响相对较轻。盐分胁迫下植株大量积累Na+和Cl-,并抑制Ca2+和K+的积累;地上部Na+、Cl-的积累量明显高于根系。白尾稍、烟薯25、徐菜1号Na+和Cl-含量显著高于其他品种。NaCl处理下,阜薯062-20、浙紫1号、徐薯18甘薯幼苗的K+/Na+略高于白尾稍、烟薯25、徐菜1号;品种间Ca2+/Na+差异不大,但阜薯062-20、浙紫1号、徐薯18的SCa,Na较高。因此,6个甘薯品种中,阜薯062-20、浙紫1号、徐薯18苗期耐盐性表现更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号