首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of investigations on the impact of salinity on mineral ion transport in differentially salt susceptible soybeans (“Lee” and “Jackson”) short-term experiments were conducted to elucidate the distribution pattern of Na+ and some other cations. The results showed that low salinity (7.5 mM NaCl) did not induce varietal differences in Na+ content during a 30 hrs uptake period. At 66.5 mM NaCl, however, the Na+ contents increased more in the leaves of the salt sensitive variety “Jackson” than in “Lee”. Both soybean varieties retained Na+ in the proximal root and stem. Furthermore, they extruded considerable amounts of Na+ from the roots to the medium. Increasing the level of salinity in the solution substantially reduced the Ca2+ uptake of both soybean varieties. In an experiment with the salt sensitive variety under constant salinity but increasing Ca2+ concentration in the medium, the plants showed a reduction in Na+ uptake and translocation to stem and leaves and an enhanced Ca2+ uptake and translocation to the shoots. It is suggested that the injury observed in “Jackson” after salt treatment is not only related to the insufficient control of Cl? transport. At higher salinity levels the increasing accumulation of Na+ in the leaves and the varietally independant depression of Ca2+ uptake and translocation may enhance the development of leaf necrosis.  相似文献   

2.
Short-term tracer experiments (36Cl) were conducted with the differentially salt susceptible soybean cultivars “Lee” (moderately tolerant) and “Jackson” (sensitive) to elucidate the pattern of Cl? uptake and translocation in relation to the physiology of salt tolerance. Rates of Cl? uptake by excised roots of “Jackson” were much greater in the lower (0.1–0.5 mM NaCl) and particularly in the higher concentration range than by the more tolerant cultivar. The transfer rate to the shoot was significantly higher in “Jackson” than in “Lee” and increased with time of treatment. The cultivar “Lee” translocated a relatively high amount of Cl? during the onset of salt treatment, but in contrast to “Jackson” was then able to slow down Cl? translocation into the shoot to a degree about proportional to the increment of dry matter. In experiments on secondary translocation both cultivars extruded substantial amounts of 36Cl? to the nutrient solution during the period in inactive solution with constant salinity following labeling. Possibly, some Cl? that had moved into the leaves during labeling was retranslocated and extruded via the roots. The absolute efflux rate was presumably greater for “Jackson” than for “Lee” although it appeared not efficient enough to compensate for the high rate of influx into the root. After 5–6 days of secondary translocation a lesser amount of Cl? was shifted from the root to the shoot in “Lee” as compared with “Jackson”. Chloride accumulation in the upper root and lower stem, similar to that reported for Na+ in several Na+ excluding species, was not observed. From the results it may be concluded that the cultivar “Jackson” cannot sufficiently control the uptake of Cl? and its translocation, particularly into the mature leaves; this contributes causally to the development of severe injury under continuous salt stress.  相似文献   

3.
Effect of high NaCl concentration in the nutrient medium on transpiration, abscisic acid, cytokinin and proline content of two soybean varieties With the differentially salt-sensitive soybean varieties ?Lee”? and ?Jackson”? the effect of salinization on transpiration, Cl? and Na+ accumulation, and on abscisic acid (ABA), cytokinin and proline content was investigated. Salinization with 75 mM NaCl in the nutrient medium drastically inhibited the transpiration (about 40%) of both varieties but more so with the variety ?Jackson”?. Nevertheless this variety translocated substantially more Cl? into the shoot than ?Lee”?. However, ?Lee”? accumulated more Cl? into the roots and thus was able to effectively protect the shoot against a toxic Cl? concentration. The Na+ distribution in the roots and shoots was nearly the same in both varieties. The ABA content of the leaves of both varieties increased 5-fold to 1200 ng × g? dry weight after 48 h of salt stress. About the same time transpiration of the salt-stressed plants reached a minimum. Between 48 and 168 h the ABA content of ?Lee”? dropped to about half. The ABA level in ?Jackson”? remained higher which indicated that the shoot was stressed more intensely and/or longer. The results do not imply a causal relationship between the ABA concentration in the leaves and the exclusion of C1? from the shoot of ?Lee”?. The cytokinin concentration of the two soybean varieties was not significantly affected by salinization. The proline content in the leaves increased markedly with salt stress in both varieties but much more so in ?Jackson”?. Proline content in the leaves increased from about 1.8 μmoles × g?1 dr. w. before salt stress to 24.7 μmoles × g?1 dr. w. after 168 h of stress. However, the proline concentration dropped to nearly the initial level within 48 h after a 120 h salt stress treatment was discontinued and the plants were returned to a control solution. In ?Lee”? salinization only doubled the amount of proline found initially. The highest value was observed after 120 h of salinization.  相似文献   

4.
Abstract

Ion‐specific initial salt effects due to supply of extreme K+, Na+, Cl or SO4 2‐ combinations were studied on the carbohydrate pattern as well as on the activity of amylases, phosphorylase and invertase of two soybean varieties, Jackson and the more tolerant Lee.

Reducing sugars were little affected. Salinity increased leaf sucrose more in Jackson than in Lee, and more due to Cl? than to SO4 2‐ supply. Salinity increased the higher level of root sucrose in Lee less than the lower sucrose level in Jackson, independent of the nature of salination. Salinity increased leaf starch more in Jackson than in Lee. KCl increased leaf starch of Jackson most, Na2SO4. least. KCl increased leaf starch of Lee more than NaCl, while K2SO4 and Na2SO4 tended to decrease leaf starch. Only KCl stimulated amylases and phosphorylase in leaves of Jackson. Salinity changed amylases according to the starch content in leaves of Lee, while phosphorylase decreased independent of the ion combination supplied. Salinity decreased invertase in leaves of Jackson, it affected invertase in Lee only little.

It is suggested that the carbohydrate metabolism dependent and independent of ionic regulation contribute to physiological salt tolerance mechanisms of soybean varieties.  相似文献   

5.
Effect of abscisic acid in the root medium on Cl? translocation in soybeans under low and high salt conditions With soybeans of the varieties ?Lee”? and ?Jackson”? the effect of abscisic acid (ABA) applied to the root medium in different concentrations (10?4, 10?5 and 10?6M) on Cl? translocation was investigated. Under low salt conditions (0,5 mM NaCl) ABA, depending on its concentration, strongly decreased Cl? translocation to the shoot. At the highest ABA concentration, within 24 h the Cl? content of the shoots was reduced to about 40 % of the control, the Cl? accumulation within the roots was reduced about 25 %. However, the 10?5 and the 10?6M ABA treatment increased Cl? accumulation in the roots but decreased Cl? translocation to the shoot. Under high salt conditions (75 mM NaCI) ABA had no measureable effect on CI- translocation to the shoot. It was found that the genetic mechanism responsible for high CI- accumulation within the roots of ?Lee”? and high CI- translocation to the shoot of ?Jackson”? was not affected by ABA. ABA strongly inhibited transpiration. High ABA concentration in combination with low salt treatment decreased the transpiration rate up to 50 % of the control. ABA also inhibited transpiration under high salt conditions. This result is discussed considering the fact, that ABA added to the highly saline nutrient solution did not decrease the CI- translocation to the shoot. An investigation using 14C-ABA showed, the radioactive substance was taken up by the roots and translocated to the shoot independently from the salt treatment. The metabolism of the radioactive substance was different for roots and leaves. However, no difference could be observed by comparing the two soybeans varieties with or without salt treatment.  相似文献   

6.
Abstract

To assess whether grafting raised the salt tolerance of cucumber seedlings by limiting transport of Na+ to the leaf and to test whether the salt tolerance of grafted plants was affected by the shoot genotype, two cucumber cultivars (“Jinchun No. 2”, a relatively salt-sensitive cultivar, and “Zaoduojia”, a relative salt-tolerant cultivar) were grafted onto rootstock pumpkin (Cucurbita moschata Duch. cv. “Chaojiquanwang”, a salt-tolerant cultivar). Ungrafted plants were used as controls. The effects of grafting on plant growth and ion concentrations were investigated under NaCl stress. Reductions in the shoot and root dry weights, leaf area and stem diameter of grafted plants were lower and concentrations of K+ and Cl? in the leaves were higher than those of ungrafted plants under the same NaCl stress. The Na+ concentration and Na+/K+ ratio in scion leaves and in the stems of grafted plants were lower, whereas those in rootstock stems and roots were higher than in ungrafted plants under the same NaCl stress. Shoot and root dry weight, leaf area and stem diameter were negatively correlated with leaf Na+ concentrations and Na+/K+ ratio, but were positively correlated with leaf K+ concentrations. The Na+ concentrations and Na+/K+ ratio were lower, whereas the K+ concentrations in the leaves of grafted “Zaoduojia” plants were higher than those in grafted “Jinchun No. 2” plants under the same NaCl stress. The reductions in leaf area and stem diameter of grafted “Jinchun No. 2” plants were more severe than those of grafted “Zaoduojia” plants. These results indicate that: (1) the higher salt tolerance of grafted cucumber seedlings is associated with lower Na+ concentrations and Na+/K+ ratio and higher K+ concentrations in the leaves, (2) grafting improved the salt tolerance of cucumber seedlings by limiting the transport of Na+ to the leaves, (3) the salt tolerance of grafted cucumber seedlings is related to the shoot genotype.  相似文献   

7.
The effect of alkali stress on crop production has gained importance around the world. Avocado (Persea americana Mill.) is considered a salt-sensitive species, but the effect of alkaline water on avocados has not been sufficiently studied. Plant growth, leaf damage, and chemical analysis were evaluated in response to alkali salt (NaHCO3) and neutral salt (NaCl) stresses on six clonally propagated avocado rootstocks. All plants exhibited exclusion mechanisms by the accumulation of Na+ and Cl? in their root systems, Na+ was concentrated to a greater extent than Cl?. The accumulation of Na+ in the leaves was greater when applied as NaHCO3 compared to the NaCl treatment. Although Cl? toxicity is more commonly observed under usual field conditions, in our experiments when Na+ reached the leaves it caused nearly two times more leaf necrosis.  相似文献   

8.
Abstract

Groups of “Kallar”; grass plants were subjected to various treatments of 100 mM NaCl simultaneously labelled with 22Na+ and 36Cl?. On the basis of the specific activity, the distribution of Na and Cl? in the tissue was followed during and after treatment, i.e. after transfer of some groups to an identical but inactive solution. Sequential collections of leaf washes showed that both Na and Cl? were extruded at a somewhat constant rate. Leaf sheaths accumulated more Na+ and Cl? than the leaf blades and the amounts of Na+ and Cl? in the leaf sheaths as a percentage of their total plant content (i.e. 28% and 31%) approximated the amounts of Na and Cl? extruded by the leaves (i.e. 23%). Moreover, almost equivalent amounts of Na+ (21%) and Cl? (29%) were removed by root efflux which continued even several days after transfer of the plants to the inactive, saline solution. Part of the Na+ and Cl? was retranslocated from the tops to the roots and was attributed to phloem export.

Tolerance of Kallar grass to NaCl was thus related to preventing the tissue from accumulating high concentration by extrusion of both Na+ and Cl? by the leaves and their efflux by the roots in addition to an equivalent retention in the leaf sheaths.  相似文献   

9.
Olive (Olea europaea L cv. Leccino and cv. Frantoio) plants grown in aeroponic cultivation system were supplied with Hoagland solutions containing 0 and 150 mM NaCl for 4 weeks. Sodium (Na+), chloride (Cl), and potassium (K+) concentration was measued on 15‐day‐old leaves and K+/Na+ selectivity ratio was calculated. Plant water relations were estimated on the same leaves by measuring leaf bulk water and osmotic potentials, and by calculating leaf turgor pressure. Root and leaf tissues were also analysed for lipid composition, estimating free sterol (FS), glycolipid (GL) and phospholipd (PL) content. The salt‐sensitive Leccino accumulated more Na+ and Cl in the leaves and showed a lower K+/Na+ selectivity ratio than the salt‐tolerant Frantoio. The FS/PL ratio and the content of GL (namely mono‐galactosyldiglyceride, MGDG) in the roots were related to the salt accumulation in the shoot. Salinity‐induced changes on root lipids were more important in Frantoio than in Leccino, indicating the specific role of the roots in salt exclusion mechanisms. Conversely the effect of salinity on leaf lipid composition was more important in the leaves of the salt‐sensitive Leccino.  相似文献   

10.
Abstract

The time sequence of uptake and distribution of labelled Na and Cl in osmotically adjusted “Kallar”; grass was studied at low (10 mM) and moderately high salinity (100 mM) in nutrient solutions. Increasing NaCl raised the concentrations of Na+ and Cl in the tissue of tops and roots but had little or no effect on plant growth. On the leaves no toxic symptoms were obvious, not even in plants grown at salt stress of 200 mM NaCl. In all treatments, the young and the old leaves extruded 30–60% and 30–70% of their total Na+ and Cl. As the amounts of Na+ and Cl in the tissue increased with time, their extrusion also increased, however, as a proportion of the total Na+ and Cl it did not change much with time. Autoradiographs revealed that the extruded salts were distributed equally on the upper and lower surface of all leaves, parallel to veins. There seemed to be a more intense distribution of Na+ and Cl in the leaf sheaths as well as in the apical region of the roots. However, the net transfer rates, even after only 6 hours of uptake, did not indicate a strong retention mechanism in the roots.  相似文献   

11.
There is a paucity of information on the critical content, threshold levels, uptake, transport, and accumulation of sodium (Na+) and chloride (Cl?) ions in young sunflower plants. Effect of salinity was analyzed in root, stem, leaves, and buds by raising plants in fine sand irrigated with Hoagland's solution and supplemented with 10–160 mM sodium chloride (NaCl) for 30 days. Maximum sensitivity index, reduction in growth, and water content were observed in buds. Maximum Na+ and Cl? contents were obtained in old leaves and stems under low salinity but in roots at high salinity. Uptake, transport, and accumulation rate of Cl? were more than those of Na+, and for both ions they increased with increasing NaCl concentration but decreased with increasing exposure time. Growth reduction at low salinity seems to be because of Cl? toxicity, but Na+ toxicity and water deficiency could also be the causes at high salinity.  相似文献   

12.
Two varieties of durum wheat (Om Rabiaa and Karim), were analyzed and evaluated in the presence of increasing doses of NaCl (0, 100, 200 and 300?mM) in which we added different concentrations of nitrate (0.1, 3, 10?mM). The data obtained showed that presence of NaCl in the culture medium induces the increase of the salt accumulation levels (Na+, Cl?) and reduces the levels of K+ and NO3? in the cultivar Om Rabiaa. In Karim variety, ions that have been heavily accumulated following exposure to NaCl are Na+ and K+ while low levels of NO3? and Cl? have been detected. Those findings highlight the difference in the salinity tolerance of durum wheat cultivars also depending on nitrogen (N) availability, Karim cultivar being less sensitive to NaCl treatment than Om Rabiaa. These data also suggested a relationship between salt tolerance capacity and enhancement of nitrogen and carbon metabolisms enzyme activity.  相似文献   

13.
ABSTRACT

The present work was aimed at determining the limits of tolerance to sodium chloride (NaCl) of a halophyte, Beta macrocarpa Guss (wild Swiss chard). Five week-old plants were cultivated with a nutritive solution to which was added 0, 100, 200, and 300 mM NaCl. Plants were harvested after four weeks of treatment. The growth (fresh and dry weight, leaf surface area, and leaf number), water contents, and the mineral composition (meq · g?1 DW) of roots and leaves (reduced nitrogen (N), K+, Ca2 +, Na+, Cl?) were determined on individual plants. Results show that Beta macrocarpa can tolerate up to 200 mM NaCl. A significant decrease in biomass production (to 50% of control) was observed only for 300 mM NaCl. In the latter treatment, leaf mean surface area was 25% of control. The shoot-to-root ratio was not changed. Leaf hydration was not modified by salt treatment. This ability of the plant to maintain the hydric equilibrium of its leaves seemed associated with an efficient intracellular compartmentalization of Na+ and Cl? ions. Salt treatment had little effect on N content (80% of control), but decreased significantly K+ and Ca2 + contents. These three essential elements could be limiting for growth of leaves and roots of plants challenged by NaCl.  相似文献   

14.
Mineral regulation of two soybean varieties Jackson and Lee was investigated in long term water culture experiments using saline solutions. The effects of extreme K:Na ratios using chloride and sulfate as counterions were studied in the early stages of salinity.

The growth rates of both varieties were not affected by salinization. A K+ stimulated, intensive acropetal Cl translocation was observed in the salt sensitive variety Jackson. The varieties did not differ in Na+ translocation and in the suppression of Ca2+ and Mg2+ in the leaves. But the effect of the nature of salinization indicates already differences in Na uptake and translocation of the cultivars.

The avoidance of Cl, but also of Ha+, in connection with influences of the resulting ionic imbalance on metabolic pathways are probably the most causative factors for the different tolerance to salinity of the two soybean varieties.  相似文献   

15.
This study was attempted to assess the extent of toxicity contributed by Na+ and/or Cl? ions individually, besides their possible additive effects under NaCl using physiological and biochemical parameters. Despite the fact that most annual plants accumulate both Na+ and Cl? under saline conditions and each ion deserves equal considerations, most research has been focused on Na+ toxicity. Consequently, Cl? toxicity mechanisms including its accumulation/exclusion in plants are poorly understood. To address these issues, effects of equimolar (100 mM) concentrations of Na+, Cl? and NaCl (EC ≈ 10 dS m?1) were studied on 15-day-old seedlings of two rice cultivars, Panvel-3 (tolerant) and Sahyadri-3 (sensitive), using in vitro cultures. All three treatments induced substantial reductions in germination rate and plant growth with greater impacts under NaCl than Na+ and Cl? separately. Apparently, salt tolerance of Panvel-3 was due to its ability to exclude Na+ and Cl? from its shoots and maintaining low (<1.0) Na+/K+ ratios. Panvel-3 exhibited better vigour and membrane stability indices coupled with lower reactive oxygen species and lipid peroxidation levels, besides stimulated synthesis of proline, glycine betaine and ascorbic acid. Overall, the magnitude of toxicity was observed in NaCl > Na+ > Cl? manner. Though Cl? was relatively less toxic than its countercation, its effect cannot be totally diminished.  相似文献   

16.
The salinity tolerance of nine grape genotypes was studied. Salinity was applied as nutrient solutions containing 0, 25, 50, and 100 mM sodium chloride (NaCl) for two weeks. Growth was significantly reduced by salinity, whereas chloride (Cl?) and sodium (Na+) contents increased. Sodium ion accumulation exceeded that of Cl? in all treatments. Shirazi and H6 had higher and lower Cl? concentrations in their lamina than others. There were significant positive correlations (P < 0.01) between Cl? and Na+ and negative correlation between Na+ and potassium (K+) in roots and laminas of all genotypes. Soluble sugars, proline, and glycine betaine contents increased in laminas of all of the genotypes with moderate salinity. There were positive correlations (P < 0.01) between lamina and root Na+ and Cl? contents and compatible solutes in all genotypes. Overall results revealed that unlike Shirazi with higher Na+ and Cl? accumulation in shoot, H6 showed a higher capacity to restrict Na+ and Cl? transport to shoot.  相似文献   

17.
18.
《Journal of plant nutrition》2013,36(8):1365-1374
ABSTRACT

Salt tolerance of Arthrocnemum macrostachyum (Moric.) C. Koch (Chenopodiaceae), a stem-succulent halophyte most commonly found in the intertidal regions of the provinces of Sind and Balochistan, Pakistan, was investigated. Plants were grown for 125 d at six sodium chloride (NaCl) concentrations from 0 to 1000 mM to determine the effects of salinity on ion accumulation, plant water status, and biomass. Shoot biomass was greatest at 200 to 400 mM NaCl, but it was inhibited at salinities of 600 mM NaCl or higher. Tissue water content (g g?1dry mass) of shoots under 200 to 600 mM NaCl treatments was higher than under the control nutrient solution, equal to the control at 800 mM NaCl, but significantly lower at 1000 mM NaCl than under all other treatments, indicating an increase in shoot succulence at salinity levels up to that of seawater. Ash content increased with added salt, but was about 60% of plant dry mass under all salinity treatments. The Na+ and Cl? concentrations of shoots were significantly higher under 1000 mM NaCl than under the control treatment. These results indicate that A. macrostachyum is salt tolerant and capable of accumulating large quantities of Na+ and Cl? when treated with from 200 to 1000mM NaCl.  相似文献   

19.
Abstract

Superoxide dismutase (SOD) pattern, catalase, Cyt c oxidase and fumarase activity were studied in leaves of Phaseolus vulgaris and Vigna unguiculata plants growth in two sodium chloride (NaCl) concentrations (35 mM and 100 mM). In bean plants growth with NaCl, leaf chloride (Cl?) contents were higher than in control plants, and the same was found for sodium (Na+) and potassium (K+) contents, although to a lesser degree. In cowpea leaves, Na+ and Cl? had a similar increase due to salt‐growth conditions. Under salinity, all changes in the antioxidant (SOD and catalase) enzymes levels were smaller in bean than in cowpea plants. In Phaseolus at 15 days growth, Cu, Zn‐SOD I showed an increase by the effect of salt treatment, but this induction did not occur at 30 days growth, and both Mn‐SOD and Cu, Zn‐SOD II did not show variations due to salt‐stress. In Vigna, Mn‐SOD was decreased by salinity but this was compensated by an increase in Cu, Zn‐SOD I activity in plants at 30 days growth, whereas in young leaves under saline conditions, both isozymes were also decreased. Likewise, there was a rise in cytochrome c oxidase and fumarase activity in leaves of NaCl‐treated plants compared to the control. The activity changes observed are discused in term of their possible relevance to plant sensitivity to saline conditions.  相似文献   

20.
Physiological responses to salt stress were investigated in two cotton (Gossypium hirsutum L.) cultivars (Pora and Guazuncho) grown hydroponically under various concentrations of NaCl. Dry matter partitioning, plant water relations, mineral composition and proline content were studied. Proline and inorganic solutes were measured to determine their relative contribution to osmotic adjustment. Both leaf water potential (Ψw) and osmotic potential (Ψs)decreased in response to NaCl levels. Although Ψwand Ψs decreased during salt stress, pressure potential Ψp remained between 0.5 to 0.7 MPa in control and all NaCl treatments, even under 200 mol m?3 NaCl. Increased NaCl levels resulted in a significant decrease in root, shoot and leaf growth biomass. Root / shoot ratio increased in response to salt stress. The responses of both cultivars to NaCl stress were similar. Increasing salinity levels increased plant Na+ and Cl?. Potassium level remained stable in the leaves and decreased in the roots with increasing salinity. Salinity decreased Ca2+ and Mg2+ concentrations in leaves but did not affect the root levels of these nutrients. The K/Na selectivity ratio was much greater in the saline treated plants than in the control plants. Osmotic adjustment of roots and leaves was predominantly due to Na+ and Cl? accumulation; the contribution of proline to the osmotic adjustment seemed to be less important in these cotton cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号