首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
Carboanhydrase activity and extractable zinc as indicator of the zinc supply of plants 1. Maize, millet, tobacco, sugar-beet and vine were grown under controlled environmental conditions with different zinc concentrations in the substrate. Plant growth, zinc and phosphorus content of the dry matter, extractable zinc and carbonic anhydrase activity in the leaves were measured. 2. Increasing supply of zinc to strongly zinc deficient plants resulted in a marked increase of growth, whereas total zinc content of the leaf dry matter was only slightly and carbonic anhydrase activity was strongly affected. In extremely zinc deficient plants carbonic anhydrase activity was close to zero even though the zinc content of the dry matter was higher than 10 μg/g. Therefore carbonic anhydrase activity appears to reflect the amount of physiologically active zinc in the leaf tissue. It seems to be useful to decide critical cases even at latent zinc deficiency. 3. The P/Zn ratio is also an indicator of zinc supply when plants are extremely zinc deficient, but not under latent deficiency. Moreover the P/Zn ratio can vary in a wide range when plants are well supplied with zinc. 4. The zinc concentration of aqueous leaf extracts increased with increasing level of zinc. 2-3 μg Zn/ml extract were found to be sufficient for all plant species used and all conditions of growth applied. Apparently, the Zn-concentration of the aqueous leaf extract is a better parameter of zinc supply than total zinc or carbonic anhydrase activity which, in addition, is much more difficult to determine.  相似文献   

2.
利用螯合–缓冲营养液对小麦苗期磷–锌关系的研究   总被引:1,自引:0,他引:1  
采用螯合缓冲营养液培养技术(Chelator-buffer culture solution),对小麦幼苗植株的磷锌营养进行了探讨。结果表明,高磷条件下小麦出现的缺锌黄化与磷中毒症状之间存在着明显区别,本研究结果支持高磷条件下作物出现的黄化是锌缺乏症状而非磷中毒的观点。与缺磷相比,正常供磷促进了小麦的生长,但过量磷对小麦生长有阻碍作用,而且锌的供应加剧了促进或抑制的程度。正常供应磷、锌条件下,小麦幼苗根系或地上部的磷、锌含量、吸收量及转运率均处于相对较高的水平,其余各处理则因为磷或锌供应量不适宜而使植株的磷、锌营养受到不同程度的影响。另外,磷锌相互拮抗的作用方式及大小程度不同:磷主要影响小麦根系对锌的吸收,而锌对小麦磷营养的影响主要是通过对其从根系向地上部转运的抑制来实现的;磷对锌的影响要明显大于锌对磷的影响,磷素水平在小麦的磷、锌营养平衡中起着更为重要的作用。磷锌拮抗作用只在双方供应不适宜的情况下发生,而且相互作用的方式及程度存在明显差异。  相似文献   

3.
Application of most waste or by‐product material increases the zinc (Zn) concentration in soils markedly. This investigation was conducted to determine if enhanced sulfur (S) supplied as sulfate (SO4) would modify the toxic effects of excess Zn. Soybean (Glycine max [L.] Merf. cv. Rarisorri) was grown for two weeks in nutrient solutions containing ranges in Zn (0.8 to 80 μM) and S (0.02 to 20 mM). Root and shoot conditions were observed, dry weights measured, and Zri concentration determined. Zinc‐toxicity symptoms started about one week after transplanting young plants to nutrient solutions. Symptoms including chlorosis, especially in the trifoliate leaves, and change in orientation of unifoliate leaves were mild in 20 μM‐, intermediate in 40 μM‐, and severe in 80 μM Zn‐containing solutions. Dry weight was reduced in plants exposed to 20, 40, and 80 μM Zn. Plants grown in 40 μM Zn and 20 mM S survived longer than those grown in lower S concentrations and showed alleviation of the chlorosis in trifoliate leaves. The change in the orientation of the unifoliate leaves due to Zn toxicity, however, was not affected by S. Zinc contents in shoots grown at toxic Zn levels were higher in 20 mM‐ than in lower S‐containing nutrient solutions. High S supply (20 mM) increased Zn translocation from roots to shoots. Besides increasing the Zn translocation from roots to shoots, it seems that S nutrition may also be a factor helping the plants to cope with high levels of Zn in their tissues.  相似文献   

4.
《Journal of plant nutrition》2013,36(12):1861-1870
A short term experiment with tomato (Lycopersicon esculentum) cvs. Blizzard, Liberto, and Calypso was carried out in a controlled temperature room to investigate the effectiveness of phosphorus (P) and iron (Fe) supplemented in nutrient solution on plant growth at high zinc (Zn) (77.0 μmol L?1). Zinc concentrations in complete nutrient solution were either 7.7 or 77.0 μmol L?1. One week after application of high Zn, supplementary P and Fe at 1 and 0.05 mmol L?1respectively were added into nutrient solution for three weeks. There were significant reductions in both dry weights and chlorophyll contents in the plants grown at high (77.0 μmol L?1) Zn compared with those in the control treatment for all three cultivars. Application of supplementary P and Fe resulted in marked increases in both dry weight and chlorophyll concentrations for all three cultivars achieving values not significantly different to the control. Zinc concentration in plant tissues increased to toxic levels for all three cultivars in the high Zn treatment. Application of supplementary P and Fe decreased Zn concentration in the leaves and roots of plants grown at high Zn, but Zn concentrations were still at toxic levels. Phosphorus and Fe concentration in leaves declined to a deficient level in the high Zn treatment, but was markedly increased in the roots. Application of supplementary P and Fe corrected both P and Fe deficiencies in leaves of plants grown at high Zn and reduced root P and Fe concentrations.  相似文献   

5.
不同水分状况下施锌对玉米生长和锌吸收的影响   总被引:3,自引:3,他引:3  
选择潮土(砂壤)和土(粘壤)两种质地不同的土壤,进行盆栽试验,研究不同土壤水分条件下施锌对玉米生长和锌吸收的影响。结果表明,施锌显著增加了玉米植株根、茎、叶以及整株干物质重;缺锌条件下玉米植株根冠比、根叶比和根茎比趋向增大。施锌显著提高了玉米植株各器官中锌的浓度和吸收量,并明显促进锌向地上部运移。干旱胁迫抑制了玉米植株生长,根冠比、根茎比、根叶比增大;随着土壤水分供应增加,植株生长加快,各器官生物量以茎和叶增加大于根。水分胁迫下,在潮土上玉米叶片中锌浓度上升;在土上叶片中锌浓度下降。但增施锌后,根和茎锌浓度增加幅度较大,叶片增加幅度较小;施锌和水分胁迫对根和茎锌浓度的交互作用极显著。水分胁迫下,玉米植株对锌的吸收总量减少。水分胁迫和锌肥施用对玉米叶片、茎锌吸收量的交互作用十分显著,但对根锌吸收量的交互影响不显著。  相似文献   

6.
A typical symptom of iron (Fe) deficiency in plants is yellowing or chlorosis of leaves. Heavy metal toxicity, including that of zinc (Zn), is often also expressed by chlorosis and may be called Fe chlorosis. Iron deficiency and Zn toxicity were evaluated in soybean (Glycine max [L.] Merr.) at two levels each of Zn (0.8 and 40 μM), Fe (0 and 20 μM), and sulfur (S) (0.02 and 20 mM). Reduction in dry matter yield and leaf chlorosis were observed in plants grown under the high level of Zn (toxic level), as well as in the absence of Fe. Zinc toxicity, lack of Fe, and the combination of these conditions reduced dry matter yield to the same extent when compared to the yield of the control plants. The symptoms of Zn toxicity were chlorosis in the trifoliate leaves and a lack of change in the orientation of unifoliate leaves when exposed to light. The main symptoms of Fe deficiency were chlorosis in the whole shoot and brown spots and flaccid areas in the leaves. The latter symptom did not appear in plants grown with Fe but under Zn toxicity. It seems that Fe deficiency is a major factor impairing the growth of plants exposed to high levels of Zn. Under Zn toxicity, Fe and Zn translocation from roots to shoots increased as the S supply to the plants was increased.  相似文献   

7.
Macro- and Microsymptoms of Zinc Deficiency in Higher Plants The development of zinc deficiency symptoms was studied in eight different plant species grown under controlled experimental conditions in soilless sulture. The following results were obtained. One symptom of zinc deficiency was found to be the development of a violet to red colouring matter which first appeared in the form of small dots or as spots of discolouration which later covered the entire leaf. This discolouration was found primarily in young but already completely developed leaves. Here, the symptoms started to devlop in single cells. Further symptoms of zinc deficiency were observed to be a retarded growth, short internodes, small leaves and a very poor formation of roots.  相似文献   

8.
Boron deficiency and Boron toxicity in Hibiscus esculentus The development of symptoms in Okra under conditions of B-deficiency and B-toxicity was observed. It was compared if the symptoms correspond with the B-contents and the growth of the plants. Symptoms of Boron deficiency in Okra are the same as in the other annual dicotyledons. The first visible microscopical symptom is a disturbance in the cambium region. Characteristic is an enlargement of the cambium. New divided cells do not differentiate. Visual symptoms are breaking of stems and petioles, thickening of these organs, cracking, dying of the tips and falling of buds. With a periodic supply of Boron correlations between Boron content and deficiency symptoms were not found. In the B-toxicity range small yellow chlorosis developed on the margins of the older leaves. These symptoms are not to be used for diagnosis. Boron contents higher than 72 μg B/g DM gave a better measure for B-toxicity. Growth and development of symptoms were in agreement with the high Boron contents.  相似文献   

9.
不同供锌水平对苹果幼树干物质和锌积累及分配的影响   总被引:6,自引:2,他引:4  
采用盆栽砂培试验,研究了低、中、高3个供锌水平(Zn 0.013、0.254和5.070 mg/L)对苹果幼树干物质和锌积累、分配动态的影响。结果表明,锌的过量及缺乏均对果树的生长及养分吸收产生影响。生长初期,苹果幼树根系活动较晚,枝叶的快速生长主要利用根茎中的养分,锌的积累量呈快速增加趋势,处理间差异显著;低锌处理,除根系明显增加外,其他器官变化较小,根系的锌分配比例明显高于中锌、高锌处理。说明生长后期,低锌、高锌抑制了树体的生长,且低锌处理的树体锌主要分布于地下,上运明显受阻;而中锌、高锌处理,地上部锌含量要高于根系。  相似文献   

10.
Abstract

Critical values of zinc (Zn) concentration in young leaves Here established for the diagnosis of Zn deficiency in peanut by examining the relationship of Zn concentration in leaves to shoot dry matter (DM) at two growth stages of plants grown in pots of Zn deficient sand at seven levels of Zn supply (0, 67, 133, 200 267, 533, and 1067 μg Zn/kg soil). Zinc deficient peanut accumulated reddish pigments in stems, petioles and leaf veins in addition to the more common symptoms of Zn deficiency in plants. Zinc concentrations increased with increasing Zn supply in the blades of the youngest fully expanded leaf (YFEL) and in the blades of the leaves immediately older (YFEL+1) and younger (YFEL‐1) than it: they also increased with increasing Zn supply in the petioles of the YFEL+1 and YFEL and in the basal stem internode but their Zn concentrations Here always much lower than those in the blades. Critical Zn concentrations in the blades of the YFEL and YFEL+1 Here 8–10 mg Zn/kg DM at early pegging and mid pod filling: values for YFEL‐1 were similar but more variable. The blade of the YFEL is recommended for diagnosis of Zn deficiency in peanut and 8–10 mg Zn/kg DM as its critical value.  相似文献   

11.
The aim of this study was to induce symptoms of zinc deficiency and Zn excess and to relate the generation of reactive oxygen species (ROS) and the altered cellular redox environment to the effects of Zn stress in mulberry (Morus alba L.) cv. Kanva‐2 plants. The antioxidative responses of Zn‐stressed mulberry plants were studied by determining malondialdehyde content (MDA, a measure of lipid peroxidation) as indicator of oxidative damage and the ratio of dehydroascorbate (DHA) to ascorbic acid (AsA) as an index of the cellular redox state. The Zn‐deficiency effects appeared as faint paling and upward cupping of the young emerging leaves. The paling intensified with time, and affected leaves finally developed necrotic spots. At advanced stage of Zn deficiency, newly emerged leaves were spindle‐shaped, pale, and small in size. Apart from their stunted appearance, the plants supplied excess Zn did not show any specific visible symptom. Leaf water status of mulberry plant was affected in Zn‐stressed plants. Deficient leaves had decreased water potential (Ψ) and specific water content (SWC), contained less tissue Zn, less chloroplastic pigments, and high tissue Fe and Mn concentrations. However, excess supply of Zn was found to increase Ψ and decrease tissue Fe. Both hydrogen peroxide and MDA accumulated in leaves of Zn‐stressed plants. While the concentration of DHA did not vary in Zn‐deficient leaves, it was increased in leaves of plants supplied excess Zn. The ratio of the redox couple (DHA to AsA) was increased both in Zn‐deficient or Zn‐excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), and ascorbate peroxidase (EC 1.11.1.11) increased in Zn‐stressed plants. The results suggest that deficiency or excess of Zn aggravates oxidative stress through enhanced generation of ROS and a disturbed redox homeostasis in mulberry plants.  相似文献   

12.
Abstract

A hydroponic experiment was conducted in a phytotron at pH 5.5 to study the effects of nickel (Ni) on the growth and composition of metal micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), of barley (Hordeum vulgare L. cv. Minorimugi). Four Ni treatments were conducted (0, 1.0, 10, and 100 μM) for 14 d. Plants grown in 100 μM Ni showed typical visual symptoms of Ni toxicity such as chlorosis, necrosis of leaves, and browning of the root system, while other plants were free from any symptoms. Dry weights were the highest in plants grown in 1.0 μM Ni, with a corresponding increase in the chlorophyll index of the plants, suggesting that 1.0~10 μM Ni needs to be added to the nutrient solution for optimum growth of barley plants. The increase of Ni in the nutrient solutions increased the concentrations of Cu and Fe in roots, while a decrease was observed in shoots. The concentrations of Mn and Zn in shoots and roots of plants decreased with increasing Ni supply in the nutrient solution. Shoot concentrations of Cu, Fe, Mn, and Zn in plants grown at 100 μ M Ni were below the critical levels for deficiency. Plants grown at 1.0 μ M Ni accumulated higher amounts of Cu, Fe, Mn and Zn, indicating that nutrient accumulation in plants was more influenced by dry weights than by nutrient concentrations. The translocation of Cu and Fe from roots to shoots was repressed, while that of Mn and Zn was not repressed with increasing Ni concentration in the nutrient solution.  相似文献   

13.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

14.
The diagnosis of Zn deficiency in cotton by means of total analysis or the appearance of deficiency symptoms is unsatisfactory. In order to obtain a better understanding of the development of Zn deficiency symptoms in relation to Zn content cotton plants were cultivated in waterculture under reproducible environmental conditions and Zn deficiency induced by different means. It was observed that deficiency symptoms developed equally, regardless of the inducing factors such as low Zn in the nutrient solution, high nutrient solution pH, high Ca and high Fe supply. High amounts of P in the nutrient solution did not induce Zn deficiency symptoms. Zn deficiency symptoms appeared first as interveinal chlorosis in the medium-aged leaves. The internodes remained short. Later red spots appeared on the leaf blades. The leaves suffering from deficiency were thicker because of enlarged palisade cells. The total Zn content of the leaves did not correlate with the symptoms. Different fractions of the Zn in the leaf (extractable with water, NaCl solution, hydrochloric acid) gave no better results. The analytically determined and calculated Zn fractions are discussed in relation to Zn deficiency inducing conditions.  相似文献   

15.
Cadmium, Manganese, Iron, Zinc and Magnesium content of Bean plants (Phaseolus vulgaris L.) in relation to the duration and the amount of Cadmium supply In a long term experiment (8 weeks) on bean plants, the effect of different cadmium concentrations on the growth and the content of Cd, Fe, Mn, Zn and Mg was studied during the total growth period. The following results were obtained:
  • 1 Cd treated and non-treated plants clearly exhibit differences in their growth and their nutrient content.
  • 2 There are clear differences between early and late Cd effects. a) Early effects: Decrease of divalent cation content in roots; specially zinc and manganese. b) Late effects: Increase of Mn content in roots and heavy Mn deficiency in upper plant parts.
  • 3 In spite of a decrease of the magnesium content in most of the Cd treated plants, the values almost always stay above 1 % and do not seem to be deficient.
  • 4 The negative effect of Cd on the chlorophyll content observed in former studies, seems due to Mn deficiency rather than to the decrease of the Mg content.
  相似文献   

16.
Influence of ammonium supply on growth, mineral nutrient and polyamine contents of young maize plants The influence of an increasing ammonium supply on the growth, mineral nutrient and polyamine contents of young maize plants was investigated in nutrient solution culture. A high ammonium concentration in the nutrient solution reduced shoot growth, lowered the shoot/root ratio and increased the dry matter content. The N content of the roots was increased, while the K content of the whole plant was reduced considerably. However, the plant analysis did not indicate nutrient deficiency. Ammonium nutrition induced an accumulation of putrescine in shoots and roots. None the less, regarding the ionic balance, K was only marginally substituted by putrescine, despite a close negative relationship between the putrescine and the K contents.  相似文献   

17.
Bush bean plants (Phaseolus vulgaris L. cv Contender) were grown for twenty days in nutrient solution (pH=5), containing 0.13, 0.3, 0.5 or 0.75 mg 1‐1 Zn as ZnSO4‐7H2O. The plant yield decreased linearly with the increase of the Zn concentration supplied. The phytotoxic threshold content (for 10% growth reduction) was about 486, 242, 95 and 134 μg Zn g‐1 for roots, steins, mature primary and trifoliate leaves, and developing leaves, respectively. High inverse correlation coefficients with the Zh concentration supplied were found for the Mn content of all organs, for the P content of roots, and for the Cu and Ca contents of developing leaves. Significant positive relations were found for the Fe, Zn and Cu contents in roots and for the Zn con‐ tents in stems and fully expanded leaves. The ratios of the mineral contents between organs suggest inhibition of uptake of Mn and P, and inhibition of translocation of Fe, Cu and Ca. The relation between dry weight decrease and Zn‐induced nutrient content disorders were discussed.  相似文献   

18.
我国北方地区石灰性土壤上缺锌与干旱限制因子同时存在,影响作物生长和产量提高。本文综述了干旱胁迫影响土壤锌的有效性和植物对锌吸收利用的可能机制:土壤中锌不同形态间的转化与化学行为、根际土壤中锌的移动性、植物根系形态和生理反应、植物体内锌的运输以及植株对锌的需求等在水分胁迫下都可能发生变化。植物锌营养状况可能与植物气孔开闭、活性氧代谢和基因转录因子-锌指蛋白的形成等关系密切,从而影响植物对水分的吸收利用和对干旱胁迫的适应。  相似文献   

19.
锌离子活度对水稻锌积累与分配的影响   总被引:3,自引:0,他引:3  
采用HEDTA螯合剂缓冲营养液培养法,选用籽粒含锌量有明显差异的2个基因型水稻(BY和Z921),设置4种锌离子活度(pZn2+9.7、10.3、11.0、11.4),研究了锌离子活度对水稻锌积累、分配的影响以及对不同时期水稻叶片中锌的化学形态的影响。结果显示:(1)2个基因型水稻各器官的锌含量都随着锌离子活度的升高而升高,但不同基因型间,同一基因型不同器官间均存在差异,供锌正常的的条件下,锌首先向代谢活性较弱的营养器官分配;缺锌的条件下,锌首先满足籽粒的需要;(2)从籽粒锌分配看,当锌离子活度(pZn2+)小于10.3时,糙米锌含量最高,当pZn2+升高到9.7时,颖壳锌含量则超过糙米,糙米和精米锌含量的比值在0.79~0.90之间,并以pZn2+为9.7时为最小;(3)任一锌离子活度下,BY籽粒锌含量均大于Z921。表明通过筛选籽粒富锌水稻品种来提高稻米锌含量是经济可行的,且通过增加环境锌离子活度来改善水稻的锌营养能显著提高水稻籽粒的锌含量;(4)营养生长前期,水稻叶片中的锌主要以活性较低的醋酸提取态(重金属磷酸盐)存在;营养生长后期,锌主要以乙醇提取态(醇溶性蛋白、氨基酸等)存在。  相似文献   

20.
High soil zinc (Zn) concentrations can cause Zn toxicity in peanuts (Arachis hypogaea L.), which decreases productivity and can be fatal to the plants. The objectives of this study were 1) to determine the optimal sampling time and plant part for diagnosis of Zn toxicity in peanuts, 2) to relate toxicity symptoms to plant Zn concentrations and calcium:zinc (Ca:Zn) ratios, and 3) to model the distribution of Zn and biomass into plant parts in relation to Zn concentration in the whole plant. A greenhouse study utilized four soils (Lakeland sand, Tifton loamy sand, Greenville sandy clay loam, and Greenville sandy clay) with Zn applications of 0, 10, 20, and 40 mg Zn/kg soil. Plants were sampled for analysis of nutrient concentrations, and Zn toxicity ratings were recorded biweekly. Toxicity symptoms became visible 4–8 weeks after planting, with stunting appearing at four weeks, horizontal leaf growth and leaflet folding at six weeks, and stem splitting at eight weeks. Optimal sampling time for diagnosis of Zn toxicity using plant Zn concentrations in peanuts was 6–10 weeks after planting. Zinc toxicity ratings were more highly correlated with plant Zn concentration in stems (r = 0.84) than leaves (r = 0.79). However, the Zn concentration in the total aboveground plant had a correlation coefficient (r = 0.83) almost as high as for the stems alone and is more convenient to measure. Zinc toxicity symptoms occurred with Zn concentration in plant shoots >240 mg/kg, and Ca:Zn ratios <35. Increases in total plant Zn concentration were partitioned into peanut stems more than into leaves. Zinc toxicity also reduced stem biomass accumulation to a greater degree than leaf biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号