首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Background: Monitoring of an animal's blood glucose concentration is critical for diagnostic and therapeutic decisions. Over the past few decades, portable blood glucose meters (PBGMs) have been used to monitor blood glucose concentrations in animals. Recently, new and improved PBGMs have been made available on the market.

Objective: The purpose of this study was to evaluate four PBGMs for use in dogs and cats.

Animals and methods: A total of 155 venous blood samples of dogs and 85 venous blood samples of cats were tested using four PBGMs. Control solutions from manufacturers were used to determine the precision of each meter. The coefficient of variation was calculated to determine precision during a set of replicates. Pearson's correlation analysis, Passing–Bablok regression, and Bland–Altman analysis were used to determine the accuracy of four PBGMs against the hexokinase reference method. Error grid analysis was used to evaluate clinical relevance.

Results: All PBGMs, except CERA-PET®, were clinically acceptable for monitoring blood glucose concentrations; AlphaTrak® and VetMate® appeared to be the most accurate ones, demonstrating that to use PBGMs for glucose monitoring, it is important to understand the strengths or limitations of each meter. The difference in results between the PBGMs and the reference method increased at high glucose concentration ranges, which were also affected by the hematocrit.

Conclusions: Although readings of the PBGMs and the reference method varied across glycemic ranges (low, normal, and high glucose concentrations), most PBGMs were clinically acceptable for monitoring blood glucose concentrations in dogs and cats.  相似文献   


2.
Recently a new method for capillary blood sampling from the ears of dogs and cats was described, which allows the measurement of glucose concentration by means of portable glucose meters. The authors of this report evaluated the suitability of this method for use by pet owners and the potential technical problems. The owners of seven healthy dogs and seven healthy cats were asked to perform two glucose curves (measuring blood glucose concentration every 2 hours for a total of 12 hours). All dog owners and three cat owners were able to perform a reliable blood glucose curve. The most frequently encountered problems were inadequate formation of a blood drop due to excessive digital pressure on the pinna, repeatedly depressing the plunger of the lancet device instead of allowing the negative pressure to slowly build up, and failure to fill the test strip up to the mark. The authors conclude that these steps of the procedure need to be stressed during technique demonstration and that home monitoring of blood glucose concentrations may serve as a new tool in the management of diabetic dogs and cats.  相似文献   

3.
OBJECTIVE: To evaluate the analytical agreement between blood lactate concentrations determined by use of an enzymatic-amperometric bedside system in capillary blood samples from the pinna and in jugular venous blood samples from dogs. ANIMALS: 53 dogs. PROCEDURES: For each dog, venous and capillary blood samples were obtained from a jugular vein and from the ear pinna (by use of a lancing device), respectively, following a randomized sequence of collection. Lactate concentrations in both types of samples were analyzed by use of an enzymatic-amperometric bedside system intended for lactate detection in capillary blood samples from humans that was previously validated in dogs. The Passing-Bablock regression analysis was used to compare venous and capillary blood lactate concentrations; the level of agreement was calculated by use of the Bland-Altman method. RESULTS: Jugular venous blood samples were collected without difficulty from all 53 dogs. A capillary blood sample was obtained from only 47 dogs. The correlation coefficient between lactate concentrations measured in venous and capillary blood samples was 0.58 (slope, 2.0 [95% confidence interval, 1.5 to 3.0]; intercept, -1.2 [95% confidence interval, -3.1 to 0.4]). The mean difference between methods was 0.72 mmol/L (95% confidence interval, 0.38 to 1.06) with limits of agreement of -1.55 to 2.99 mmol/L. CONCLUSIONS AND CLINICAL RELEVANCE: Because of the lack of agreement between lactate concentrations determined in capillary and jugular venous blood samples, measurement of capillary blood lactate concentration in dogs performed with the technique used in the study does not appear to be a reliable alternative to jugular venous blood measurements.  相似文献   

4.
Generation of blood glucose curves is essential to monitor glycemic control in dogs and cats with diabetes mellitus. Up till now blood collection and blood glucose measurements could only be performed in a hospital. However, glucose concentrations measured in a hospital environment can markedly differ from concentrations measured at home, due to reduced appetite, different activity level and stressful handling. At the Clinic of Small Animal Internal Medicine, University of Zurich, a new method to collect capillary blood from the ear and to measure blood glucose by means of a portable glucose meter has been developed. This method enables owners of diabetic dogs or cats to determine blood glucose concentrations and generate blood glucose curves at home. Three cases demonstrate, how much blood glucose concentrations at home may differ from those in the hospital and how home monitoring can help to establish diabetic control in dogs and cats.  相似文献   

5.
OBJECTIVE: To evaluate a continuous glucose monitoring system (CGMS) for use in dogs, cats, and horses. DESIGN: Prospective clinical study. Animals-7 horses, 3 cats, and 4 dogs that were clinically normal and 1 horse, 2 cats, and 3 dogs with diabetes mellitus. PROCEDURE: Interstitial glucose concentrations were monitored and recorded every 5 minutes by use of a CGMS. Interstitial glucose concentrations were compared with whole blood glucose concentrations as determined by a point-of-care glucose meter. Interstitial glucose concentrations were also monitored in 2 clinically normal horses after oral and i.v. administration of glucose. RESULTS: There was a positive correlation between interstitial and whole blood glucose concentrations for clinically normal dogs, cats, and horses and those with diabetes mellitus. Events such as feeding, glucose or insulin administration, restraint, and transport to the clinic were recorded by the owner or clinician and could be identified on the graph and associated with time of occurrence. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicate that use of CGMS is valid for dogs, cats, and horses. This system alleviated the need for multiple blood samples and the stress associated with obtaining those samples. Because hospitalization was not required, information obtained from the CGMS provided a more accurate assessment of the animal's glucose concentrations for an extended period, compared with measurement of blood glucose concentrations. Use of the CGMS will promote the diagnostic and research potential of serial glucose monitoring.  相似文献   

6.
OBJECTIVE: To establish a reliable diagnostic tool for septic peritonitis in dogs and cats using pH, bicarbonate, lactate, and glucose concentrations in peritoneal fluid and venous blood. STUDY DESIGN: Prospective clinical study. ANIMALS: Eighteen dogs and 12 cats with peritoneal effusion. METHODS: pH, bicarbonate, electrolyte, lactate, and glucose concentrations were measured on 1- to 2-mL samples of venous blood and peritoneal fluid collected at admission. The concentration difference between blood and peritoneal fluid for pH, bicarbonate, glucose, and lactate concentrations were calculated by subtracting the peritoneal fluid concentration from the blood concentration. Peritoneal fluid was submitted for cytologic examination and bacterial culture. Peritonitis was classified as septic or nonseptic based on cytology and bacterial culture results. RESULTS: In dogs, with septic effusion, peritoneal fluid glucose concentration was always lower than the blood glucose concentration. A blood-to-fluid glucose (BFG) difference > 20 mg/dL was 100% sensitive and 100% specific for the diagnosis of septic peritoneal effusion in dogs. In 7 dogs in which it was evaluated, a blood-to-fluid lactate (BFL) difference < -2.0 mmol/L was also 100% sensitive and specific for a diagnosis of septic peritoneal effusion. In cats, the BFG difference was 86% sensitive and 100% specific for a diagnosis of septic peritonitis. In dogs and cats, the BFG difference was more accurate for a diagnosis of septic peritonitis than peritoneal fluid glucose concentration alone. CONCLUSIONS: A concentration difference > 20 mg/dL between blood and peritoneal fluid glucose concentration provides a rapid and reliable means to differentiate a septic peritoneal effusion from a nonseptic peritoneal effusion in dogs and cats. CLINICAL RELEVANCE: The difference between blood and peritoneal fluid glucose concentrations should be used as a more reliable diagnostic indicator of septic peritoneal effusion than peritoneal fluid glucose concentration alone.  相似文献   

7.
The objective of this study was to investigate whether home monitoring of blood glucose of diabetic dogs by owners would be possible on a long-term basis. The owners of 12 diabetic dogs were each asked to generate four glucose curves by taking capillary blood samples from their dog's ear, at three- to four-week intervals. Within one week of each curve being produced by the owner, an additional curve was produced by a veterinarian in the hospital. Ten owners were able to generate blood glucose curves; three of them needed a second demonstration, and two telephoned for further guidance. The blood glucose concentrations obtained from the first two 'hospital' curves were significantly lower than those measured at home. Overall, in 42 per cent of cases, the treatment based on the hospital curves would have been different from that based on 'home' curves. The results of this study indicate that the majority of owners were able and willing to perform long-term monitoring of the blood glucose concentrations of their dogs.  相似文献   

8.
Use of continuous glucose monitoring in veterinary medicine is gaining popularity. Through use of a commercially available continuous glucose monitor system, insights into daily glucose changes in dogs and cats are achievable. The continuous glucose monitoring system measures glucose concentrations in the interstitial fluid of the subcutaneous space by use of a small, flexible probe. When placed in the subcutaneous tissue, the probe is connected to a recording device that is attached to the animal and records the interstitial fluid glucose concentration every 5 minutes (288 readings per 24 hours). Once attached and properly calibrated, the instrument can remain in place for several days, hospitalization of the patient is not necessary, and the normal daily routine of the animal can be maintained. The data from the recording device are then downloaded and a very detailed picture of the interstitial fluid glucose concentration over that time period can be obtained. Subcutaneous interstitial fluid glucose concentrations have a good correlation to blood glucose concentrations within a defined range. The continuous glucose monitoring system has distinct advantages over traditional blood glucose curves and is a valuable tool for managing diabetic dogs and cats. In addition, other clinical uses for continuous glucose monitoring are being developed. This review is designed to outline the technology behind the continuous glucose monitoring system, describe the clinical use of the instrument, provide clinical examples in which it may be useful, and discuss future directions for continuous glucose monitoring in dogs and cats.  相似文献   

9.
OBJECTIVE: To compare blood glucose (BG) concentrations measured with a portable blood glucose meter in blood samples obtained with a marginal ear vein (MEV) nick technique, from a peripheral venous catheter, and by direct venipuncture in healthy cats and cats with diabetes mellitus. DESIGN: Prospective study. ANIMALS: 1 0 healthy cats and 11 cats with diabetes mellitus. Procedure-On day 1, blood samples were collected every hour for 10 hours by the MEV nick technique and from a peripheral venous catheter. On day 2, blood samples were collected every hour for 10 hours by the MEV nick technique and by direct venipuncture of the medial saphenous vein. RESULTS: For all cats, mean BG concentration for samples collected by the MEV nick technique was not significantly different from mean concentration for samples obtained from the peripheral venous catheter. For healthy cats, mean BG concentration for samples collected by the MEV nick technique was not significantly different from mean concentration for samples obtained by direct venipuncture. For cats with diabetes mellitus, mean BG concentration for samples collected by the MEV nick technique was significantly different from mean concentration for samples obtained by direct venipuncture; however, for the range of concentrations examined, this difference was not clinically important. Conclusions and Clinical Relevance: Results suggest that for the range of concentrations examined, the MEV nick technique is a reasonable alternative to venous blood collection for serial measurement of BG concentrations in cats.  相似文献   

10.
The purpose of this study was to evaluate simplified methods for iohexol plasma clearance estimation in dogs and cats. Serial blood samples were taken before and 5, 20, 40, 60, 80, 100, 120, 150, 180, and 240 minutes after a bolus injection of iohexol in 51 dogs and 25 cats. Iohexol plasma concentration was determined with X-ray fluorescence. Clearance was calculated by dividing the injected dose by the area under the plasma tracer elimination curve estimated with a 2-compartment pharmacologic model. Clearance was normalized to body surface area (BSA). The 10-point clearance was used as a reference for the evaluation of simplified methods. A 2-sample method based on a single exponential fit and a single-sample method based on a linear quadratic model were investigated. Simplified methods were evaluated by calculating the standard deviation of the difference (SDD) between the clearances obtained with the simplified methods and the 10-point reference method. All combinations of sampling times were evaluated. The best sampling times were chosen for dogs and cats as the ones yielding the lowest SDD. Linear regression analysis was performed between the reference method and the optimized simplified methods. The best combination of time for the 2-sample method was 5 and 120 minutes in dogs and 20 and 180 minutes in cats. The best time for sampling in the single-sample method was 120 minutes in dogs and 80 minutes in cats. Plasma clearance of iohexol can be estimated in dogs and cats from 1 or 2 blood samples with a reasonable margin of error.  相似文献   

11.
Fructosamine, a glycated serum protein, was evaluated as an index of glycemic control in normal and diabetic cats. Fructosamine was determined manually by use of a modification of an automated method. The within-run precision was 2.4 to 3.2%, and the day-to-day precision was 2.7 to 3.1%. Fructosamine was found to be stable in serum samples stored for 1 week at 4 C and for 2 weeks at -20 C. The reference range for serum fructosamine concentration in 31 clinically normal colony cats was 2.19 to 3.47 mmol/L (mean, 2.83 +/- 0.32 mmol/L). In 27 samples from 16 cats with poorly controlled diabetes mellitus, the range for fructosamine concentration was 3.04 to 8.83 mmol/L (mean, 5.93 +/- 1.35 mmol/L). Fructosamine concentration was directly and highly correlated to blood glucose concentration. Fructosamine concentration also remained high in consort with increased blood glucose concentration in cats with poorly controlled diabetes mellitus over extended periods. It is concluded that measurement of serum fructosamine concentration can be a valuable adjunct to blood glucose monitoring to evaluate glycemic control in diabetic cats. The question of whether fructosamine can replace glucose for monitoring control of diabetes mellitus requires further study.  相似文献   

12.
OBJECTIVE: To determine whether hyperglycemia is associated with head trauma in dogs and cats and whether the degree of hyperglycemia corresponds to severity of neurologic injury or outcome. DESIGN: Retrospective study. ANIMALS: 52 dogs and 70 cats with head trauma and 122 age- and species-matched control dogs and cats. PROCEDURE: Severity of head trauma was classified as mild, moderate, or severe. Blood glucose concentrations recorded within 1 hour after admission were compared between case and control animals and among groups when case animals were grouped on the basis of severity of head trauma or outcome. RESULTS: Blood glucose concentration was significantly associated with severity of head trauma in dogs and cats and was significantly higher in dogs and cats with head trauma than in the control animals. However, blood glucose concentration was not associated with outcome. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that dogs and cats with head trauma may have hyperglycemia and that degree of hyperglycemia was associated with severity of head trauma. However, degree of hyperglycemia was not associated with outcome for dogs and cats with head trauma. Because hyperglycemia can potentiate neurologic injury, iatrogenic hyperglycemia should be avoided in patients with head trauma.  相似文献   

13.
OBJECTIVE: To evaluate clinical and analytical accuracy of 5 portable blood glucose meters (PBGM) used to measure blood glucose concentrations in dogs and to determine potential sources of error. DESIGN: Prospective study. ANIMALS: 221 dogs. PROCEDURE: Venous blood samples were obtained, and results of the 5 PBGM were compared with results of a hexokinase reference method. Agreement among methods was determined by use of error grid analysis and statistical methods. RESULTS: Accuracy of the PBGM varied with glucose concentration of the sample. The largest differences between results of the PBGM and results of the reference method were obtained with samples with high glucose concentrations; 4 PBGM tended to underestimate and 1 PBGM tended to overestimate the true glucose concentration. Absolute differences between results of the PBGM and results of the reference method were small for samples with low glucose concentrations and samples with concentrations in the reference range. None of the PBGM yielded measurements that would result in clinically unacceptable errors. Within-run and between-day precision was good for all PBGM, and results were not affected by use of EDTA or heparin to anticoagulate blood. Readings of the PBGM were significantly higher for blood samples with low Hct than for samples with normal Hct. For 3 PBGM, samples < 3 microliters resulted in inaccurate measurements. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that currently available PBGM are sufficiently accurate for use in clinical practice to determine blood glucose concentrations in dogs.  相似文献   

14.
The postprandial increase in glucose concentration is typically not considered in selecting diets to manage diabetic and pre-diabetic cats. This study describes increases in glucose and insulin concentrations in 24 clinically healthy, neutered adult cats following one meal (59 kcal/kg) of a moderate carbohydrate diet (25% of energy). Median time to return to baseline after feeding for glucose was 12.2 h (1.8-≥24 h) and for insulin was 12.3 h (1.5-≥24 h). Time to return to baseline for glucose was not different between male (10.2 h) and female (17.2 h) cats. There was evidence female cats had a longer return to baseline for insulin (18.9 h versus 9.8 h) and females had higher (0.9 mmol/l difference) peak glucose than males. This demonstrates that the duration of postprandial glycaemia in cats is markedly longer than in dogs and humans, and should be considered when managing diabetic and pre-diabetic cats.  相似文献   

15.
Current therapeutic regimes of outer ear infections in dogs and cats aim at the application of efficient local therapeutics after cleaning of the acoustic meatus. One so far insufficiently answered question is if the local application of these substances results in an individually suitable drug concentration in the external ear canal. Thus, the purpose of the present study was to develop a finite element model to calculate the values of the different areas of the external acoustic meatus in dogs and cats in order to provide a tool for the benefit of an appropriate local drug dosage determination. A 3D finite element model (FEM), based on computer tomographic (CT) data sets of four dogs and two cats, was generated to determine areas and volumes of the outer ear canal. Furthermore, various ear therapeutics and cleansers were tested concerning their optimal distribution on 5 cm2 dog and cat skin. The data shows major variations of the area values of the external auditory canal in case of the different dogs but not in the examined cats. These results suggest that manufacturer's recommendations of the pharmaceuticals might be insufficient in terms of achieving an optimal drug concentration in the outer ear canal especially in larger dogs. In conclusion, the developed finite element model has shown to be suitable to calculate areas of the outer ear canal in cats and dogs and could be of help in context with the definition of optimal drug concentrations for a local drug delivery.  相似文献   

16.
This observational study of 100 dogs naturally infected with Babesia canis rossi determined whether severity of parasitaemia was associated with outcome of infection and documented the relative distribution of parasitised red blood cells (pRBC) in capillary and venous circulation. The association between increased parasitaemias and outcome with a clinically compromised circulation was also investigated. Outcome was defined as either hospitalisation with death, or hospitalisation with eventual recovery or treatment as an outpatient. Dogs were enrolled if large babesias were found on stained thin capillary blood smears made from an ear prick. Thin venous smears were prepared from jugular or cephalic blood. Parasitaemias were manually counted and expressed as the percent pRBC. Ten dogs died, 50 recovered after hospitalisation and 40 were treated as outpatients. Venous sampling site did not affect venous parasitaemia (P=0.6). Both capillary and venous parasitaemias of dogs that died were significantly higher than those of dogs that recovered after hospitalisation (P=0.002) and dogs that were treated as outpatients (P<0.0001). When assessing the whole group, capillary parasitaemia (median 0.61%, range <0.05-71.6%, interquartile range (IQR) 0.22-3.75%) was significantly higher than venous parasitaemia (median 0.14%, range 0-30.6%, IQR 0.046-0.52%) with P<0.0001. The 21 dogs with a clinically compromised circulation were more likely to die (P<0.0001) and had significantly higher capillary (median 5.98%, range 0.09-71.6%, IQR 2.44-19.41%) and venous (median 2.81%, range <0.05-30.6%, IQR 0.17-9.03%) parasitaemias than the 79 dogs with a clinically normal circulation (capillary median parasitaemia 0.38%, range <0.05-12.87%, IQR 0.16-1.42%; venous median parasitaemia 0.096%, range 0-6.13%, IQR <0.05-0.33%; P<0.0001). This study shows that high parasitaemia is significantly associated with death in B c rossi infected dogs. The previous clinical suspicion that capillary parasitaemias are usually higher than venous parasitaemias is confirmed. Thus capillary samples are the most appropriate diagnostic samples. Prior observations that a clinically compromised circulation is associated with death are confirmed. Despite the highly significant association between compromised circulation and higher parasitaemia, it is thought unlikely that parasite burden is the sole trigger for circulatory collapse.  相似文献   

17.
Objective – (1) To determine the ability of a continuous interstitial glucose monitoring system (CGMS) to accurately estimate blood glucose (BG) in dogs and cats with diabetic ketoacidosis. (2) To determine the effect of perfusion, hydration, body condition score, severity of ketosis, and frequency of calibration on the accuracy of the CGMS. Design – Prospective study. Setting – University Teaching Hospital. Animals – Thirteen dogs and 11 cats diagnosed with diabetic ketoacidosis were enrolled in the study within 24 hours of presentation. Interventions – Once BG dropped below 22.2 mmol/L (400 mg/dL), a sterile flexible glucose sensor was placed aseptically in the interstitial space and attached to the continuous glucose monitoring device for estimation of the interstitial glucose every 5 minutes. Measurements and Main Results – BG measurements were taken with a portable BG meter every 2–4 hours at the discretion of the primary clinician and compared with CGMS glucose measurements. The CGMS estimates of BG and BG measured on the glucometer were strongly associated regardless of calibration frequency (calibration every 8 h: r=0.86, P<0.001; calibration every 12 h: r=0.85, P<0.001). Evaluation of this data using both the Clarke and Consensus error grids showed that 96.7% and 99% of the CGMS readings, respectively, were deemed clinically acceptable (Zones A and B errors). Interpatient variability in the accuracy of the CGMS glucose measurements was found but was not associated with body condition, perfusion, or degree of ketosis. A weak association between hydration status of the patient as assessed with the visual analog scale and absolute percent error (Spearman's rank correlation, ρ=?0.079, 95% CI=?0.15 to ?0.01, P=0.03) was found, with the device being more accurate in the more hydrated patients. Conclusions – The CGMS provides clinically accurate estimates of BG in patients with diabetic ketoacidosis.  相似文献   

18.
Blood glycosylated hemoglobin (GHb) concentration was quantified in 84 healthy cats, 9 cats with stress-induced hyperglycemia, 37 cats with newly diagnosed diabetes mellitus, and 122 diabetic cats treated with insulin or glipizide. Diabetic control was classified as good or poor in insulin-treated or glipizide-treated cats based on review of history, physical examination findings, changes in body weight, and measurement of blood glucose concentrations. Blood GHb concentration was determined using an affinity chromatography assay. Mean blood GHb concentration was similar for healthy normoglycemic cats and cats with transient, stress-induced hyperglycemia, but was significantly (P < .001) higher in untreated diabetic cats when compared with healthy normoglycemic cats. Mean blood GHb concentration was significantly (P < .001) higher in 84 cats with poorly controlled diabetes mellitus when compared with 38 cats in which the disease was well controlled. Mean blood GHb concentration decreased significantly (P < .01) in 6 cats with untreated diabetes mellitus after insulin and dietary treatment. A similar significant (P < .01) decrease in mean blood GHb concentration occurred in 7 cats with poorly controlled diabetes mellitus after diabetic control was improved by an increase in insulin dosage from 1.1 ± 0.9 to 1.4 ± 0.6 U/kg/ 24 h and by feeding a diet containing increased fiber content and in 6 cats with transient diabetes mellitus 8.2 ± 0.6 weeks after discontinuing insulin treatment. There was a significant (P< .01) stress-induced increase in mean fasting blood glucose concentration and mean blood glucose concentration for 12 hours after administration of insulin or glipizide but no change in mean blood GHb concentration in 5 docile diabetic cats 12.2 ± 0.4 weeks after the cats became fractious as a result of frequent hospitalizations and blood samplings. Results of this study suggest that evaluation of blood GHb concentration may be a clinically useful tool for monitoring glycemic control of diabetes in cats.  相似文献   

19.
A continuous glucose monitoring system (CGMS) was evaluated in 14 cats with naturally occurring diabetes mellitus. The device measures interstitial fluid glucose continuously, by means of a sensor placed in the subcutaneous tissue. All cats tolerated the device well and a trace was obtained on 15/16 occasions. There was good correlation between the CGMS values and blood glucose concentration measured using a glucometer (r=0.932, P<0.01). Limitations to the use of the CGMS are its working glucose range of 2.2-22.2 mmol/l (40-400 mg/dl) and the need for calibration with a blood glucose measurement at least every 12 h. When compared to a traditional blood glucose curve, the CGMS is minimally invasive, reduces the number of venepunctures necessary to assess the kinetics of insulin therapy in a patient and provides a truly continuous glucose curve.  相似文献   

20.
A commercial nephelometric test kit for human fibronectin (FN) was found suitable for the estimation if fibronectin concentration in body effusions of cats and dogs. The FN measurements were set in relation to the FN concentration of plasma pools in cats and dogs. A discrimination line of 31.5% completely separated malignant from cardiogenic pleural effusions in cats. For the diagnosis of a malignant pleural effusion, sensitivity was 100% and specificity was 57%. Pleuritis also resulted in high FN concentrations. The FN concentration in malignant pleural effusions in dogs differed significantly ( P < .02) from that in cardiogenic effusions. There were no clinically useful differences in the FN concentration in peritoneal effusions in cats and dogs. The FN/albumin ratio was significantly higher ( P < .02) in dogs with neoplastic abdominal effusion than in those with congestive heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号