首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

BACKGROUND

The tarnished plant bug Lygus lineolaris (Palisot de Beauvois) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States. Previous studies have reported the role of different ratios of volatile metathoracic gland components such as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in eliciting low-level attraction of L. lineolaris. In this study, we tested different visual cues (colored sticky cards) in combination with olfactory cues (pheromone blends) to optimize the attraction and capture of L. lineolaris in the field.

RESULTS

Red-colored sticky cards were more attractive to L. lineolaris adults than white, blue or yellow cards. Red sticky cards combined with blends of three potential pheromone components attracted significantly more L. lineolaris adults than sticky cards without a blend added. Traps baited with a blend of hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in 4:10:7 ratio, respectively, caught a significantly higher number of L. lineolaris than those baited with 10:4:2 or 7:10:4 blends or an unbaited control in the first week of the experiment.

CONCLUSIONS

Combining visual cues (red color) with olfactory cues (pheromone blends) significantly increased the capture of L. lineolaris in the field. This device or a future iteration could contribute towards sustainable and environmentally appropriate early-season monitoring and management of L. lineolaris in the field. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.  相似文献   

2.

BACKGROUND

Semiochemicals for monitoring, attracting or repelling pest and beneficial organisms are increasingly deployed in agricultural and forest systems for pest management. However, the use of aggregation pheromones and host‐plant attractants for the express purpose of increasing the efficacy of classical biological control agents of weeds has not been widely reported. Therefore, we conducted field‐based assays to determine if a specialized wax‐based matrix impregnated with an aggregation pheromone of the northern tamarisk beetle Diorhabda carinulata (Desbrochers) or host‐plant volatiles could increase the efficacy of D. carinulata.

RESULTS

The aggregation pheromone and host‐plant volatiles were formulated for field application using a wax‐based matrix. Reported release rates suggest that this matrix is a viable formulation for enhancing D. carinulata aggregations under field conditions. Pheromone‐treated saltcedar plants (Tamarix spp.) not only had higher densities of adult and larval D. carinulata, but also sustained greater levels of foliar damage than control plants. Increased damage from the focused feeding of D. carinulata caused an increase in foliar dieback and decrease in live canopy volume of semiochemical‐treated plants.

CONCLUSION

Field deployment of these semiochemical formulations could be useful in directing populations of D. carinulata for increased impact on Tamarix spp. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

3.

Background

Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance.

Results

The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances.

Conclusion

Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.

BACKGROUND

Maize production in Africa is hindered by a myriad of biotic challenges, key among them being invasive and native lepidopteran stemborers. Recent invasion of the continent by fall armyworm, Spodoptera frugiperda, has further exacerbated the situation. Fortunately, Cotesia icipe was found to be very promising against S. frugiperda. However, the co-occurrence and interaction between S. frugiperda and the stemborers (Busseola fusca, Sesamia calamistis, and Chilo partellus) in maize agroecosystem may jeopardize the efficiency of C. icipe as a biocontrol agent of S. frugiperda. This study investigated the performance of C. icipe on S. frugiperda, Spodoptera littoralis and the stemborers. Specifically, the preference and acceptability of C. icipe to the host insects, the physiological suitability of the hosts for its development, and the effect of these hosts on the fitness parameters of the offspring were assessed.

RESULTS

Cotesia icipe accepted all the tested hosts, albeit with higher preference for Spodoptera species than for stemborers under multiple-choice tests. Also, the highest parasitism of up to 97% was recorded on S. frugiperda compared with parasitism on the stemborers of 43% in B. fusca. Moreover, physiological suitability and fitness traits (except for per cent female offspring) varied with host species, again being optimal on Spodoptera species.

CONCLUSION

Cotesia icipe demonstrated strong potential to control S. frugiperda in maize due to its high affinity for parasitization and developmental success in this host; and despite its non-specific parasitization, the presence of other hosts may not prevent its maximum control of S. frugiperda. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
BACKGROUND: Field trapping experiments were carried out to evaluate effective trap characteristics for maximising Ips duplicatus (Sahlberg) catches in pheromone‐baited traps in China. RESULTS: Window‐slot and cross‐barrier traps had significantly higher catches than multiple‐funnel traps. The colour of window‐slot traps showed a significant effect on catches, with dark colours (black and red) being more effective than light colours, especially white and yellow. Window‐slot traps at a 1.5–2.0 m level caught more beetles than those at either ground level (0–0.5 m) or at 3.5–4.0 m. Ips duplicatus can be attracted to pheromone‐baited traps over a distance of > 100 m from the forest edge in an open grassy field. There was a strong diurnal pattern of flight activity, with catches on window‐slot traps occurring during the daytime with one broad peak at mid‐ to late afternoon. The seasonal flight activity of I. duplicatus as monitored by pheromone‐baited window‐slot traps during 2007–2008 indicated that three major flight peaks occurred in early June, late June–early July and late July respectively, suggesting the existence of a potential second generation. CONCLUSION: The optimal trap characteristics will improve the performance of pheromone‐baited traps as a critical monitoring or mass‐trapping tool to combat outbreaks of this pest species. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
BACKGROUND: The swede midge, Contarinia nasturtii Kieffer, is a serious pest in crucifers. Its pheromone is a blend of (2S,9S)‐diacetoxyundecane, (2S,10S)‐diacetoxyundecane and (2S)‐acetoxyundecane. The pheromone is used in monitoring traps, and this study examines possible ways to optimise the traps. RESULTS: Two dispenser types were compared: polyethylene dispensers and cotton dispensers. Polyethylene dispensers attracted male C. nasturtii for more than 6 weeks, whereas cotton dispensers were attractive for only 2 weeks. All three pheromone components were important for attraction of male midges in the field. The importance of the stereoisomeric compositions of the pheromone compounds was also tested—both in the wind tunnel and in the field. In the case of 2,9‐diacetoxyundecane and 2‐acetoxyundecane, the non‐natural stereoisomers did not inhibit male C. nasturtii attraction, whereas one or both of the stereoisomers of 2,10‐diacetoxyundecane did. CONCLUSION: Pheromone traps with the synthetic pheromone in a 1:2:0.02 ratio emitted from PE dispensers were highly effective and long lasting. As the mixture of stereoisomers of 2,10‐diacetoxyundecane strongly inhibited attraction of male C. nasturtii while those of 2,9‐diacetoxyundecane and 2‐acetoxyundecane did not have any inhibitory effect, it is possible to produce traps that are effective and long lasting but cheaper to produce and maintain. Copyright © 2009 Society of Chemical Industry  相似文献   

7.

BACKGROUND

Tebufenozide is widely used to control populations of the smaller tea tortrix, Adoxophyes honmai. However, A. honmai has evolved resistance such that straightforward pesticide application is an untenable long-term approach for population control. Evaluating the fitness cost of resistance is key to devising a management strategy that slows the evolution of resistance.

RESULTS

We used three approaches to assess the life-history cost of tebufenozide resistance with two strains of A. honmai: a tebufenozide-resistant strain recently collected from the field in Japan and a susceptible strain that has been maintained in the laboratory for decades. First, we found that the resistant strain with standing genetic variation did not decline in resistance in the absence of insecticide over four generations. Second, we found that genetic lines that spanned a range of resistance profiles did not show a negative correlation between their LD50, the dosage at which 50 % of individuals died, and life-history traits that are correlates of fitness. Third, we found that the resistant strain did not manifest life-history costs under food limitation. Our crossing experiments indicate that the allele at an ecdysone receptor locus known to confer resistance explained much of the variance in resistance profiles across genetic lines.

CONCLUSION

Our results indicate that the point mutation in the ecdysone receptor, which is widespread in tea plantations in Japan, does not carry a fitness cost in the tested laboratory conditions. The absence of a cost of resistance and the mode of inheritance have implications for which strategies may be effective in future resistance management efforts. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

8.

BACKGROUND

Ethanedinitrile (EDN) is a fumigant being commercialized worldwide as an alternative phytosanitary treatment to methyl bromide (MB) for forest products. The penetration characteristics of MB and EDN were measured through the bark of wooden blocks (100 × 100 × 50 mm) cut from the upper (average bark thickness 5 ± 2 mm) and lower (average bark thickness 25 ± 5 mm) trunk of recently felled pine (Pinus radiata D.Don) trees. Doses of 48 g m−3 MB and 50 g m−3 EDN were applied to chambers at 10 and 20°C for 10 h.

RESULTS

Penetration of MB was influenced by the interaction between fumigation time and temperature, with concentrations increasing at a higher rate at 20°C compared with at 10°C. After 10 h, an average concentration of 8.05 ± 0.89 g m−3 had penetrated the bark of log sections at 20°C, whereas 5.20 ± 0.89 g m−3 was measured at 10°C. By contrast, the factors examined in this study did not significantly impact the penetration of EDN. Concentration × time (CT) values for MB under the bark were 35.20 ± 2.30 g h m−3 at 10°C and 55.85 ± 9.58 g h m−3 at 20°C; whereas for EDN, CT values were 19.50 ± 6.80 g h m−3 at 10°C and 19.08 ± 4.10 g h m−3 at 20°C.

CONCLUSION

MB can achieve a higher concentration under the bark of log sections during simulated fumigations, but all of the factors examined affected the ability of MB to penetrate the bark of wooden blocks. By comparison, the penetration of EDN through the bark is more consistent than MB under laboratory conditions. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

9.

BACKGROUND

Chloris virgata is a troublesome weed in tropical regions. With the evolution of glyphosate resistance in key grass species, acetyl CoA carboxylase (ACCase) inhibitors have become a commonly used tool in soybean production areas in Brazil. We assessed if suspected resistant populations exhibited cross resistance to the different classes of ACCase inhibitors and investigated the resistance mechanisms in C. virgata.

RESULTS

Dose–response experiments revealed resistance to haloxyfop-methyl and pinoxaden, with 432- and 3-fold resistance, respectively, compared to susceptible populations. Due to the lack of genetic resources for C. virgata, we sequenced, assembled, and annotated the genome using short-read Illumina technology. The k-mer analysis estimated a genome size of approximately 336 Mbp, with BUSCO completeness of 97%, and over 36 000 gene models were annotated. We examined if ACCase copy number variation and increased gene expression were involved in the resistance phenotype and found no difference when compared to a susceptible population. A mutation was detected in ACCase that encodes for amino acid position 2027, resulting in a tryptophan-to-cysteine (Trp2027Cys) substitution. We found the resistant population absorbed 11.4% less herbicide and retained 21% more herbicide on the treated leaf compared to the susceptible population. We developed a genotyping assay targeting the resistance-endowing Trp2027Cys substitution for quick resistance diagnosis.

CONCLUSION

A Trp2027Cys amino acid substitution in ACCase confers resistance to haloxyfop and pinoxaden in C. virgata. We provide important insights into the evolutionary history of C. virgata and a draft genome as a useful resource to further our understanding of the biology in the genus Chloris. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

10.

BACKGROUND

The control of Aedes aegypti (L.), the main urban vector that causes arboviral diseases such as dengue, Chikungunya and Zika, has proved to be a challenge because of a rapid increase in insecticide resistance. Therefore, adequate monitoring of insecticide resistance is an essential element in the control of Ae. aegypti and the diseases it transmits. We estimated the frequency and intensity (Resistance Frequency Rapid Diagnostic Test [F‐RDT] and Resistance Intensity Rapid Diagnostic Test [I‐RDT]) of pyrethroid resistance in populations of Ae. aegypti from Mexico using the bottle bioassay and results were related to the frequencies of knockdown resistance (kdr) mutations V1016I and F1534C.

RESULTS

All populations under study were resistant to the pyrethroids: bifenthrin (99%), d‐(cistrans)‐phenothrin (6.3% cis, 91.7% trans) and permethrin (99.5%) according to F‐RDT, and showed moderate to high‐intensity resistance at 10× the diagnostic dose (DD) in I‐RDT. Frequencies of the kdr mutation V1016I in Ae. aegypti populations were correlated with moderate permethrin resistance at 10× DD, whereas F1534C mutation frequencies were correlated with high bifenthrin resistance at 5× DD. Both I1016 and C1535 were highly correlated with high‐intensity phenothrin resistance at 1× to 10× DD.

CONCLUSIONS

This study showed that high frequencies of kdr mutations V1016I and F1534C are reflected in the results of F‐RDT and I‐RDT tests. Bioassays in conjunction with the characterization of genetic resistance mechanisms are indispensable in the strategic and rational management of resistance in mosquitoes. © 2018 Society of Chemical Industry
  相似文献   

11.

BACKGROUND

Aedes aegypti is an important mosquito species that can transmit several arboviruses such as dengue fever, yellow fever, chikungunya and zika. Because these mosquitoes are becoming resistant to most chemical insecticides used around the world, studies with new larvicides should be prioritized. Based on the known biological profile of imidazolium salts (IS), the objective of this study was to evaluate the potential of six IS as larvicides against Ae. aegypti, as tested against Ae. aegypti larvae. Larval mortality was measured after 24 and 48 h, and residual larvicidal activity was also evaluated.

RESULTS

Promising results were obtained with aqueous solutions of two IS: 1‐n‐octadecyl‐3‐methylimidazolium chloride ( C 18 MImCl ) and 1‐n‐hexadecyl‐3‐methylimidazolium methanesulfonate ( C 16 MImMeS ), showing up to 90% larval mortality after 48 h exposure. C 18 MImCl was more effective than C 16 mIMeS , causing mortality until day 15 after exposure. An application of C 18 MImCl left to dry under ambient conditions for at least 2 months and then dissolved in water showed a more pronounced residual effect (36 days with 95% mortality and 80% mortality up to 78 days).

CONCLUSION

This is the first study to show the potential of IS in the control of Ae. aegypti. Further studies are needed to understand the mode of action of these compounds in the biological development of this mosquito species. © 2017 Society of Chemical Industry
  相似文献   

12.
Abstract

Studies were conducted to develop a pheromone‐trap monitoring system for the sweet potato weevil, Cylas formicarius (Fabricius), in sweet potato, Ipomoea batatas (L.) Lam., fields in four states: Florida, Louisiana, North Carolina, and Texas. The present studies examined the attractiveness of sex pheromone synthesized by two sources (USDA and AgriSense) and pheromone of different purities (75–99%) to weevils in the field. In all but one trial, weevil counts did not differ between traps baited with pheromone from the two sources for each of two doses (10 and 100 μg). Percentages of weevils caught per replicate per sample date were not consistently positively correlated with purity (significant in four of 10 trials); however, slope estimates were steeper in regions with lower trap counts (North Carolina and Louisiana) than in those with higher trap counts (Florida). Because the pheromone will be used to monitor weevils In both weevil‐free and weevil‐infested regions, the use of pheromone with a purity level >99% is most appropriate. The importance of these data in pheromone‐trap monitoring programmes for this weevil worldwide is discussed.  相似文献   

13.

BACKGROUND

Helicoverpa armigera is a major pest of pigeonpea (Cajanus cajan). Efforts to develop pigeonpea varieties resistant to H. armigera attack have been met with limited success, despite reports of high levels of resistance to H. armigera in wild relatives of pigeonpea and reports of low to moderate levels of resistance in cultivated varieties. Here we examined H. armigera oviposition preference and larval performance on whole plants of three cultivars of short-duration pigeonpea: a susceptible control (ICPL 87) and two cultivars with purported host–plant resistance (ICPL 86012 and ICPL 88039).

RESULTS

In our no-choice oviposition experiment, H. armigera laid similar numbers of eggs on all three cultivars tested, but under choice conditions moths laid slightly more eggs on ICPL 88039. Larval growth and development were affected by cultivar, and larvae grew to the largest size (weight) and developed fastest on ICPL 86012. Moths laid most of their eggs on floral structures, sites where subsequent early instar larvae overwhelmingly fed. Experimentally placing neonate larvae at different locations on plants demonstrated that larvae placed on flowers experienced greater survival, faster development, and greater weight gain than those placed on leaves. The type and density of trichomes (a potential resistance trait) differed among cultivars and plant structures, but larvae selected to feed at sites where trichomes were absent.

CONCLUSION

Future work examining host–plant resistance against H. armigera should incorporate the behavioural preference of moths and larvae in experiments using whole plants as opposed to bioassays of excised plant parts in Petri dishes. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

14.

BACKGROUND

Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK‐2A. Its mode of action and target site interactions have been investigated.

RESULTS

UK‐2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK‐2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK‐2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK‐2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross‐resistance to strobilurin, azole or benzimidazole fungicides.

CONCLUSION

Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK‐2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
The effects of host-plant volatiles (HPVs) on male oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), and response to sex pheromone trap were studied in a pear orchard. Two HPVs compounds, (Z)-3-hexenyl acetate and 1-undecanol, combined with sex pheromone of G. molesta in traps were tested. The results showed that most of the male moths were captured in the traps baited with the sex pheromone combined with these two HPVs compounds than by the pheromone alone. Also, more males were captured by the trap containing pheromone plus (Z)-3-hexenyl acetate than by the one containing 1-undecanol. It appeared that these HPVs act as sex pheromone synergists to enhance the attraction of male G. molestato pheromone traps, since males were not captured in the traps baited only with (Z)-3-hexenyl acetate and/or 1-undecanol.  相似文献   

16.

BACKGROUND

Pesticides are one of the most important anthropogenic-related stressors. In times of global pollinator decline, the role of integrated farming and urban gardens in supporting wild pollinators is becoming increasingly important. We circulated an online questionnaire to survey plant protection practices among Hungarian farmers and garden owners with a particular emphasis on pollinator protection.

RESULTS

We found that plant growers rely heavily on pesticide use, and pesticides are used widely in otherwise pollinator-friendly gardens. Whether pesticide use practices were driven by expert opinion and respondent gender were the best predictors of pesticide use. Although most respondents supported pollinators, pesticides are also used widely among home garden owners, which can pose a non-evident ecological trap for pollinator populations in the gardens.

CONCLUSION

Special attention should be paid to implementing measures to reduce pesticide use not only in farmland, but also in home gardens. Environmental education and financial support through agroecological schemes could efficiently promote the transition away from pesticide use. However, whereas farmers can be encouraged to reduce pesticide use mostly by expert advice, garden owners are likely to rely on more conventional information channels. The attitudes of Hungarian plant growers can provide an insight into pesticide use practices of Central and Eastern European countries, but similar surveys are needed across Europe for a complete understanding of broad-scale processes. This work lays the foundations for similar studies that can inform and facilitate the transformation to pesticide-free farming and gardening. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.
BACKGROUND: The fire ant, Solenopsis invicta, is one of the most aggressive and invasive species in the world. The trail pheromone Z,E‐α‐farnesene (91% purity) was prepared, and disruption of worker trail orientation was tested using an ethanol‐based aerosol formulation presenting a single puff of this compound by airbrush and compressed air. Trail‐following behaviour was recorded by overhead webcam and ants digitised before and after presentation of the aerosol treatment at four rates (1.6, 16, 160 and 1600 ng cm?2). RESULTS: Ants preferred 110 ng cm?1 over 11, 1.1 and 0.11 ng cm?1 for trail following. Within seconds of presentation of 1600 ng cm?2, the highest dose tested, trail disruption was observed. Disruption was evident as reduced arrival success and reduction in the trail integrity statistic (r2), as well as increased deviation from the trail (deg). The distribution of walking track angles was also flattened. CONCLUSIONS: The feasibility of using aerosol for delivery of trail pheromone was demonstrated, but the need for high purity combined with the difficulty of commercial supply makes this technique impractical. However, the commercial production of Z,E‐α‐farnesene of high purity by industrial biotechnology or from (E)‐nerolidol may be possible in future, which would facilitate further development of trail pheromone disruption of S. invicta. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Brandsæter LO, Fogelfors H, Fykse H, Graglia E, Jensen RK, Melander B, Salonen J & Vanhala P (2010). Seasonal restrictions of bud growth on roots of Cirsium arvense and Sonchus arvensis and rhizomes of Elymus repens. Weed Research 50 , 102–109.

Summary

The success of weed management aimed at depleting the regenerative structures of perennial weeds depends largely on the sprouting activity of rhizome and root buds. Seasonal variation in sprouting of these buds on Cirsium arvense, Sonchus arvensis and Elymus repens was studied for plants collected from Denmark, Finland, Norway and Sweden. At 2‐week intervals from July to October, 5‐cm fragments of roots or rhizomes were cut from plants grown in buckets and planted into soil in pots, half of which were placed immediately into growth chambers at 18°C for 4 weeks. The other half of the pots were initially placed in a dark room at 2°C for 4 weeks before being transferred to the same growth chamber, also for 4 weeks. During the growth chamber period, the numbers of emerged shoots in each pot were counted weekly. The sprouting activity of C. arvense and E. repens was relatively uniform during this period and bud dormancy was not apparent. In all ecotypes of S. arvensis, innate bud dormancy developed during the latter part of the growing season. For all three species, differences in sprouting readiness were found among ecotypes. The results imply that C. arvense and E. repens are more likely to be controlled by mechanical measures in autumn than S. arvensis.  相似文献   

19.

Background

The resistance of weeds to herbicides is a significant issue in ensuring future food supply. Specific examples are Plantago lanceolata, Portulaca oleracea and Lolium rigidum, which mainly infect rice, wheat, barley and pastures, and cause high yield losses every year. In this regard, natural products and their mimics have provided new hope as a result of their different modes-of-action, activity at low concentrations and reduced pollution effects relative to conventional herbicides. However, the poor water solubility and physicochemical properties of these compounds limit their broad application. These problems can be addressed by formulation techniques, and encapsulation appears to be of great interest.

Results

Disulfide herbicides inspired by aminophenoxazinones have been formulated with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), γ-CD and polymeric nanoparticles (NPs). In silico studies were employed to identify which complexes would be generated and complex formation was confirmed by nuclear magnetic resonance spectroscopy. Solubility diagrams were generated to assess any improvement in water solubility, which was enhanced 2–13-fold. Scanning electron microscopy and energy-dispersive X-ray spectra confirmed the success of the formulation process for the nanoparticles. Formulated compounds were evaluated in an in vitro wheat coleoptile bioassay, with almost 100% elongation inhibition achieved using only water for the bioassay. Specific in vitro testing on weed phytotoxicity showed that the application of core/shell NPs is highly effective in the fight against P. lanceolata seed germination.

Conclusions

The formulation of disulfide herbicides with CD complexes and NPs led to an enhancement in water solubility and bioactivity. These systems can be applied in pre-emergent mode against P. lanceolata, using only water to prepare the sample, and they showed better activity than the positive controls. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号